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Ordered Sets and Complete Lattices

A Primer for Computer Science

Hilary A. Priestley

Mathematical Institute, University of Oxford

Abstract. These notes deal with an interconnecting web of mathemat-
ical techniques all of which deserve a place in the armoury of the well-
educated computer scientist. The objective is to present the ideas as a
self-contained body of material, worthy of study in its own right, and at
the same time to assist the learning of algebraic and coalgebraic meth-
ods, by giving prior familiarization with some of the mathematical back-
ground that arises there. Examples drawn from computer science are
only hinted at: the presentation seeks to complement and not to pre-
empt other contributions to these ACMMPC Proceedings.

1 Introduction

Order enters into computer science in a variety of ways and at a variety of levels.
At the most lowly level it provides terminology and notation in contexts where
comparisons arise, of such things as

• size (of numbers),
• amount of information (after a number of steps of a computation, for exam-

ple),
• degree of defined-ness (of partial maps).

Many areas of computer science use as models structures built on top of ordered
sets. In some cases, only token familiarity with order-theoretic ideas is needed to
study these, as is the case with CSP, for example. At the other extreme, domain
theory uses highly sophisticated ordered structures as semantic domains (see for
example Abramsky & Jung [2]). Indeed, the development of the theory of CPOs
since the 1970s has led to new insights into the theory of ordered sets; see Gierz
et al. [9] and, for a more recent perspective, Abramsky & Jung [2].

At an intermediate level come three notions exploited in computer science and
closely linked to order-theoretic ideas: Galois connections, binary relations, and
fixed points. A recurring theme here is the theory of complete lattices, and this
account focusses on the way in which complete lattices can be described and their
properties explored. Specifically we investigate the concepts in the diagram in
Figure 1 and the arrows that link them. (An arrow pointing from A to B indicates
that every object of type A gives rise, in a natural way, to an object of type B.
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We are not claiming that this is done in such a way that all triangles in the
diagram commute.) Some of the links are principally of mathematical interest,
but discussion of them has been included to complete the overall picture. For a
summary of the results, see 7.10.
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Fig. 1. A web of concepts

There is another, quite different, way in which order assists computer sci-
ence. Category theory has established itself as a fundamental tool, and underpins
much of the ACMMPC Workshop material. Ordered structures and the maps
between them provide a wealth of examples of categories and functors. Equally
importantly perhaps, every poset gives rise to a category in a natural way. Such
categories are highly special (every set of arrows has at most one element) but
very simple. As we hint in Section 9, elementary order-theoretic notions provide
instances of more abstract categorical notions. For example, product, supremum,
and infimum are instances of product, colimit, and colimit. Further, Galois con-
nections between posets are instances of adjunctions between categories. Under-
standing categorical constructs in the special case of posets-as-categories can be
helpful in cementing the general ideas.

As a final general comment on order in computer science we remark on the
role of sets and powersets. Sets are a familiar concept and have accordingly been
widely used, in such areas as the calculus of relations, for example. A powerset is
ordered by its inclusion relation. As an ordered structure it possesses extremely
nice properties, with infinitary disjunction and conjunction (union and intersec-
tion) available and interacting in a optimally well-behaved way. Powersets are
too nice! Programs built on pure set models cannot capture all the behaviours
that one might wish. Ordered set models are richer.

Probably some, but not all, of the ideas presented here will be familiar al-
ready to most readers. However, as befits concepts which have incarnations in
a variety of disciplines, the concepts don different clothes in different settings.
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These notes are written by a mathematician, and the style reflects a mathemati-
cian’s approach. We have however followed, though not slavishly, the calcula-
tional proof style favoured by functional programmers. This formalism contrasts
with and is complemented by the pictorial dimension to order theory which gives
the latter much of its appeal.

No prior knowledge of lattices or ordering will be presupposed, but basic
facts concerning sets, maps, and relations are assumed. Many subsections contain
‘Mini-exercises’. These serve both to record elementary results needed later on
and as an invitation to the reader to reinforce understanding of the immediately
preceding material; most of the verifications are of the ‘follow-your-nose’ variety.
More substantial exercises are interspersed through the text. A background ref-
erence is the text Introduction to Lattices and Order ; chapter numbers given are
those in the second (2002) edition. This will henceforth be referred to simply as
ILO2. Chapters 1–4 and 7–10 contain the material of primary relevance to this
survey.

2 From Binary Relations to Diagrams

2.1 A Fundamental Example: Powersets

Very many of the structures we consider are families of subsets of some given
set X , that is, they are members of the powerset of X . This powerset carries
a natural ordering, namely set inclusion, ⊆. We denote the set of all subsets
of X by ℘(X), and always regard this as equipped with the inclusion order.
Alternatively (though this may seem perverse at this stage), we might order the
subsets of X by reverse inclusion, ⊇. When we wish to use reverse inclusion we
shall write ℘(X)∂ . (See 3.4 for a more general occurrence of the same idea.)

A recurrent theme hereafter will be the way in which ordered sets can be
depicted diagrammatically. Ahead of considering this in a formal way, we give
some illustrative examples. Let us first consider X = {0, 1, 2}. We can give a
representation of ℘(X), as shown in Figure 2(a). In (b) we show an unlabelled
diagram for ℘({0, 1, 2, 3}).
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Fig. 2. Some powersets, pictorially
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Mini-exercise

(i) Draw a labelled diagram of ℘({0, 1, 2})∂.
(ii) Label the diagram in Figure 2(b), and indicate a connected sequence of

upward line segments from {3} to {1, 3, 4}.
Any collection of subsets of a set X—not necessarily the full powerset—is also
ordered by inclusion. For an example, see the diagram in Figure 8(b).

Mini-exercise

(i) Draw a diagram for the family {{3}, {1, 3}, {1, 3, 4}} in ℘({1, 2, 3, 4}).
(ii) Draw a similar picture for the following family of sets in ℘({A,B,C,D,E}):

∅, {E}, {A,E}, {D,E}, {C,D,E}, {A,D,E},
{A,B,E}, {A,C,D,E}, {B,C,D,E}, {A,B,C,D,E}.

2.2 Input-Output Relations Pictorially

Consider a simple input-output relation with the inputs labelled by a, b, c, d, e
and the outputs by A,B,C,D,E. The relation is indicated in the table in Fig-
ure 3. We may think of this as modelling a program which when started from a
given input state p can terminate only in a output state Q for which × appears
in position (p,Q) in the table. Note that the input state labelled e has no associ-
ated output states, and may be thought of as a way of capturing the possibility
of non-termination.

A B C D E

a × × × ×
b × ×
c × × × ×
d × × ×
e
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Fig. 3. An input-output relation and a diagram for it

To reach a prescribed output state we have the following sets of starting
states:

A� = {c, d} C� = {a} E� = {a, b, c, d}
B� = {a, c, d} D� = {a, b, c}
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We now take these five sets and all sets we can form from them by closing
up under intersections. This adds to the original collection {c}, {b, c}, ∅, and
the empty intersection (that is, the intersection of no sets); for example, {c} =
A� ∩D� , indicating that c is the only input state from which it is possible to
terminate in either A or D.

In a similar way we can write down the set of output states that can be
reached from each input state:

a� = {B,C,D,E} c� = {A,B,D,E} e� = {E}
b� = {D,E} d� = {A,B,E}

Conjuring a rabbit out of a hat we exhibit the picture in Figure 3. Leaving
aside for now how we derived the labelling, we can see rather easily how this
encodes the information in the input-output table. To see which output states
are attainable from a given input state, say p, simply locate the output states Q
which lie above p, in the sense that there is a connected sequence of upward
line segments from p to Q. For p = a, for example, this gives C and D as the
possibilities for Q. Similarly, to find the input states from which it is possible
to terminate in a given output state Q, look downwards along connected line
segments to find the input states below Q.

Mini-exercise Carry out the procedure above for each of the input and output
states, and so reconstruct the original input-output table from Figure 3.

Now consider the central unshaded point in Figure 3. Looking upward along
line segments for points labelled with output states we find B,D,E and looking
downward for points labelled with input states we see a, c. Observe that B,D
and E are precisely the output states attainable from both the input states a
and c, while a and c are exactly the possible initial states if the program is to
be guaranteed to terminate in one of B, C, or D.

We make no claim that this diagrammatic way of viewing an input-output
relation has any merits from a computer scientist’s standpoint. Indeed quite
the reverse might be said, since it goes counter to the philosophy of operating
according to fixed calculational rules. However we shall with profit return to
this very simple example later, and indicate that analysis of more complicated
examples can yield information which is not otherwise easy to obtain.

2.3 Exercise

Analyse the input-output relation with table shown in Table 1. See if you can
work out how to draw a labelled diagram encoding the input-output table, and
interpret the diagram in the same way as in the example in 2.2.
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Table 1. Input-output relation for Exercise 2.3

A B C D E

a × ×
b × × ×
c ×
d × × ×
e × × × ×

2.4 Binary Relations and Their Polars

Let G and M be sets, and let R ⊆ G ×M be a binary relation. Changing the
perspective from that we adopted in 2.2, we think of G as a set of objects, M
as a set of attributes and the relationship (g,m) ∈ R (sometimes written al-
ternatively as gRm) as asserting that ‘object g has attribute m’. We shall refer
to the triple (G,M,R) as a context. The choice of letters G and M comes from
the German (Gegenstände and Merkmale—the theory of concept lattices having
been principally developed by R. Wille and his group at TH Darmstadt. From its
beginnings 20 years ago this theory has evolved into a commercially applicable
tool for data analysis through the TOSCANA software. The concept lattice asso-
ciated with a context reveals inherent hierarchical structure and thence natural
groupings and dependencies among the objects and the attributes. Introductory
accounts of the theory, with illustrations, appear in ILO2 Chapter 3, and in
Ganter & Wille [8].

Given the context (G,M,R) we define

A� := {m ∈M : (∀g ∈ A) (g,m) ∈ R }, for A ⊆ G,

B� := { g ∈ G : (∀m ∈ B) (g,m) ∈ R } for B ⊆M,

called the polars of A, B, respectively. For singleton sets we drop the set brackets
and write g� instead of {g}� and m� instead of {m}� . The polar map � takes
subsets of G to subsets of M—it takes a set A of objects to the set of attributes
common to all the objects in A; likewise, � maps subsets of M to subsets of G,
taking a set of attributes B to the set of all objects which possess all of the
attributes in B. Of course the bigger A is, the fewer attributes all its members
will share and the bigger B is, the fewer objects will share all the attributes
demanded by B. It is therefore natural to reverse the ordering on one side and
to regard � as mapping from ℘(G) to ℘(M)∂ and � as mapping from ℘(M)∂

to ℘(G). Flipping the order on ℘(M) like this makes � and � monotone (that
is, order-preserving), rather than order-reversing). We also have

A ⊆ B� ⇐⇒ (∀g ∈ A)(∀m ∈ B)(g,m) ∈ R (definition of � )
⇐⇒ (∀m ∈ B)(∀g ∈ A)(g,m) ∈ R (predicate calculus)

⇐⇒ A� ⊇ B (definition of � ).



2. Ordered Sets and Complete Lattices 27

Note the reversal, as expected, of the order. (Those already in the know will rec-
ognize that we have established that (� , � ) sets up a Galois connection between
℘(G) and ℘(M)∂ .)

The polars give rise to related notions. Write

g � A⇐⇒ g ∈ A� � (g ∈ G, A ⊆ G),

B 
 m⇐⇒ m ∈ B�� (m ∈M, B ⊆M);

� and 
 may be referred to as the emulation operator and the semantic
consequence operator, respectively. For clarity we worked in 2.2 with the set
of input states and the set of output states distinguished. Taking G = M = S
and R ⊆ S × S we may regard (S, S,R) as defining a (non-deterministic)
transition system on S. Such systems provide a point of entry into the theory
of coalgebras; see Rutten [16], and other papers by the same author.

Given A ⊆ G and B ⊆M we call (A,B) a concept if

A = B� and A� = B.

Concepts are ordered by inclusion on the first co-ordinate, reverse inclusion on
the second (this is just the order inherited from the co-ordinatewise ordered
product ℘(G) ×℘(M)∂ ; see 3.7). The set of all concepts ordered in this way is
denoted B(G,M,R). What we have drawn in Figure 3 is a pictorial representa-
tion of B(G,M,R) for the context given in 2.2.

2.5 Exercise

Let X be a set and let R= and R�= denote = and �= regarded as binary relations,
that is, as subsets of X ×X .

(i) Consider the context (X,X,R �=). Identify the polars A� and B� for
A,B ⊆ X , and show that B(X,X,R �=) = { (A,X\A) : A ⊆ X }.

(ii) Consider the context (X,℘(X),∈). Show that

B(X,℘(X),∈) = { (A, {B ∈ ℘(X) : A ⊆ B }) : A ⊆ X }.

2.6 Summing Up So Far

Binary relations, and their associated contexts, are versatile creatures, with a
wide spectrum of semantic interpretations. Any context has associated with it
a pair of polar maps, forming what is known as a Galois connection. In a way
we have yet fully to explore, these maps in turn give rise to an ordered set of
objects we call concepts, and this encodes the original binary relation. But we
are rushing ahead. Before we can make all this precise we need to know quite a
lot about ordered sets.



28 Hilary A. Priestley

3 Order, Order, Order, . . .

We have mentioned order in an informal way in the preceding section, and have
made use of the inclusion and reverse inclusion orderings on a powerset. Now we
need to be more formal. What exactly do we mean by order? an order relation?
an ordered set?

3.1 Partial Order

Let us consider ordering in the context of some familiar datatypes:

(a) < on the natural numbers, IN = {1, 2, 3, . . .}, with 1 < 2 < 3 < . . . ;
(b) ⊆ (‘is a subset of’) on the powerset ℘(X) of all subsets of a set X ;
(c) the relation F < T on the set of booleans {F,T};
(d) the prefix order on binary strings—here 0110 < 011001100000, for example;
(e) the relation ‘is more defined than’ on partial maps π from IN to IN (so the

domain and range of π are subsets of IN); for example, for πk : {1, . . . , k} → IN
given by πk(n) = n + 1 for n = 1, . . . , k, we have πk less defined than πk+1

for each k.

These examples confirm that order concerns comparison between pairs of ob-
jects: 1 is smaller than 2 in IN, etc. In mathematical terms, an ordering is a
binary relation on a set of objects.

Order relations are of two types: strict and non-strict. Outside mathematics,
the strict notion is more common. When comparing people’s heights, the relation
‘is taller than’ is generally taken to mean ‘is strictly taller than’. Mathematicians
usually allow equality and write, for instance, 3 � 3 and 3 � 22/7. We shall deal
mainly with non-strict order relations.

What distinguishes a strict order relation amongst binary relations? Firstly,
it is transitive. From the facts that 0 < 1 and 1 < 1023 we can deduce that
0 < 1023. Secondly, a strict order is antisymmetric: 5 is bigger than 3 but 3 is
not bigger than 5. Formally: a binary relation < on a set P is a strict partial
order if it satisfies

(spo1) antisymmetry: for x, y ∈ P , if x < y holds, then y < x does not hold;
(spo2) transitivity: for x, y, z ∈ P , x < y and y < z implies x < z.

A (non-strict) partial order, �, on P is a binary relation satisfying

(po1) reflexivity: for x ∈ P , x � x;
(po2) antisymmetry: for x, y ∈ P , x � y and y � x imply x = y;
(po3) transitivity: for x, y, z ∈ P , x � y and y � z implies x � z.

Relaxing the conditions by dropping antisymmetry leads to what is known as a
pre-order or quasi-order.

Formally, a binary relation R on the set P is a subset of P × P . With this
interpretation the equality relation, =, is R= := {(x, x) : x ∈ P}. Given a partial
order � on P , the associated subset of P ×P is R� := {(x, y) : x, y ∈ P, x � y},
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and likewise for <. Then R� = R<∪R=, the union being disjoint. This is a fancy
way of expressing the way in which < and � are related.

A set P equipped with a partial order, strict or non-strict, is called in ILO2
an ordered set. Here we shall use the snappier term poset. Usually we shall
be a little slovenly and say simply ‘P is a poset’. When we wish to make the
order explicit we write 〈P ; �〉 and when working with more than one poset we
shall sometimes write �P for the order on poset P .

Associated notation is predictable: x � y and y � x are used interchangeably,
and x � y means ‘x � y is false’, and so on. Of course,

R� = { (x, y) ∈ P × P : (y, x) ∈ R� }

—the converse of R�. Similarly, R� = (P ×P )\R�. Any subset Q of a poset P
inherits P ’s ordering: x �Q y if and only if x, y ∈ Q and x �p y. Note that R�Q

is just R�P ∩ (Q×Q). The usual orderings of N, Z and Q of natural numbers,
integers, and rationals are obtained in this way from the ordering of the real
numbers R.

In the ordering < on R, any two distinct real numbers can be compared.
This comparability property is possessed by many familiar orderings, but it is
not universal. It is important to realize that under a partial order (strict or non-
strict) we may have mutually incomparable elements. As examples, note that
the sets {2} and {1, 3} in ℘({0, 1, 2, 3}) are not comparable and the strings 101
and 010 are incomparable in the prefix order. A poset in which any two elements
are comparable is called a chain, and the associated order relation a linear or
total order. Of particular importance is the 2-element chain 2 = {0, 1} in which
0 < 1: writing F (false) for 0 and T (true) for 1, we have the booleans, ordered
by putting F < T. At the opposite extreme from a chain we have an antichain,
in which � coincides with =.

3.2 Information Orderings

We have already referred to binary strings and their prefix order. Strings may
be thought of as information encoded in binary form: the longer the string the
greater the information content. Let Σ∗ be the set of all finite binary strings,
that is, all finite sequences of 0s and 1s; the empty string is included. Adding
the infinite sequences, we get the set of all finite or infinite sequences, which we
denote by Σ∗∗. We order Σ∗∗ by putting u � v if and only if u is a prefix (that
is, finite initial substring) of v. Given any string v, we may think of elements u
with u < v as providing approximations to v. In particular, any infinite string
is, in a sense we later make more precise, the limit of its finite initial substrings.

The statement that some computed quantity r equals 1.35 correct to 2 deci-
mal places may be re-expressed as the assertion that r lies in a particular closed
interval in R. We may accordingly treat the collection of all intervals [x, x] (where
−∞ � x � x � ∞) as defining a set P of approximations to the real numbers,
with the intervals for which x = x corresponding to exact values. The set P
carries a very natural order: for x = [x, x] and y = [y, y] define x � y if and only
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if x � y and y � x. Then x � y means that y represents (or contains) at least as
much information as x. These very simple ideas underlie the recent development
of a method for doing exact computations with real numbers (see A. Edelat, [7]
for an introductory survey).

Now consider partial maps. Let A, B be (non-empty) sets and denote by
A�→B the partial maps from A to B. Thus each element of A�→B is a map
π with domain domπ ⊆ A and range ranπ ⊆ B: π may be regarded as a recipe
which assigns an output π(x) in ranπ to each input x in domπ. Alternatively,
and equivalently, π is determined by its graph,

graphπ := { (x, π(x)) : x ∈ domπ },
a subset of A × B. If π ∈ A �→ B is such that domπ = A, then π is a
map on X (or, for emphasis, a total map). Therefore A �→ B consists of
all total maps from A to B and all partial determinations of them. This set is
ordered in the following way: given partial maps π, σ, define π � σ if and only
if domπ ⊆ domσ and π(x) = σ(x) for all x ∈ domπ. Equivalently, π � σ if and
only if graphπ ⊆ graphσ in ℘(A × B). Note that a subset G of A × B is the
graph of a partial map if and only if

(∀s ∈ A) ((s, x) ∈ G & (s, x′) ∈ G) =⇒ x = x′.

The examples above illustrate ways in which posets can model situations in
which the relation x � y has interpretations such as ‘y is more defined than x’
or ‘y is a better approximation than x’. In each case, we have a notion of a
total object (a completely defined, or idealized, element). These total objects
are the infinite binary strings in the first example, the 1-point intervals in the
second, and the total maps in the third. The most interesting examples from a
computational point of view are those in which the total objects may be realized
as limits (in an order-theoretic manner) of objects which are in some sense finite.
A finite object should be one which encodes a finite amount of information: for
example, finite strings, or partial maps with finite domains. These issues are
taken up briefly in Section 8.

3.3 Diagrams

As we have already suggested, an attractive feature of posets is that, in the finite
case at least, they can be ‘drawn’. The diagram of a finite poset P is drawn in
such a way that x < y in P if and only if there is a sequence of connected
line segments moving upwards from x to y. For our purposes, common sense
will suffice to indicate what constitutes a legitimate diagram; the formal rules
governing diagram-drawing are set out in ILO2, 1.15. As an example: Figure 4
gives a diagram for the subset of Σ∗ consisting of strings of length � 3.

The same poset may have many different diagrams. Two valid alternative
diagrams for the cube are shown in Figure 5. The first comes from a computer
science text (do some computer scientists have twisted minds?). The second,
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Fig. 4. Binary strings of length � 3 under the prefix order
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Fig. 5. Two ‘bad’ diagrams for a cube

while not having the maximal possible number of line-crossings Mini-exercise:
prove that this number is 19) still serves to make the point that diagram-drawing
is as much an art as a science. Good diagrams aid understanding.

3.4 Duality: Buy One, Get One Free

Given any poset P we can form a new poset P ∂ (the dual of P ) by defining
x � y to hold in P ∂ if and only if y � x holds in P . For P finite, we obtain
a diagram for P ∂ simply by ‘turning upside down’ a diagram for P . Figure 6
provides a simple illustration.

Poset concepts and results hunt in pairs. Any statement about a poset P
yields a corresponding (dual) statement about P ∂ , obtained by interchanging
� and � and making consequential changes to all other symbols (replacing �
by �, and so on). This Duality Principle permits us to prove just one of any
pair of mutually dual claims.

3.5 Bottom and Top

Let P be a poset. We say P has a bottom element if there exists ⊥ ∈ P (called
bottom) with the property that⊥ � x for all x ∈ P . Dually, P has a top element
if there exists � ∈ P such that x � � for all x ∈ P . As a simple instance of the
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Fig. 6. A pair of mutually dual posets

Duality Principle note that the true statement ‘⊥ is unique when it exists’ has
as its dual version the statement ‘� is unique when it exists’.

In 〈℘(X);⊆〉, we have ⊥ = ∅ and � = X . A finite chain always has bottom
and top elements, but an infinite chain need not have. For example, the chain IN
has bottom element 1, but no top, while the chain Z of integers possesses neither
bottom nor top. Bottom and top do not exist in any antichain with more than
one element.

In the context of information orderings, ⊥ and � have the following in-
terpretations: ⊥ represents ‘no information’, while � corresponds to an over-
determined, or contradictory, element. None of the posets in 3.2 has a top el-
ement, except for A �→ B in very special cases. Each has a bottom element:
[−∞,∞] for interval approximations to real numbers, the empty string for Σ∗∗

and the partial map with empty domain for A�→B. In each case ⊥ is the least
informative element. In modelling computations, a bottom element is also useful
for representing and handling non-termination. Accordingly, computer scientists
commonly choose as models posets which have bottom elements, but prefer these
topless.

3.6 Lifting

It is tiresome that what may be thought of as the simplest posets of all, namely
the antichains, fail to have bottoms (except in the 1-element case). Lack of a
bottom element can be easily remedied by adding one. Given any poset P (with
or without ⊥), we form P⊥ (called P ‘lifted’) as follows. Take an element ⊥ /∈ P
and define � on P⊥ := P ∪ {⊥} by

x � y if and only if x = ⊥ or x � y in P.

For example, take the natural numbers IN with the antichain order, =. Then IN⊥
is as shown in Figure 7. P⊥ is just {⊥} ⊕ P . A poset of the form S⊥, where S
is an antichain, is called flat.

3.7 New Posets from Old: Sums and Products

Antichains and chains, and the lifting construction, are examples of constructing
new posets from existing ones by forming suitable order-theoretic sums. Given
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Fig. 7. Lifting

two disjoint posets P and Q we form their linear sum P ⊕Q by stacking Q on
top of P . Formally, we take P ∪Q and order it by x � y if and only if one of the
following holds:

(i) x, y ∈ P and x �P y,
(ii) x, y ∈ Q and x �Q y,
(iii) x ∈ P and y ∈ Q.

Given two disjoint posets P and Q we order their union P ∪ Q by setting
x �P∪Q y if and only if either (i) x, y ∈ P and x �P y or (ii) x, y ∈ Q and
x �Q y. The resulting poset is denoted P

·∪Q. Note that in the formation of
linear sums and disjoint sums it is essential that the posets P and Q be disjoint.

Given two posets P and Q, we can form their product P ×Q by giving the
set P ×Q of all ordered pairs { (p, q) : p ∈ P, q ∈ Q } the co-ordinatewise order

(p1, p2) �P×Q (q1, q2) ⇐⇒ p1 �P p2 and q1 �Q q2.

See ILO2, 1.12, for comments on diagrams of products posets. A related Mini-
exercise: what can you deduce from the diagram of ℘({0, 1, 2, 3}) shown in
Figure 2(b)?

Mini-exercise Let X be a set with n elements. Prove that ℘(X) ∼= 2n (here
℘(X) has the usual inclusion order, and 2n denotes the n-fold product of 2 with
itself. (If stuck, consult ILO2, 1.26.)

3.8 Maps between Posets

It should come as no surprise at all that along with posets we also consider suit-
able structure-preserving maps between posets. Let P and Q be posets. A map
F : P → Q is said to be

(i) monotone (or, alternatively, order-preserving) if x � y in P implies
F (x) � F (y) in Q;

(ii) an order-embedding if x � y in P ⇐⇒ F (x) � F (y) in Q;
(iii) an order-isomorphism if it is an order-embedding mapping P onto Q.

When there exists an order-isomorphism from P to Q, we say that P and Q are
order-isomorphic and write P ∼= Q. Order-isomorphic posets are essentially
indistinguishable; in the finite case this happens if and only if they can be rep-
resented by the same diagram (see ILO2, 1.18). Frequently used properties of
maps are contained in the next Mini-exercise.
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Mini-exercise

(i) Any order-embedding is clearly monotone. Show that it is also one-to-
one (you will need (po2), antisymmetry of �, in P ). Show that not every
one-to-one monotone map is an order-embedding (get an example using
2-element posets).

(ii) Let F : P → Q and G : Q → R be maps between posets P,Q,R. Show
that if F and G are monotone (order-embeddings, order-isomorphisms)
then so is the composite G ◦ F : P → R.

(iii) A monotone map F : P → Q is an order-isomorphism if and only if it
has a monotone inverse G : Q → P (meaning that G ◦ F = idP and
F ◦G = idQ). (Here idS : S → S denotes the identity map on S given
by idS(x) = x for all x ∈ S.)

The familiar poset ℘(X) of subsets of a set X with its inclusion order is con-
nected by an order-isomorphism to another important poset associated with X ,
namely the poset P of predicates on X . A predicate is a statement taking
value T (true) or value F (false), or, more formally, a function from X to {T,F};
here we don’t distinguish between different ways of specifying the same function.
For example, the map p : R → {T,F} given by p(x) = T if x � 0 and p(x) = F if
x < 0 is a predicate on R, which can be alternatively be specified by p(x) = T if
|x−1| � |x+1| and F otherwise. We order P(X) by implication: for p, q ∈ P(X),

p � q if and only if {x ∈ X : p(x) = T } ⊆ {x ∈ X : q(x) = T } .

Then F : P(X)→ ℘(X) given by F (p) := {x ∈ X : p(x) = T } sets up an order-
isomorphism between 〈P(X); �〉 and 〈℘(X);⊆〉. In the special case that X has
just one element, P(X) is (isomorphic to) the poset of booleans.

3.9 Pointwise Ordering of Maps

Now let Q be a poset and X any set. Then the ordering on Q can be lifted,
pointwise, to a partial order � on the set QX of all maps from X to Q: for
F,G : X → Q,

F � G⇐⇒ (∀x ∈ X)F (x) � G(x).

(We shall always use � rather than � when ordering functions pointwise.)
Thinking of predicates on X as maps from X into {T,F} the pointwise or-
der is just the implication order �. When X is itself a poset, P say, the subset
of QP consisting of the monotone maps from P to Q inherits the order �; we
denote this poset by 〈P → Q〉.

Mini-exercise (Currying) Prove that, for all posets P,Q and R,

〈P → 〈Q→ R〉〉 ∼= 〈P ×Q→ R〉.
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3.10 Up-Sets: An Inbred Example

Let P be a poset.

(i) Let x ∈ P . Then define ↑x := { y ∈ P : y � x }.
(ii) Let Y ⊆ P . Then Y is an up-set of P if x ∈ P , x � y, y ∈ Y implies

x ∈ Y .

Note that ↑x is an up-set for each x ∈ P (by (po3), the transitivity of �). Denote
the family of up-sets of P by U(P ), and order it by inclusion. Thus U(P ) is itself
a poset. We shall shortly see that it is much more than this. In particular, an
elementary calculation shows that if {Ai}i∈I is any subset of U(P ) then

⋃
i∈I Ai

and
⋂

i∈I Ai belong to U(P ). Mini-exercise: check this statement (follow your
nose). As an example, we show in Figure 8 a diagram of a poset P and of U(P ).
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{�, x, y, v}{�, y, u, v}

{�, x, y, u, v}

U(P )

Fig. 8. A poset P and its poset U(P ) of up-sets

Mini-exercise

(i) Prove that P is an antichain if and only if U(P ) = ℘(P ).
(ii) Analyse U(P ) when P is (a) the chain IN, (b) the chain R (both with the

usual order).

Mini-exercise Let P and Q be disjoint posets. Describe the up-sets of P
·∪Q

and prove that U(P
·∪Q) ∼= U(P )× U(Q).

3.11 Monotone Maps and Up-Sets

Let P be a poset and recall that 2 = {0, 1} is the 2-element chain ordered by
0 < 1. Then there is an order-isomorphism between U(P ) and 〈P → 2〉 ordered
as always by the pointwise order �. Under this isomorphism an up-set U is
associated to its characteristic function χ

U (which takes value 1 on U and 0
otherwise). Mini-exercise: Verify this assertion.
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3.12 Exercise (More on Monotone Maps and Up-Sets)

Let P and Q be posets and F : P → Q a map.

(i) Prove that F : P → Q is monotone if and only if

F−1(Y ) := { x ∈ P : F (x) ∈ Y }

is an up-set in P whenever Y is an up-set in Q.
(ii) Assume F : P → Q is monotone. Then, by (i),

F−1 : U(Q) → U(P ) is a well defined map.
(a) Prove that F is an order-embedding if and only if F−1 maps U(Q)

onto U(P ).
(b) Prove that F maps P onto Q if and only if F−1 : U(Q) → U(P ) is

one-to-one.

It is also instructive to re-formulate and re-work this exercise in a purely func-
tional setting (see 3.11).

3.13 Down Is Nice Too

We can define down-sets of a poset P in just the same manner as we defined
up-sets and form the poset down-sets, O(P ), carrying the inclusion ordering.
The symbol O is traditional here—O stands for ‘order ideal’, a synonym for
‘down-set’.

Mini-exercise Formulate explicitly the analogues for down-sets of the defini-
tions and Mini-exercise results in 3.10.

Mini-exercise Draw a labelled diagram of O(P ) for the poset P in Figure 6.

Mini-exercise Let P be a poset. How do the down-sets of P⊥ (as defined in 3.6)
relate to those of P? Prove that O(P⊥) ∼= O(P )⊥.

Mini-exercise Prove that the poset Σ∗∗ of all binary strings is a tree (that is,
a poset P with ⊥ such that ↓x is a chain for each x ∈ P ).

3.14 Exercise (Turning Things Upside Down)

(i) For Y ⊆ P , prove that Y ∈ O(P ) if and only if P \ Y ∈ U(P ).
(ii) Prove that O(P ) ∼= U(P )∂ .
(iii) Prove that U(P ∂) ∼= U(P )∂ and O(P ∂) ∼= O(P )∂ .

You might have doubts about how the orderings work out here. If so, refer to
the example in Figure 8 and Mini-exercise 3.13.
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3.15 The Down-Set Operator, ↓, and the Up-Set Operator, ↑
Let P be a poset and x, y ∈ P . Then we claim that the following are equivalent:

(a) x � y;
(b) ↓x ⊆ ↓y;
(c) (∀Y ∈ O(P )) y ∈ Y =⇒ x ∈ Y .

This innocent little result says that the order � on P is determined by the
down-sets in P . The implication (a) =⇒ (b) is needed in 5.6.

Mini-exercise Prove the claim. (a) =⇒ (b) has already been noted; follow-
your-nose for (b) =⇒ (c). For (c) =⇒ (a) take Y := ↓y. Note: you will need
(po1) and (po3).

There is likewise an up-set operator, ↑, mapping each subset of P to the
up-set it generates. Notice though that x � y if and only if ↑x ⊇ ↑y (check it!).
This order reversal means that for many purposes down-sets and ↓ are more
convenient to work with than up-sets and ↑. However up-sets relate better to
monotone functions; see 3.11.

For any subset Y in a poset P there is a smallest down-set containing Y .
This may be described in two equivalent ways:

(a) ↓Y = { z ∈ P : (∃y ∈ Y ) z � y } =
⋃ { ↓y : y ∈ Y };

(b) ↓Y =
⋂ {Z : Z ∈ O(P ), Z ⊇ Y }.

Note that when Y = {x}, where x ∈ P , then ↓{x}, as defined in (a), is just
↓x as defined in 3.10; we henceforth always write this down-set as ↓x. Observe
that the operator ↓ : A #→ ↓A defines a map from ℘(P )→ ℘(P ) whose image is
precisely O(P ).

Mini-exercise Prove the equivalence of (a) and (b) above, by showing that
each of the sets presented is contained in the other.

Exercise (Properties of the Operator ↓↓↓) Prove the following: for all Y, Z ∈
℘(P ),

(i) Y ⊆ ↓Y ;
(ii) Y ⊆ Z =⇒ ↓Y ⊆ ↓Z;
(iii) ↓Y = ↓↓Y ;
(iv) Y = ↓Y if and only if Y ∈ O(P ).

(Obviously, ↑ behaves analogously.)
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3.16 Exercise (A Context Explored)

Let P be a poset and consider the context (P, P,R�). Let � and � be the
associated polar maps.

(i) Show that g� = P \ ↓g and m� = P \ ↑m for g,m ∈ P .
(ii) For A,B ⊆ P show that A� = P \ ↓A and B� = P \ ↑B.
(iii) Show that (A,B) ∈ ℘(P ) ×℘(P )∂ is a concept if and only if A ∈ O(P )

and B ∈ U(P ), with A = P \B.

3.17 Maximal and Minimal Elements

We next introduce some important special elements. Let P be a poset and let
S ⊆ P . Then a ∈ S is a maximal element of S if a � x ∈ S implies a = x. We
denote the set of maximal elements of S by MaxS. Note that MaxS contains
just one element if S (with the order inherited from P ) has a top element, �S ;
in this case �S is called the greatest element of S and denoted maxS. Note
that then MaxY = {maxS}. Note also that x ∈ MaxP if and only if ↑x = {x}.
A minimal element of S ⊆ P and MinS and (where it exists) minS = ⊥S are
defined dually, that is by reversing the order.

In general Y may have many maximal elements, or none. A subset of the
chain IN has a maximal element if and only if it is finite and non-empty. In the
subset Y of ℘(IN) consisting of all subsets of IN except IN itself, there is no top
element, but IN\{n} ∈MaxY for each n ∈ IN. The subset of ℘(IN) consisting of
all finite subsets of IN has no maximal elements. An important set-theorists’ tool,
Zorn’s Lemma, guarantees the existence of maximal elements, under suitable
conditions. Zorn’s Lemma is discussed from an order theory viewpoint in ILO2,
Chapter 10.

Referring to the examples in 3.2, we see that the maximal elements in Σ∗∗

are the infinite strings and those in A�→B are the total maps. This suggests
that when an order relation models information we might expect a correlation
between maximal elements and totally defined elements.

Mini-exercise Let P be a finite poset and let ∅ �= Y ⊆ P .

(i) Prove that MaxY is a non-empty antichain.
(ii) Prove that Y is a down-set if and only if Y = ↓MaxY .

3.18 Stocktaking

In connection with a poset P and its subsets we have now met

• binary relations: �, its converse �, and their complements �, �;
• paired polar maps: ( � , � ) between ℘(P ) and ℘(P )∂ , associated with any

relation R ⊆ P × P and in particular with the relations �, �, � and �;
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• families of sets U(P ) (up-sets) and O(P ) (down-sets), and the family of
concepts associated with the pair of polar maps ( � , � ) associated with a
relation R ⊆ P × P , all themselves posets;

• the down-set operator, ↓, and the up-set operator, ↑;
• diagrams for posets, in particular for the poset of concepts of a context.

A number of points should be clear from our examples: that the notions above are
closely interconnected, and that the families of sets arising have nice properties
not possessed by posets in general.

Our next task is to pursue order-theoretic ideas further, in order to have
available the vocabulary needed to define and explore complete lattices and their
relationship to Galois connections and closure operators. Afficionados of Galois
connections will need to be a little patient: we put in place the other pieces of
the jigsaw before slotting in this key piece.

4 Lattices in General and Complete Lattices in Particular

Many important properties of a poset P are expressed in terms of the existence
of certain upper bounds or lower bounds of subsets of P . Important classes of
posets defined in this way are

• lattices,
• complete lattices,
• CPOs (complete partial orders).

These classes enter into different application areas to differing extents. Lattices,
where we are dealing with finitary operations, are algebraic structures and their
theory belongs to, and has a symbiotic relationship with, algebra. There are
also close connections with logic. Complete lattices are the ordered structures
of most interest to us in these notes. CPOs are more general, and provide an
appropriate setting in which to study fixed point theorems; restricting somewhat
to (Scott) domains, we have a much-studied class of semantic domains. Much
of the motivation comes from the need to have semantic models supporting
recursion.

4.1 Lattices

Consider the posets depicted in Figure 9. In (a) we have ↑a ∩ ↑b = ∅. In (b) we
find that ↑a∩↑b = {c, d}. Similar considerations apply to the down-set operator.
For points x, y in a poset P there may be a point z ∈ P such that ↓x∩ ↓y = ↓z,
or this may fail either because the intersection is empty or because it is not of
the form ↓z.

By contrast, if we look at a powerset ℘(X) we find easily that, for any subsets
A,B of X , there exists C ∈ ℘(X), namely C = A∪B, such that ↑A∩↑B = ↑C;
and similarly for ↓.
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Fig. 9. Thwarted suprema

Let L be a non-empty poset. Then L is a lattice if, for x, y ∈ L, there exists
elements x ∨ y and x ∧ y in L such that

↑x ∩ ↑y = ↑(x ∨ y) and ↓x ∩ ↓y = ↓(x ∧ y);

the elements x ∨ y and x ∧ y are called, respectively, the join (or supremum)
and meet (or infimum) of x and y. Formally, ∨ : L×L→ L and ∧ : L×L→ L
are binary operations on L. Note that L∂ is a lattice if and only if L is, with the
roles of ∨ and ∧ swapping.

Mini-exercise As a special kind of poset, a lattice is equipped with a partial
order, �, as well as with the binary operations of join and meet. The link between
∨, ∧ and � (portentously called the Connecting Lemma in ILO2), is given by

x ∧ y = x⇐⇒ x � y ⇐⇒ x ∨ y = y

(note that this implies that either of ∨ and ∧ determines �). Verify these impli-
cations.

Mini-exercise

(i) Show that any finite lattice possesses top and bottom elements.
(ii) Give an example of a poset with � and ⊥ which is not a lattice.

Let L be a lattice. Then (L;∨,∧) may be viewed as an algebra, with ∨ and
∧ satisfying certain laws (equations) capturing the properties that their order-
theoretic ancestry gives them. For all x, y, z ∈ L,

(L1) (x ∨ y) ∨ z = x ∨ (y ∨ z) (associativity)
(L2) x ∨ y = y ∨ x (commutativity)
(L3) x ∨ x = x (idempotency)
(L4) x ∨ (x ∧ y) = x (absorption),

and their dual versions, (L1)∂–(L4)∂ . It is an easy Mini-exercise to verify
(L1)–(L3) and their duals. Note that only the absorption laws (L4) and (L4)∂

involve both ∨ and ∧. These laws, of course, capture exactly what the Connecting
Lemma demands. In the opposite direction, the lattice laws are set up in such
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a way that any (non-empty) structure (L;∨,∧) satisfying these laws gives rise
to a poset 〈L; �〉: the partial order is (well-)defined by the equivalent conditions
x � y ⇐⇒ x ∨ y = y ⇐⇒ x ∧ y = x, and join and meet operations given by sup
and inf are just the original ∨ and ∧. This correspondence between lattice-as-
algebra and lattice-as-poset is set out in more detail in Chapter 2 of ILO2.

The associative laws allow us unambiguously to define iterated joins and
meets: if F = {a1, . . . , an} is a finite non-empty subset of a lattice L then we
write

∨
F as alternative notation for a1 ∨ · · · ∨ an, and

∧
F for a1 ∧ · · · ∧ an.

We have demanded that a lattice be non-empty, whereas we allow posets to
be empty. This reflects customary practice: algebras are non-empty but relational
structures, such as posets, are allowed to have an empty underlying set.

Mini-exercise Let P and Q be non-empty posets. Prove that P ×Q, with the
usual co-ordinatewise order, is a lattice if and only if both P and Q are lattices.

Mini-exercise Let L be a lattice. Prove that for all a, b, c, d ∈ L

(i) a � b implies a ∨ c � b ∨ c and a ∧ c � b ∧ c;
(ii) a � b and c � d imply a∨ c � b∨d and a∧ c � b∧d. (Note that this says

precisely that the binary operations ∨ : L×L→ L and ∧ : L×L→ L are
monotone.)

4.2 Examples of Lattices

(1) Every non-empty chain is a lattice in which x ∨ y = max{x, y} and x ∧
y = min{x, y}. Thus the real numbers, R, and the natural numbers, IN, are
lattices under the usual orderings. Note that R lacks both � and ⊥ and that
IN lacks �.

(2) For any set X , the powerset ℘(X) is a lattice in which ∨ and ∧ are just ∪
and ∩. Dually, ℘(X)∂ is a lattice, with ∨ as ∩ and ∧ as ∪.

(3) Now let ∅ �= L ⊆ ℘(X). Then L is known as a lattice of sets if it is
closed under finite unions and intersections. In a lattice of sets L we have
A ∨B = A ∪B and A ∧B = A ∩B for A,B ∈ L. This is not quite obvious;
see 5.2. As examples, we see that, for any poset P , our old friends U(P ) and
O(P ) are lattices of sets.

4.3 Distributive Lattices

In any powerset ℘(X) we have, for A,B,C ⊆ X ,

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) and A ∪ (B ∩C) = (A ∪B) ∩ (A ∪ C).

Therefore ℘(X) satisfies the distributive laws: for all x, y, z ∈ L

(D) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z);
(D)∂ x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).
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More generally, any lattice of sets satisfies these laws, and in particular the
lattices O(P ) and U(P ) of down-sets and up-sets of a poset P are distributive.

We may ask whether every lattice is distributive. It is far from transparent
algebraically whether or not this is true, and it is well known that in the pio-
neering days of lattice theory more than a century ago it was ‘proved’ that all
lattices are distributive. However it can be seen extremely easily that both the
lattices in Figure 10 fail (D)—the pictorial approach demonstrates its power!

❜

❜

❜

❜❜

�
�

�
�

�
�

❅
❅

❅

❅
❅

❅x y z

M3

❜

❜

❜

❜

❜

❅
❅

�
�

✡
✡
✡

❏
❏
❏

x

y
z

N5

Fig. 10. A pair of non-distributive lattices

We remark that it can be shown that, globally in a lattice L, (D) holds if and
only if (D)∂ does. On the other hand, locally, for particular triples of elements
x, y, z, the two conditions are not equivalent. See ILO2, Chapter 4.

Mini-exercise Consider again the context (X,X,R=) in Exercise 2.5.

(i) Show that if |X | = 3 the poset B(X,X,R=) is isomorphic to the lattice
M3 in Figure 10.

(ii) Convince yourself that for arbitrary X the poset B(X,X,R=) is a lattice
and that this is not distributive.

4.4 Boolean Algebras

The best-known lattices of all are the powersets, and these come ready equipped
with an extra unary operation, ′, of complementation satisfying x ∨ x′ = � and
x ∧ x′ = ⊥. Such an operation is not available in arbitrary distributive lattices
with ⊥ and �. In the chain 0 < 1 < 2, for example, 1 has no complement and,
in a down-set lattice O(P ), the only complemented elements are those which
are up-sets in P as well as being down-sets. The distributive lattices possessing
nullary operations ⊥, � and a unary operation ′ are the Boolean algebras.

4.5 Lattices in Logic

It is no coincidence that the symbols adopted for join and meet in a lattice
are the same as those used for disjunction and conjunction in logic. Consider
PROP, the propositions of classical propositional calculus: it looks as if these
should form a lattice with ‘or’ and ‘and’ acting as the lattice operations; ¬ as ′;
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F (‘falsity’) as ⊥ and T (‘truth’) as �. We would then expect → (‘implies’) to
play the role of �. This doesn’t quite work: we can have distinct propositions
α and β for which α → β and β → α both hold. Thus → defines a pre-order
rather than a partial order. To get a partial order we don’t distinguish α and β
when α ↔ β. With this identification, which can be formalized in terms of the
relation of logical equivalence on PROP, we do get a Boolean algebra. A brief
account of the theory of Boolean algebras, including an elementary treatment of
the role of lattice theory in propositional calculus, is given in ILO2, Chapter 4.

One point about logic and lattices is well worth stressing. It is by no means
always the case that logics have a classical, Boolean, negation. Logics of various
different kinds are extensively used in computer science as a means of reasoning
about programs. In such a setting we may wish to model negation in a less
restrictive way, retaining the property that P ∧¬P = F (‘not both of P and ¬P
are true’), but discarding the Law of the Excluded Middle, P ∨ ¬P = T,
and substituting something weaker. This is done, for example in intuitionistic
logic, where the implication operation behaves differently from that in classical
logic; see 6.5.

We may also wish to allow truth values other than the booleans F and T: for
example, we might want to accommodate a third value,P, representing ‘possible’
or ‘not yet determined’. Or we might, as in probabilistic models and in fuzzy
logic, wish to allow truth values lying in the interval [0, 1]. We may also, as in
modal and temporal logic, wish to allow for additional operations, such that ♦
and �. But, however we want our additional operations to behave, it is almost
always the case that the usual laws will govern disjunction and conjunction, and
then there will be an underlying distributive lattice associated with the logic.
The study of logics from an algebraic point of view has benefitted from and
driven forward the study of lattices, in particular of distributive lattices with
additional operations. We do not have space to explore these ideas further here.
For additional information see, for example, the article by Davey & Priestley [6]
and Brink & Rewitzky [5].

4.6 Upper Bounds and Sups, Lower Bounds and Infs

So far we have discussed lattices, but not the complete lattices we have adver-
tised. We now work towards remedying this omission. Let P be a poset and let
S ⊆ P . We define

Su := { x ∈ P : (∀s ∈ S)x � s } and S� := { x ∈ P : (∀s ∈ S)x � s };
Su and S� are, respectively, the sets of all upper bounds and all lower bounds
of S. Notice that ∅u = ∅� = P . Now let S �= ∅. Then it is easy to see that the
sets of bounds can be alternatively described by

Su :=
⋂ { ↑s : s ∈ S } and S� :=

⋂ { ↓s : s ∈ S }.
In particular, for elements x, y of P ,

{x, y}u = ↑x ∩ ↑y and {x, y}� = ↓x ∩ ↓y.
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Accordingly, a lattice is a non-empty poset in which, for every pair of elements
x, y, the set {x, y}u has a least (bottom) element and {x, y}� has a greatest (top)
element.

For an arbitrary subset S of a poset P , we say that the supremum or sup
(also known as the least upper bound or join), α, of S exists if

(sup1) (∀s ∈ S) s � α (that is, α ∈ Su, so α is an upper bound of S);
(sup2) (∀x ∈ Su)α � x (that is, α is the least upper bound of S).

In this case we write
∨

S for α, or, when we need to keep track of the poset
in which we are working,

∨
P S. When dealing with families of sets, we abuse

notation slightly and write
∨

i∈I Ai in place of
∨{Ai : i ∈ I }, and similarly

with other operators in place of
∨

.
The supremum α of S is characterized by

(sup) (∀y ∈ P )((∀s ∈ S) y � s⇐⇒ y � α).

This is slicker, and more in the spirit of an equational approach, but is less
transparent until the two-step definition has been fully mastered.

Likewise, the infimum or inf (also known as the greatest lower bound
or meet), beta, of S exists if

(inf) (∀y ∈ P )((∀s ∈ S) y � s⇐⇒ y � β).

and we write
∧

S (or
∧

P S) for β. Clearly sup and inf are dual notions, with
sups in P translating into infs in P ∂ .

Mini-exercise Let P be a poset, let S, T ⊆ P and assume that
∨

S,
∨

T ,
∧

S
and

∧
T exist in P . Check the following oft-used elementary facts.

(i) For all s ∈ S, s �
∨

S and s �
∧

S.
(ii) Let x ∈ P ; then x �

∧
S if and only if x � s for all s ∈ S.

(iii) Let x ∈ P ; then x �
∨

S if and only if x � s for all s ∈ S.
(iv)

∨
S �

∧
T if and only if s � t for all s ∈ S and all t ∈ T .

(v) If S ⊆ T , then
∨

S �
∨

T and
∧

S �
∧

T.

(Compare with Mini-exercise 4.1.)

4.7 Much Ado about Nothing, and about Everything

Let P be a poset and S = ∅. As noted earlier, ∅u = P and hence sup ∅ exists
if and only if P has a bottom element, and in that case sup ∅ = ⊥. Dually,
inf ∅ = � whenever P has a top element.

It is easily seen that, if P has a top element, then Pu = {�} in which case
supP = �. When P has no top element, we have Pu = ∅ and hence supP does
not exist. By duality, inf P = ⊥ whenever P has a bottom element.
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4.8 Complete Lattices

As we have already seen, in a lattice L, x ∨ y =
∨{x, y} and x ∨ y =

∧{x, y}.
Further,

∨
F and

∧
F exist for any non-empty finite subset of L, viewed either

as iterated binary joins and meets or as an instance of sups and infs. We say
that a non-empty poset P is a complete lattice if

∧
S and

∨
S exist for all

S ⊆ P . We do not exclude S = ∅ so that any complete lattice has � and ⊥.

4.9 Completeness on the Cheap

Let P be a non-empty poset.

(i) Assume that
∧

S exists in P for every non-empty subset S of P . Then∨
S exists in P for every subset S of P which has an upper bound in P ;

indeed,
∨

S =
∧

Su.
(ii) The following are equivalent:

(a) P is a complete lattice;
(b)

∧
S exists in P for every subset S of P ;

(c) P has a top element, �, and
∧

S exists in P for every non-empty
subset S of P .

Proof. (i) Let S ⊆ P and assume that S has an upper bound in P ; thus Su �= ∅.
Hence, by assumption, β :=

∧
Su exists in P . But this means that

∨
S = β.

(ii) It is trivial that (a) implies (b), and (b) implies (c) since the inf of the
empty subset of P exists only if P has a top element (see 4.7). It follows easily
from (i) that (c) implies (a). *+

4.10 A Special Class of Complete Lattices

Any finite lattice L is automatically a complete lattice, because the supremum
(infimum) of a non-empty subset is in fact an iterated join (meet) while the sup
and inf of ∅ are

∧
L and

∨
L, respectively (see 4.7 and 4.8).

This completeness result extends to an important class of infinite posets.
A poset P satisfies the ascending chain condition, (ACC), if given any se-
quence x1 � x2 � . . . � xn � . . . of elements of P , there exists k ∈ IN such
that xk = xk+1 = . . .. Any flat poset satisfies (ACC). As non-flat examples of
posets satisfying (ACC) we present IN∂ and ℘

fin(IN)∂ (where ℘fin(IN) denotes
the finite subsets of IN, ordered by inclusion). As an example of an infinite lattice
in which (ACC) holds, take any infinite antichain with top and bottom adjoined.

Let L be a lattice satisfying (ACC). We assert that for ∅ �= S ⊆ P there
exists a finite subset F of S such that

∨
S =

∨
F (which certainly exists).

Consequently, if P is a lattice with ⊥ which satisfies (ACC) then P is a complete
lattice, by 4.9. The assertion that arbitrary suprema reduce to finite ones in the
presence of (ACC) relies on an ancillary result of independent interest, stating
that a poset P satisfies (ACC) if and only if MaxS �= ∅ for ∅ �= S ⊆ P . The
forward implication needs the Axiom of Choice; see 8.14 below.
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4.11 Suprema, Infima, and Monotone Maps

Consider a little example. Let P be the linear sum IN⊕Q, where IN has its usual
order and Q = {a, b} is a 2-element chain with a < b. Note that

∨
P IN = a.

Define F : P → P by letting F be the identity map on IN and map both a and b
to b. Then F is monotone. Also

F
(∨

P IN
)

= F (a) = b > a =
∨

P IN =
∨

PF (IN).

The moral is that monotone maps need not preserve suprema (or, dually, infima)
even when these exist.

On the other hand, any map between lattices preserving ∨ (or ∧) is automat-
ically monotone. To see this, let F : L→M be such that F (x∨y) = F (x)∨F (y)
for all x, y. Then, for x, y ∈ L,

x � y =⇒ x ∨ y = y (by the Connecting Lemma, 4.1)
=⇒ F (x) ∨ F (y) = F (y) (by assumption)
=⇒ F (x) � F (y) (by the Connecting Lemma).

All the more so, if F is a map between complete lattices P and Q such that
F (

∨
P S) =

∨
Q F (S) for any (non-empty) subset S of P , then F is monotone.

Examining the argument above we see that all we have used is the fact that
F (

∨ {u, v}) =
∨ {F (u), F (v)} when u and v are comparable. Accordingly, any

map preserving suprema of chains, when these exist, is monotone.
Although monotone maps need not preserve suprema or infima, we can, use-

fully, get half way: let F : P → Q be a monotone map between posets P and Q
and let S ⊆ P . Then

F
(∨

P S
)

�
∨

Q F (S) and F (
∧

P S) �
∧

QF (S)

whenever the sups and infs involved exist. To verify the first of these note that:

(∀s ∈ S) s �
∨

PS =⇒ (∀s ∈ S)F (s) � F
(∨

P S
)

(since F is monotone)

=⇒ F
(∨

P S
) ∈ F (S)u.

For order-isomorphisms the situation is, not unexpectedly, better. To state
the result we need a definition. Let P and Q be posets. A map F : P → Q is
said to preserve existing sups if whenever

∨
PS exists then

∨
Q F (S) exists

and F
(∨

PS
)

=
∨

Q F (S). Preservation of existing infs is defined dually.

Mini-exercise Assume that P and Q are posets and that F : P → Q is an
order-isomorphism. Then F preserves all existing sups and infs. In particular,
the image of a (complete) lattice under an order-isomorphism is a (complete)
lattice. Further, an order-isomorphism preserves � and ⊥ when these exist.

The pay-off from the elementary observations in this subsection comes when
we consider Galois connections and fixed points in Sections 7 and 8.
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5 Complete Lattices, Concretely: Closure Systems and
Closure Operators

Once we have recorded one elementary technical fact we will be able to exhibit
many examples of complete lattices.

5.1 A Useful Technical Remark

Let K be a non-empty subset, with the inherited order, of some complete lat-
tice L. For S ⊆ K, we claim that∨

LS ∈ K =⇒ ∨
KS exists and equals

∨
LS,∧

LS ∈ K =⇒ ∧
KS exists and equals

∧
LS,

leaving as a Mini-exercise the verification that the elements asserted to be the
sup and inf really do serve as the least upper bound and greatest lower bound.

5.2 Complete Lattices of Sets

Applied in a powerset, 5.1 tells us that any non-empty family L of subsets of a
set X is a complete lattice if it is such that

⋃
i∈I Ai and

⋂
i∈I Ai belong to L

for any family of sets {Ai}i∈I in L is a complete lattice, in which
∨

L and
∧

L
are given by

⋃
and

⋂
. A lattice of this type is known as a complete lattice of

sets. Important examples are powersets and their duals, and the lattices U(P )
and O(P ) of up-sets and down-sets of a poset P .

5.3 Closure Systems

The down-set and up-set lattices O(P ) and U(P ) are defined within the powerset
lattice ℘(P ) by reference to the order relation � on P . Likewise, there are many
other situations in which structure on a set X naturally leads to consideration
of subsets of ℘(X). Here are some mathematical examples, instructive for those
with the requisite knowledge.

(1) Suppose that V is a vector space. Then Sub (V ), the subspaces of V , form a
subset of ℘(V ). Let U1, U2 ∈ Sub (V ). Notice that the intersection U1∩U2 is
always a subspace, but that the union U1∪U2 never is, unless either U1 ⊆ U2

or U2 ⊆ U1. (For an example, look at the vector space R2, with U1 and U2

distinct lines through 0: the sum of non-zero vectors, one from U1 and one
from U2, is in neither U1 nor U2.) Thus Sub (V ) is not a complete lattice of
sets, as defined in 5.2, nor even a lattice of sets.

(2) The example in (1) is one of a family of examples of similar type: sub-
structures of some given algebraic structure. We might look for example at
subgroups of a group, subrings of a ring, . . . . In very many such cases we
have closure under intersections, but seldom closure under unions.
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(3) Let X be a set equipped with a topology T. Then the family of closed subsets
of the topological space (X,T) is closed under arbitrary intersections but not
in general arbitrary unions. If we look at the open sets, then the position
is reversed: open sets are closed under arbitrary unions but not in general
under arbitrary intersections. (We remark in passing that every poset P has
an associated topology in which we declare the open sets to be the up-sets;
taking complements, the closed sets are then the down-sets. In this case, the
family of open sets is closed under intersections.)

In all the preceding examples we are half way to having a complete lattice of
sets, but only half way. This is where 4.9 comes to the rescue. We do get complete
lattices, but with only one of the operations

∧
and

∨
as the set-theoretic one.

Here’s how.

5.4 Closure Systems

Let X be a set and let L be a family of subsets of X , ordered as usual by
inclusion, and such that

(cs1)
⋂

i∈I Ai ∈ L for every non-empty family {Ai}i∈I ⊆ L, and
(cs2) X ∈ L.

Then L is a complete lattice in which∧
i∈I Ai =

⋂
i∈I Ai,∨

i∈I Ai =
⋂ {B ∈ L :

⋃
i∈I Ai ⊆ B }.

Proof. By 4.9, to show that L is a complete lattice for the inclusion order it
suffices to show that L has a top element and that the inf of every non-empty
subset of L exists in L. By (cs2), L has a top element, namely X . Let {Ai}i∈I

be a non-empty subset of L; then (cs1) gives
⋂

i∈IAi ∈ L. By 5.1,
⋂

i∈IAi is the
inf of {Ai}i∈I in L, that is, ∧

i∈I Ai =
⋂

i∈I Ai.

Thus L is indeed a complete lattice when ordered by ⊆.
Since X is an upper bound of {Ai}i∈I in L, 4.9(i) gives∨

i∈I Ai =
( ∧

i∈I Ai

)u

=
⋂ {B ∈ L : (∀i ∈ I)Ai ⊆ B }

=
⋂ {B ∈ L :

⋃
i∈I Ai ⊆ B }. �

If L is a non-empty family of subsets of X which satisfies conditions (cs1)
and (cs2) above, then L is said to be a closure system (called a topped
intersection structure in ILO2) on X . If L just satisfies (cs1), it is referred
to as an intersection structure. Intersection structures arising in computer
science are usually topless while those in algebra are almost invariably topped.
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5.5 Examples

(1) Consider A�→B, where A, B are non-empty sets. From the observations
in 1.6 we saw that the map π #→ graphπ is an order-embedding of A �
→ B into ℘(A × B). Let L be the family of subsets of A × B which are
graphs of partial maps. To prove that L is closed under intersections, use
the characterization given in 1.6: if S ⊆ A × B, then S ∈ L if and only
if (s, x) ∈ S and (s, x′) ∈ S imply x = x′. Thus L is an an intersection
structure. It is not topped unless B has just one element.

(2) Each of the following is a closure system and so forms a complete lattice
under inclusion: the subspaces of a vector space, the subgroups, or normal
subgroups, of a group, the congruence relations on an algebra, the convex
subsets of the Euclidean plane, . . . . These families all belong to a class of
intersection structures closely related to Scott domains.

(3) The closed subsets of a topological space are closed under finite unions and
finite intersections and hence form a lattice of sets in which A∨B = A∪B and
A∧B = A∩B. In fact, the closed sets form a closure system and consequently
the lattice of closed sets is complete. Infs are given by intersection while the
sup of a family of closed sets is not their union but is obtained by forming
the closure of their union.

5.6 From a Complete Lattice to a Closure System

For any poset P , the map x #→ ↓x from P to O(P ) is an order-embedding
(recall 3.15). So any poset P can be faithfully mapped into a complete lattice
O(P ). We can take this a bit further. Let L be an (abstract) complete lattice.
We claim that L is isomorphic to a closure system.

Proof. Use F : x #→ ↓x to map L into O(L). Then F maps L order-isomorphic-
ally onto L := {↓x : x ∈ L}. Now, L has top element ↓� and is closed under
intersections: ⋂

i∈I ↓xi =
∧

i∈I ↓xi

(see 5.1). *+

5.7 Defining Closure Operators

Let P be a poset. Then a map c : P → P is called a closure operator (on P )
if, for all x, y ∈ P ,

(clo1) x � c(x),
(clo2) x � y =⇒ c(x) � c(y),
(clo3) c(c(x)) = c(x).

An element x ∈ P is called closed if c(x) = x. The set of all closed elements
of P is denoted by Pc.

As examples of closure operators we have
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(i) the operators ↓ and ↑ on the subsets of a poset, for which the closed sets
are respectively the down-sets and the up-sets (3.15);

(ii) the operator of topological closure defined on any topological space.

In these examples the lattices of closed sets form closure systems, and so are
complete lattices. This is true more generally.

5.8 New Complete Lattices from Old: From a Closure Operator to
a Complete Lattice

Let P is a complete lattice and let c : P → P .

(i) (The Prefix Lemma) Assume that c is monotone. Then Q := { x ∈ P :
c(x) � x } is a complete lattice.

(ii) Assume that c is a closure operator on P . Then

c(P ) = Pc := { x ∈ P : c(x) = x }
is a complete lattice in which∧

Pc
S =

∧
PS and

∨
Pc
S = c

(∨
PS

)
,

and �c(P ) = c(�P ).

Proof. (i) To prove that Q is a complete lattice, it suffices, by 4.9, to show that
arbitrary infs exist in Q. By 5.1, this happens if, for every S ⊆ Q, we have
α :=

∧
P S ∈ Q (and then

∧
Q S = α). But

(∀s ∈ S) s � α =⇒ (∀s ∈ S) c(s) � c(α) (by definition of Q, and (po3))
=⇒ α � c(α) (by definition of

∧
).

Now consider (ii). Note first that y ∈ Pc implies y = c(y) ∈ c(P ) while if
y = c(x) for some x ∈ P , then c(y) = c(c(x)) = c(x) = y, by (clo3), and so
y ∈ Pc. Thus c(P ) = Pc, and by (clo3) this set is just the set Q in (i). From
the proof above, Pc is a complete lattice, whose infs coincide with those in P .
We must now establish the formula for sups. Let β := c(

∨
P S) where S ⊆ Pc.

Certainly β ∈ c(P ) = Pc. Also

s ∈ S =⇒ s �
∨

PS (definition of
∨

P )
=⇒ s = c(s) � c(

∨
PS) = α (by (clo2)),

so β is an upper bound for S in Pc. Also, for any upper bound y for S with
y ∈ Pc,

(∀s ∈ S) s � y =⇒ ∨
PS � y (definition of

∨
P )

=⇒ β = c(
∨

PS) � c(y) = y (using (clo2)),

so β is indeed the least upper bound. Finally, �P = c(�P ), by (clo1). *+



2. Ordered Sets and Complete Lattices 51

5.9 Closure Operators more Concretely

The most commonly occurring closure operators are those on powerset lattices.
By specializing 5.8 we get (i) below. The proofs of (ii) and (iii) are straightfor-
ward.

(i) Let X be a set and C a closure operator on ℘(X). Then the family

LC := {A ⊆ X : C(A) = A }

of closed subsets of X is a closure system and so forms a complete lattice,
when ordered by inclusion, in which∧

i∈I Ai =
⋂

i∈I Ai,∨
i∈I Ai = C

( ⋃
i∈I Ai

)
.

(ii) Given a closure system L on X the formula

CL(A) :=
⋂ {B ∈ L : A ⊆ B }.

defines a closure operator CL on X .
(iii) The relationship between closure systems and closure operators is a bijec-

tive one: the closure operator induced by the closure system LC is C itself,
and, similarly, the closure system induced by the closure operator CL is
L; in symbols,

CLC = C and LCL
= L.

Of course, under the correspondence in (iii), the closure operator ↓ : ℘(P ) →
℘(P ) corresponds to O(P ), and ↑ to U(P ), for any poset P .

6 Galois Connections: Basics

This section may profitably be read in parallel with the treatment of Galois con-
nections in Chapter 4. The latter complements the mathematical discussion here
by giving a detailed presentation of some computationally instructive examples
and by recasting some core notions in a framework especially well suited to fixed
point calculus. Galois connections are also explored both in Chapter 4 and in
Chapter 9, with the emphasis in the latter being from the viewpoint of what are
termed Galois algebras.

6.1 Introduction

Let P and Q be posets. A pair (F,G) of maps F : P → Q and G : Q→ P is said
to defines a Galois connection between P and Q if and only if

(Gal) F (p) � q ⇐⇒ p � G(q) for all p ∈ P, q ∈ Q,
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Those familiar with maps between sets but less familiar with Galois connections
may find it helpful to recognize that when � is the equality relation = then F
and G are just set-theoretic inverses for each other: F (p) = q holds if and
only if G(q) = p, for p ∈ P , q ∈ Q. This set-theoretic example gives pointers to
certain elementary facts about Galois connections. For example, just as invertible
(bijective) maps F1 : P → Q1 and G : Q→ S compose to give an invertible map
G ◦ F : P → S, so too can Galois connections be composed: if (F,G) is a Galois
connection between P and Q and (H,K) is a Galois connection between Q and S,
then (H ◦ F,K ◦G) is a Galois connection between P and S.

The symbols F and G don’t actively assist one in remembering which map
appears to the left of � and which to the right. Accordingly, following the usage
in ILO2, we shall in the first part of this section replace F and G by � and �

with these triangle maps written to the right of their arguments. In this notation,
the Galois connection condition becomes

(Gal) p� � q ⇐⇒ p � q� for all p ∈ P and q ∈ Q.

Just as there is no universally accepted notation for Galois connections there
is also, regrettably, no uniformly adopted terminology, though generally nomen-
clature relates to the side of � on which a map appears: we adopt the terms
lower adjoint and upper adjoint for � and � , respectively; alternative terms
are left adjoint and right adjoint. The notation in Gierz et al. [9]: d (for
‘down’) and g (for ‘greater’) seems, grammatically at least, a trifle odd.

We suggested at the start that ubiquitous concepts adopt different guises
in different settings. Galois connections illustrate this all too well. There are
two versions of the definitions: the one we adopt here, in which the paired
maps are monotone (that is, order-preserving) and the other in which these
are order-reversing. The literature seems to divide roughly equally between the
two alternatives (for example, ILO2, Birkhoff [4] and Ganter & Wille [8] have
order-reversing maps and Aarts [1] and Gierz et al. [9] order-preserving ones.
Historically, and in algebra, there are arguments for order-reversal: Galois’s own
Galois connection between field extensions and subgroups of a Galois group is
order-reversing. The two formulations are instances of, respectively, a categor-
ical adjunction and dual adjunction. The difference is not significant: we can
swap backwards and forwards between the two versions by swapping between Q
and Q∂ .

6.2 Lattice Representation via Galois Connections

Assume that L is a lattice and let X be a subset of L which is join-dense, in
the sense that every element of L is a (possibly empty) join of elements from X .
Define F : O(X) → L by F (A) :=

∨
A and g : L → O(X) by G(a) := ↓a ∩ X .

Then (F,G) is a Galois connection and it satisfies G ◦F = idL. Mini-exercise:
verify these claims.

Now assume that L is finite. A natural choice for X here is J (L), the sub-
set of L consisting of elements which are join-irreducible, that is, cannot be
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obtained as a (finite) join of strictly smaller elements. With this choice, more
can be said about the Galois connection (F,G). If—and necessarily only if—L is
distributive, it can be shown that we additionally have F ◦G = idO(X). Thus F
and G set up an isomorphism between L and O(X). This is Birkoff’s repre-
sentation theorem. The theorem shows that every finite distributive lattice
can be concretely represented as the down-set lattice of a finite poset.

Consider the special case of the above in which X has the equality order. Then
we have O(X) = ℘(X) (by the dual of 3.10). This occurs precisely when L has a
complementation operation, ′, and so is a Boolean algebra (as a finite lattice, L
certainly has ⊥ and �). In the concrete representation of L as a powerset this
negation is captured by set complement (recall Exercise 3.14). What we have
here is the finite version of Stone’s famous representation of Boolean algebras.

There are two ways in which these representations may be extended to the
infinite case. The link between the two approaches lies in the theory of canonical
extensions, famously pioneered in the Boolean case by Jónsson & Tarski; see
Jónsson [10], in particular §3.2.

The first approach captures the finitary nature of ∨ and ∧ by adding a com-
pact topology to the structure X . We pursue this a little further in Section 9.
Alternatively, we may consider infinitary disjunctions and conjunctions, and re-
place join-irreducible elements by completely join-irreducible ones. An element
is completely join-irreducible if it is not the supremum of strictly smaller ele-
ments. We obtain a Galois connection (F,G) satisfying F ◦G = idO(X) between L
and O(X), where X is the set J∞(L) of completely join-irreducible elements
of L. Assume that L is complete and distributive. Then a variety of different
but equivalent conditions can be imposed on L to make F and G mutually
inverse isomorphisms. These conditions include strong distributivity conditions
involving arbitary disjunction,

∨
, and arbitrary conjunction,

∧
. The results re-

duce in the Boolean case to well-known characterizations of powerset algebras as
those Boolean algebras which are, equivalently, either complete and completely
distributive or complete and atomic. A self-contained treatment of both the
distributive and Boolean cases can be found in ILO2, Chapter 10.

6.3 Galois Connections from Binary Relations: Method I

Let R ⊆ G ×M be a binary relation, do that (G,M,R) is a context. As we
indicated in 2.4 the maps � : ℘(G)→ ℘(M)∂ and � : ℘(M)∂ → ℘(G) given by

A� := {m ∈M : (∀g ∈ A) (g,m) ∈ R } ,
B� := { g ∈ G : (∀m ∈ B) (g,m) ∈ R }

define a Galois connection. Two special instances are worth noting; both are of
order-theoretic interest.

Example 1. Let P be a poset. Take the relation R as �. Then (Exercise 3.16)
we have

A� = P \ ↓A and A� = P \ ↑A
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and ( � , � ) establishes a Galois connection between ℘(P ) and ℘(P )∂ . Further,
we have

A� � = P \ ↑(P \ ↓A) = P \ (P \ ↓A) = ↓A
(using the fact that P \ ↓A is always an up-set). Dually, A� � = ↑A. ⊇,

Example 2. Our choice of � as the relation in the preceding example may have
seemed a trifle perverse. Now consider instead the � relation of a poset P . Then
for A,B ⊆ P we see that A� and B� are respectively the sets of upper bounds
of A and lower bounds of B:

Au := { y ∈ P : (∀x ∈ A)x � y } ,
B� := { y ∈ P : (∀x ∈ B) y � x } .

It is easy to see directly that ( u, �) is a Galois connection between ℘(P ) and
℘(P )∂ :

Au ⊇ B ⇐⇒ (∀y ∈ B)((∀x ∈ A)x � y)
⇐⇒ (∀x ∈ A)((∀y ∈ B) y � x)

⇐⇒ A ⊆ B�.

6.4 Galois Connections and Algebras—A Fleeting Glimpse

Any algebra (A;F ) gives rise to a fundamental (order-reversing) Galois connec-
tion, via the maps Inv and Pol. These arise as the polar maps associated with
the binary relation of preservation between the operations, F , and the finitary
relations, R, on A. Specifically,

• Pol(R) denotes the family of all finitary functions f : An → A (n � 1) which
preserve the relations in R (this is known as a clone);

• The set of all relations s which are invariant under all functions f ∈ F is
denoted by Inv(F).

For illustrative examples, see Mckenzie et al. [14], pp. 51–53.

6.5 Galois Connections by Sectioning

Galois maps can be viewed as unary operations. However many operations of
importance in, for example, algebra and logic, are binary. Bringing such opera-
tions within the scope of the theory of Galois connections requires a well-worn
trick: treat one argument as a parameter and the other as the variable on which
� or � is to act.

Just as Boolean algebras model classical propositional logic, so Heyting al-
gebras model intuitionistic propositional logic. A distributive lattice L with ⊥
and � is a Heyting algebra if, for every a, b ∈ L, there exists a → b ∈ L
characterized by

c � (a→ b)⇐⇒ a ∧ c � b.
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Put another way, each map ∧a : c #→ a ∧ c (a ∈ L) has an upper adjoint, b #→
(a→ b). Very many other examples of Galois connections arising by sectioning
can be found in Chapters 4 and 9.

It is well known that, in a Heyting algebra,

a→ b = max{ c ∈ L : a ∧ c � b };

the existence of the maximum element in the set on the right-hand side is the
condition for the existence of a → b. This observation is not particular to this
example. In 6.11 below, we give formulae for obtaining each of the maps ( � , � )
in any Galois connection from the other.

6.6 Galois Connections from Binary Relations: Method II

It may be thought really tiresome that our way of constructing a Galois con-
nection from a binary relation R ⊆ G × M has Galois maps between ℘(G)
and ℘(M)∂ and so involves an order reversal on ℘(M). There is an alternative
approach which avoids this, while retaining monotonicity of the Galois maps.
Define maps FR : ℘(G) → ℘(M) and GR : ℘(M) → ℘(G) by

FR(A) := {m ∈M : (∃g ∈ A) (g,m) ∈ R } , and

GR(B) :=
{
g ∈ G : (∀m ∈M)

(
(g,m) ∈ R⇒ m ∈ B

) }
,

for all A ⊆ G and B ⊆M . Then (a straightforward Mini-exercise)

(i) (FR, GR) is a Galois connection between ℘(G) and ℘(M);
(ii) Conversely, given any Galois connection (F,G) between the powersets

℘(G) and ℘(M), define R ⊆ G×M by

R := { (g,m) ∈ G×M : m ∈ F ({g}) } .

Then (F,G) = (FR, GR).

We have already seen in particular instances how a context (G.M,R) or, in
other parlance, a binary relation R ⊆ G×M , gives rise to a complete lattice. We
seek to expose the relationship between Galois connections and complete lattices
in general. But first we need to have available the fundamental properties of
Galois connections.

6.7 Galois Connections: Basic Properties

It is immediate from the definition that ( � , � ) is a Galois connection between P
and Q if and only if ( � , � ) is a Galois connection between Q∂ and P ∂ . Con-
sequently we have a ‘buy one, get one free’ situation, and only need below to
prove one from each pair of mutually dual assertions. The names attached to
properties (Gal1) and (Gal3) derive from their interpretation in the case that �
is the relation =.
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Assume ( � , � ) is a Galois connection between P and Q. Then

(Gal1) Cancellation Rule: p � p� � for all p ∈ P and q� � � q for all q ∈ Q.
(Gal2) Monotonicity Rule: � and � are both monotone.
(Gal3) Semi-inverse Rule: p� � � = p� and q� � � = q� for all p ∈ P and

q ∈ Q.

Proof. Throughout, p, p1, p2 and q denote elements of P and Q, respectively.
(Gal) =⇒ (Gal1):

p ∈ P =⇒ p� � p� (by (po1))

⇐⇒ p � p� � (by (Gal) with q = p� ).

(Gal) =⇒ (Gal2):

p1 � p2 =⇒ p1 � p2
� � (by (Gal1), (po3))

⇐⇒ p1
� � p2

� (instance of (Gal)).

(Gal) =⇒ (Gal3):

p ∈ P =⇒ p� � p� � � (instance of (Gal1))

and

p ∈ P =⇒ p� � � p� � (instance of (po1))

⇐⇒ p� � � � p� (instance of (Gal)).

Hence, by (po2), p� = p� � � . *+
Note that (Gal 3) may be stated as id P � � ◦� (in 〈P → Q〉) and id Q / � ◦ �

(in 〈Q → P 〉). In the special case that P and Q carry the antichain orders, the
implication (Gal) =⇒ (Gal3) is just a trivial fact about bijective maps.

Those who hanker after results stated in maximum generality may wonder
how far the theory of Galois connections can be taken if posets are replaced by
pre-ordered sets. Antisymmetry of �,(po2), was used above in the derivation of
(Gal3) from (Gal). This signals that we could not expect more than a smattering
of rudimentary properties still to hold in the wider setting of pre-ordered sets.

6.8 ��� and ��� Have Isomorphic Images

Property (Gal3) in 6.7 deserves closer scrutiny. What it says is that, given a
Galois connection ( � , � ) between posets P and Q, the map � ◦ � acts as the
identity when restricted to elements of the form p� for p ∈ P , and dually.
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Fig. 11. Isomorphic images of Galois maps

Consequently the maps � and � set up mutually inverse order-isomorphisms
between the images

P� := { p� : p ∈ P } and Q� := { q� : q ∈ Q }

(recall Mini-exercise 3.8). Figure 11 illustrates the situation (for the case when P
and Q have top and bottom elements, as they do in particular when these posets
are complete lattices).

Look again at Example 1 in 6.3. In this case,

℘(P )� = U(P )∂ and (℘(P )∂)
�

= O(P ),

and these are indeed isomorphic: recall 3.16. This example is atypical, in that
not just the images but also the domains of � and � (namely ℘(P ) and ℘(P )∂)
are also order-isomorphic. Certainly Galois maps do not have to have isomorphic
domains in general: indeed, as 6.3–6.4 confirm, this need not be the case.

6.9 Equivalent Definitions for Galois Connections

Let P and Q be posets and let � : P → Q and � : Q → P maps. Then the
following are equivalent:

(i) ( � , � ) is a Galois connection (that is, (Gal) holds) ;
(ii) � and � are monotone and p � p� � and q� � � q for all p ∈ P , q ∈ Q

(that is, (Gal1) and (Gal2) are satisfied);
(iii) � and � satisfy the following:

(a) � is monotone,
(b) q� � � q for all q ∈ Q,
(c) p� � q =⇒ p � q� for all p ∈ P and q ∈ Q.
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Proof. We have proved in 6.7 that (i) implies (ii). We now prove that (ii) im-
plies (iii). For p ∈ P and q ∈ Q we have

p � q� =⇒ p� � q� � (by (Gal2))

=⇒ p� � q (by (Gal1), (po3)).

Finally, to prove that (iii) implies (i) we need to show that, when (a) and (b)
in (iii) hold, then p � q� implies p� � q for p ∈ P and q ∈ Q. But

p � q� =⇒ p� � q� � (by monotonicity of � )

=⇒ p� � q (by (b) and (po3)),

as required. *+
A few comments on the relative merits of the alternative characterizations

in 6.9 are desirable. The initial definition via (Gal) is the easiest to remember, but
in handling Galois connections it is frequently the properties (Gal1) and (Gal2)
that are invoked. The third, asymmetric, formulation is occasionally useful too;
it obviously has a dual version (Mini-exercise: formulate this) which focusses
on � instead of on � .

There are many more triangle-juggling games that can be played. Here is a
sample.

Mini-exercise Assume that ( � , � ) is a Galois connection between P and Q.
Prove the following are equivalent for p1, p2 ∈ P :

(a) p1
� � p2

� ;
(b) p1

� � � p2
� � ;

(c) p1 � p� �2 .

6.10 The Good (and Less Good) Behaviour of Galois Maps

One reason that Galois connections are so important is that they have preser-
vation properties stronger than just monotonicity.

To motivate the general result, let us consider again Example 1 in 6.3. This
example introduced the Galois connection on ℘(P ) associated with the binary
relation R� of a given poset P . For any family {Ai}i∈I of subsets of P ,

⋂
i∈I A

�
i = P \⋃

i∈I ↓Ai = P \ ↓(⋃i∈IAi

)
=

( ⋃
i∈IAi

)�
This tells us that � : ℘(P ) → ℘(P )∂ preserves infs. Dually, � preserves sups.
We cannot expect � to preserve sups or � to preserve infs. To see this, take P
to be the poset {⊥, 0, 1} as shown.
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Then

{0}� ∪ {1}� = (P \ {⊥, 0}) ∪ (P \ {⊥, 1}) = {1} ∪ {0}
whereas

({0} ∩ {1})� = ∅� = P.

In fact, the left and right adjoint maps of a Galois connection ( � ,� ) formed by
taking the polar maps associated with a binary relation R preserve infs and sups,
respectively. What makes this happen is the universal quantifier in the definition
of � . Because of the reversal of the inclusion order on the domain of � , this map
preserves sups rather than infs. Similarly, the existential and universal quantifiers
in the definitions of FR and GR in 6.3 impart opposite preservation properties
to these left and right adjoints.

In complete generality we have the following result:
Let ( � , � ) be a Galois connection between posets P and Q. Then � (� )

preserves existing sups (infs) in the sense defined in 4.11.

Proof. We first define α :=
∨

P S and show that α� is an upper bound for S� .
By (Gal2),

(∀s ∈ S) s � α =⇒ (∀s ∈ S) s� � α� .

Now let q be any upper bound for S� . Then

(∀s ∈ S) s� � q ⇐⇒ (∀s ∈ S) s � q� (by (Gal))

=⇒ ∨
P S � q� (by definition of

∨
P S)

⇐⇒ ( ∨
P S

)� � q (by (Gal)).

We conclude that α� is the least upper bound of S� . *+

6.11 Uniqueness of Adjoints: ��� from ��� and ��� from ���

We have seen that Galois connections, and equations and inequalities concerning
them, come in pairs. We show next the important fact that in a Galois connection
( � , � ) between posets P and Q each of � and � uniquely determines the other.
This rests on the ultra-elementary fact that if a non-empty subset Q of a poset
has a greatest element, then this greatest element provides

∨
P Q.

By (Gal), for any p ∈ P ,

p� is an upper bound for S := { q ∈ Q : p � q� },
and p� ∈ S, by (Gal3). Consequently

p� = min{ q ∈ Q : p � q� }
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and likewise
q� = max{ p ∈ P : p� � q }.

(Recall that minS, maxS denote respectively the least, greatest elements of a
subset S of a poset, when these exist.)

We have already met one instance of the latter formula, in 6.5. For another
illustration, we return yet again to Example 1 in 6.3. For A ∈ ℘(P ),

A� ⊇ B ⇐⇒ P \ ↓A ⊇ ↑B (since the LHS is an up-set)
⇐⇒ ↓A ⊆ P \ ↑B (taking complements)
⇐⇒ A ⊆ P \ ↑B (since the RHS is a down-set)

and the largest set A satisfying the final condition is clearly P \ ↑B.
It is worth contrasting the formula for � above with the formula in (iii) in

the following exercise.

6.12 Exercise (Surjective and Injective Galois Maps)

Let ( � , � ) be a Galois connection. Prove that the following are equivalent:

(i) � is a surjective map;
(ii) � is an injective map;
(iii) q� = max{ s ∈ P : s� = q };
(iv) � ◦ � = idQ.

(What we have here is what is known in order theory as a retraction of P onto Q
with retraction map � and coretraction map � . Retraction and coretraction pairs
are however not Galois connections in general.)

Formulate also the dual statement.

6.13 A Look Ahead

Let P and Q be posets. A valuable strategy for showing that a map F : P → Q
is inf-preserving is to show that it is the left adjoint of some Galois connection
(F,G). We know from 6.11 that there is a unique candidate for G and from 6.10
that unless G preserves all existing sups then it cannot be a right adjoint. Mono-
tonicity is also necessary (recall (Gal2)). This leads us to ask the question: does
a monotone map preserving existing sups possess an upper adjoint (and dually)?
We shall prove in 6.15 that the answer is affirmative provided the domain of the
map is a complete lattice, so that all sups (and infs) exist. En route we give the
order-theoretic version of the result we seek. The content of the assertion in (ii)
is that F−1(↓q) has a greatest element; by the dual of 6.14 this inverse image is
always a down-set.
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6.14 Existence of Adjoints: A Technical Lemma

Let P and Q be posets and F : P → Q a monotone map. Then the following are
equivalent:

(i) F is the lower adjoint in a Galois connection, that is, there exists a
monotone map F � : Q→ P such that both F �◦F / idP and F ◦F � � idQ;

(ii) for each q ∈ Q there exists a (necessarily unique) s ∈ P such that
F−1(↓q) = ↓s.

Proof. Assume (i). We claim that F−1(↓q) = ↓F �(q). We have

p ∈ F−1(↓q) ⇐⇒ F (p) � q

=⇒ (F � ◦ F )(p) � F �(q) (since F � is monotone)

=⇒ p � F �(q) (from F � ◦ F / idP & (po3))

⇐⇒ p ∈ ↓F �(q).

For the other direction, we have

p ∈ ↓F �(q) =⇒ F (p) � (F ◦ F �)(q)
=⇒ F (p) � q

=⇒ p ∈ F−1(↓q).
Therefore (ii) holds.

Now assume (ii). For each q ∈ Q we have a unique element s ∈ P , depending
on q, such that F−1(↓q) = ↓s. Define F �(q) := s. Restated, this means that

(∀q ∈ Q)(∀p ∈ P ) F (p) � q ⇐⇒ p � F �(q).

We now see that the pair (F, F �) is a Galois connection between P and Q, so
that the properties in (i) follow from 6.7. *+

6.15 Existence Theorem for Adjoints

Let P and Q be posets and F : P → Q be a map.

(i) Assume P is a complete lattice. Then F possesses an upper adjoint F �

(that is, (F, F �) is a Galois connection) if and only if F preserves arbitrary
sups.

(ii) Assume Q is a complete lattice. Then G possesses a lower adjoint G� (that
is, (G�, G) is a Galois connection) if and only if G preserves arbitrary infs.

Proof. We only need to prove (i). The forward implication comes from Propo-
sition 6.10. For the backward implication, we shall use 6.14. Assume that F
preserves arbitrary sups. Note first that F is monotone, by 4.11. Let q ∈ Q. We
claim that

s :=
∨

P

{
p ∈ P : F (p) � q

} (
=

∨
P F−1(↓q))
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is such that F−1(↓q) = ↓s. It is immediate that F−1(↓q) ⊆ ↓s. Since F preserves
arbitrary joins,

F (s) =
∨

Q

{
F (p) ∈ P : F (p) � q

}
and hence F (s) � q. For any p ∈ ↓s, we have F (p) � q, because F is monotone
and � is transitive. Therefore ↓s ⊆ F−1(↓q). *+

6.16 Postscript

Most of our concrete examples have been of Galois connections between power-
sets and their duals. In the next section we complete the circle of ideas linking
such Galois connections with closure operators, closure systems and complete
lattices.

A different focus can be seen in Chapter 4. There the term pair algebra, is
used for a binary relation R ⊆ X × Y such that

(x, y) ∈ R⇐⇒ F (x) � y ⇐⇒ x � G(y),

with (F,G) a Galois connection between X and Y . Unlike the construction of
a Galois connection via polars, this imposes restrictions on R: precisely those
needed for the necessary sup- and inf-preservation properties to hold. There are
however important cases in which a pair algebra arises from the restriction of a
Galois connection from powersets to their singleton members.

7 Making Connections, Conceptually

We are now ready to wheel on the machinery of Galois connections and closure
operators to develop the basic theory of concept lattices. In the opposite direc-
tion this provides a concrete framework within which to interpret the abstract
ideas of the preceding section. We shall also thereby put in place the remaining
connections between the notions in Figure 1.

7.1 From a Galois Connection to a Closure Operator

Once again, let ( � , � ) be a Galois connection between posets P and Q. The
composite maps c := � ◦ � maps P to P and, by (Gal1)–(Gal3), it is a closure
operator on P . Its closed sets are the members of

Pc :=
{
p ∈ P : p� � = p

}
and, as a set, this is exactly P� (use (Gal3)). Note however that, while this is
a complete lattice, suprema are not in general the restricted suprema from P ;
see 5.8. At this point we encounter a minor irritation. (Gal3) tells us that q �
q� � for all q ∈ Q. So the inequality is the wrong way round for k := � ◦ � to be
a closure operator (it is an interior operator instead). But we do have that

Qk :=
{
q ∈ Q : q� � = q

}



2. Ordered Sets and Complete Lattices 63

is a complete lattice, isomorphic to Pc, via the mutually inverse order-isomorph-
isms � and � . We see the closure operator, interior operator

By way of illustration, refer yet again to 6.3. In Example 1, we have A� � =
↓A, for A ⊆ P . So here the closure operator c is simply the down-set operator.
Just as 5.8 leads us to expect, its image is indeed a complete lattice: it is just
the family O(P ) of down-sets, a complete lattice of sets. The up-set operator is
also a closure operator on ℘(P ). But, when viewed on ℘(P )∂ , it is an interior
operator. All this fits with facts which are easy to establish directly.

Example 2 in 6.3, by contrast, shows that the theory of Galois connections
may yield results which are not transparent. This theory tells us that A #→ Au� is
a closure operator, c, on ℘(P ). The image of this closure operator is a complete
lattice (by 5.8). In addition, this lattice contains the sets

{p}u� = ↓p� = ↓p (∀p ∈ P ).

The map p #→ ↓p is therefore an order-embedding of P into the complete lattice
c(P ). This lattice is known as the Dedekind–MacNeille completion DM(P ) of P .
This construction is most familiar as one route by which the rationals can be
extended to the reals (with ±∞ adjoined as top and bottom elements).

7.2 From a Closure Operator to a Galois Connection

In a somewhat contrived way we can recognize that every closure operator arises
as the composite of the left and right maps of a Galois connection. To see this,
let c : P → P be a closure operator. Define Q := Pc, � : P → Pc to be such
that p� = c(p), and � : Pc → P to be the inclusion map. Then c =� ◦ � .

7.3 Contexts and Concepts: Re-setting the Scene

Let us consider again a context (G,M,R). Let ( � ,� ) be the associated Galois
connection between ℘(G) and ℘(M)∂ :

A� := {m ∈M : (∀g ∈ A) (g,m) ∈ R }, for A ⊆ G,

B� := { g ∈ G : (∀m ∈ B) (g,m) ∈ R } for B ⊆M.

We recall that, given A ⊆ G and B ⊆ M , the pair (A,B) ∈ ℘(G) × ℘(M)∂ is
called a concept if

A = B� and A� = B.

The set of all concepts is denoted by B(G,M,R).

7.4 Ordering Concepts

The fewer objects we consider, the more shared attributes they are likely to
possess. More precisely, for concepts (A1, B1), (A2, B2),

A1 ⊆ A2 ⇐⇒ A1 ⊆ B�
2 ((A2, B2) a concept)

⇐⇒ A�
1 ⊇ B2 (by (Gal))

⇐⇒ B1 ⊇ B2 ((A1, B1) a concept).
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So we have:

(A1, B2) � (A2, B2) in ℘(G)×℘(M)∂

⇐⇒ A1 � A2 in ℘(G) ⇐⇒ B1 � B2 in ℘(M)∂ .

As a by-product we have that, for concepts, (A,B1) = (A,B2) if and only if B1 =
B2 and, likewise, any concept is uniquely determined by its second component.
Not surprising: recall 6.11.

7.5 Three for the Price of One: A Trinity of Complete Lattices

We define

BG := {A ∈ ℘(G) : (∃B ⊆M) (A,B) ∈ B(G,M,R) },
BM := {B ∈ ℘(M)∂ : (∃A ⊆ G) (A,B) ∈ B(G,M,R) }.

Note that 7.5 tells us that the natural projections π1 : B(G,M,R) → ℘(G) and
π2 : B(G,M,R)→ ℘(M)∂ are order-embeddings.

The polar maps � and � take us to and fro between BG and BM . Now 7.1
tells us immediately that, as sets,

BG := c(℘(G)), where c :=� ◦ � ,
BM := k(℘(M)), where k :=� ◦ � ,

and we have a commutative diagram

B(G,M,R)

BG B∂
M

π1 π2❅
❅

❅
❅❘�

�
�

�

✠
✲

✛
�

�

with the indicated maps setting up order-isomorphisms.
Further, 7.1 tells us that BG and BM are complete lattices. Explicitly we

have ∧
BG
{Aj}j∈J =

⋂
j∈J Aj ,∨

BG
{Aj}j∈J =

( ⋃
j∈J Aj

)� � ;∨
BM
{Bj}j∈J =

⋂
j∈J Bj ,∧

BM
{Bj : j ∈ J } =

( ⋃
j∈J Bj

)� �
.
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This implies that the concepts B(G,M,R) form a complete lattice, in which
sups and infs are given by∨

j∈J (Aj , Bj) =
(
(
⋃

j∈J Aj)� � ,
⋂

j∈J Bj

)
,∧

j∈J (Aj , Bj) = (
⋂

j∈J Aj ,
( ⋃

j∈J Bj)� �
)
.

Our next objective is to see how the lattice B(G,M,R) encodes G, M and R.

7.6 Manufacturing Concepts

For any sets A and B in G and M respectively, (A� ,A� � ) and (B� � ,B� ) are
concepts, by (Gal3). In particular, for each g ∈ G and m ∈M ,

γ(g) := (g� � , g� ) and µ(m) := (m� ,m�� )

are concepts, and we have maps γ : G→ B(G,M,R) and µ : M → B(G,M,R).
Further, we can capture the relation R using these maps, as follows:

(g,m) ∈ R⇐⇒ g ∈ m� (definition of � )

⇐⇒ {g} ⊆ m� (set notation)

⇐⇒ g� � ⊆ m��� (by (Gal2) for ⇒, (Gal1) for ⇐)

⇐⇒ g� � ⊆ m� (by (Gal1))
⇐⇒ γ(g) ⊆ µ(m) (see 7.3).

7.7 Density: Generating all Concepts via γ or µ

For all (A,B) ∈ B(G,M,R),

π2(
∨
γ(A)) = π2(

∨
g∈A γ(g)) =

∨
g∈A g� =

⋂
g∈A g� = (

⋂
g∈A g)� = A� = B.

This shows that every element of BM is obtained by taking intersections of sets
of elements of the form g� . Dually, every element of BG is obtained by taking
unions of sets of elements of the form m� . Expressed another way, this says that
every element of B(G,M,R) is generated from γ(G) by taking sups and from
µ(M) by taking infs. Note that the empty sup and inf are allowed here. They
give, respectively, ⊥ and � in B(G,M,R) (recall 4.7).

We label B(G,M,R) by giving a label g to each concept γ(g) and a label m
to each concept µ(m). Then to find g� we simply look for those M -labels in ↑g,
and to find m� we look for the G-labels in ↓m.

Now look back to the example in 2.2. By taking intersections of sets of the
form Q� for Q ranging over the output states and of the form p� for p ranging
over the input states we were generating all the concepts, in two ways. What we
drew in Figure 3 was, of course, the concept lattice, labelled in this way.
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Table 2. Contexts for Mini-exercise 7.7

A B C

a × × ×
b × ×
c ×

(i)

A B C

a × ×
b × ×
c × ×

(ii)

Mini-exercise Draw and label the concept lattices for the contexts shown in
Table 2 (take care over the top and bottom elements):

The contexts in the preceding Mini-exercise are small enough for the concept
lattices to be obtained quite easily. However for contexts which are sufficiently
large for concept lattices to be of genuine benefit in analysing them, a systematic
method for obtaining the lattices becomes necessary. Chapter 3 of ILO2 presents
an algorithm for obtaining all the concepts of a context.

7.8 From a Complete Lattice to a Concept Lattice

To complete our circle of ideas, we note that the properties we have derived
in the preceding subsections characterize concept lattices. Assume that L is a
complete lattice and that γ : G→ L and µ : M → L are mappings such that γ(G)
is sup-dense and µ(M) is inf-dense in L and R ⊆ G×M is such that (g,m) ∈ R
if and only if γ(g) � µ(m). Then it can be proved that B(G,M,R) ∼= L. We
refer to ILO2, Chapter 3 or Ganter & Wille [8], pp. 21–22.

Given any complete lattice L, we can choose G = M = L and R = R�, with
γ = µ = idL. The conditions of the preceding paragraph are clearly satisfied
and hence L ∼= B(L,L,R�). We conclude that every complete lattice can be
regarded as a concept lattice.

Taking a poset P rather than a complete lattice L, B(L,L,R�), or more
conveniently its image under π1 (recall 7.5) yields the Dedekind–MacNeille com-
pletion of P . The well-known fact that P order-embeds into its completion as
a subset which is both sup- and inf-dense is an instance of general properties
of concept lattices. On the other hand, the other important feature of the em-
bedding, viz. that it preserves all sups and infs which exist in P , depends on
properties particular to this context. For further details see ILO2, Chapter 7.

7.9 The Case for the Defence

A criticism that is sometimes levelled at concept analysis is that it lacks depth.
As we have presented it here, it interacts in an illuminating way with Galois
connections, closure operators and complete lattices on a theoretical level. But
does it go deeper than pretty diagrams? Certainly good diagrams of big concept
lattices reveal dependencies and relationships not visible at all from a context
table: a nice example is provided in Ganter & Wille [8], pp. 28–30, concerning
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political groupings of more than 100 developing countries. The evangelists claim
with justification that the analysis of data via the associated concept lattices
goes beyond this. As a good piece of propaganda we draw attention to the
analysis of binary relations to be found in Ganter & Wille [8], pp. 86–90. A list
of properties of such relations is presented. Some of these (symmetric, reflexive,
transitive, for example) appear frequently in mathematical and computer science
contexts. Others have arisen in more detailed studies of relations, for example
within measurement theory (see Schader [17]). Examples are connex (xRy or
yRx for all x �= y) and negatively transitive (xRy true and yRz false imply
xRz false, for all x, y, z). The objective is to expose which implications between
the various properties are universally valid and which are not. This is done by
seeking a set of ‘test’ examples, on small sets, and taking these as the objects
for a context, and a list of properties as the attributes. The objective is to set
up this context in such a way that the lists of properties and attributes are, in
a sense which can be made precise, complete and irredundant. This is achieved
by the theory developed by Wille et al. for attribute exploration. The resulting
concept lattice (Ganter & Wille [8]), p. 90) displays the implications between
the properties and the examples which witness the non-implications. Concept
analysis allows the measurement theorists’ empirical treatment to be illuminated
by an approach which is systematic and backed up by theory.

7.10 Summing Up

We have shown

• how every closure system is a complete lattice and how every complete lattice
can be realized concretely as a closure system (5.4 and 5.6);

• how closure operators give rise to closure systems and vice versa (5.9);
• how Galois connections give rise to closure operators, and vice versa (7.1

and 7.2);
• how every context, or equivalently every binary relation, gives rise to a Galois

connection via its polars (2.4).
• how every context, or equivalently every binary relation, gives rise to a com-

plete lattice, its concept lattice (7.5);
• how every complete lattice can be realized as a concept lattice (7.8).

All the arrows in Figure 1 are now in place, some of them by transitivity.

8 The Existence of Fixed Points

Fixed points, especially as models of recursive programs, are so ubiquitous in
computer science that it would be gratuitous to include here any discussion
of their provenance. The study of fixed points may be regarded as having two
aspects: (i) the existence of fixed points and (ii) calculus with fixed points (and
prefix points). Since so many computational models have an underlying partial
order, posets of suitably special kinds provide a natural setting in which to
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investigate fixed point theory. Here we concentrate on the existence of fixed
points and highlight in particular two famous fixed point theorems:

• the Knaster–Tarski Fixed Point Theorem, in complete lattices, asserting that
every monotone endofunction on a complete lattice has least and greatest
fixed points;

• the Fixed Point Theorem for CPOs (with which the name of Park is fre-
quently associated), asserting that a monotone endofunction on a CPO has
a least fixed point, and which has a very simple, algorithmic, proof if F is
continuous, in the sense of 8.10 below.

Lassez et al. [11] delve into the rather obscure and complicated history of the
various fixed point theorems and their attributions.

8.1 Fixed Points and Least Fixed Points: Definitions

For completeness we record the following well-known definitions. Let P be a
poset and let F : P → P be a map. We say x ∈ P is a fixed point of F if
F (x) = x, and a prefix point if F (x) � x. The set of all fixed points (prefix
points) of F is denoted by fixF (preF ); both carry the inherited order. The
least element of fixF , when it exists, is denoted by µ(F ). In computational
contexts it is usually the least fixed point of a map F : P → P which is the one
sought. Very frequently the poset P is some CPO of partial maps S⊥ �→ S⊥
on a flat CPO S⊥. For example, that favourite example of a recursive definition,
the factorial function fact, arises as the least fixed point of the map π #→ π,
for π a partial map on the natural numbers (including 0), where π(0) = 1 and
π(k) = kπ(k − 1) for k > 0.

8.2 Characterizing Least Fixed Points via Least Prefix Points

Let P be a poset and let F be a monotone endofunction on P . Assume that F
possesses a least prefix point µ∗(F ). Then the least fixed point µ(F ) exists and
satisfies

F (x) � x⇒ µ(F ) � x (the Induction Rule).

Indeed, µ(F ) = µ∗(F ). This is the case whenever P is a complete lattice.

Proof. Assume that µ∗(F ) exists. We want to show that µ∗(F ) ∈ fixF . Since
fixF ⊆ preF we must then have µ(F ) = µ∗(F ).

As µ∗(F ) ∈ preF by definition, we have F (µ∗(F )) � µ∗(F ). Applying the
monotone map F we get F (F (µ∗(F ))) � F (µ∗(F )), so that F (µ∗(F )) ∈ preF .
Since µ∗(F ) is the least element of preF we therefore have µ∗(F ) � F (µ∗(F )).
Hence, µ∗(F ) is indeed a fixed point of F .

In case P is a complete lattice there is an obvious candidate for µ∗(F ), namely∧
preF . It follows easily from the monotonicity of F that

∧
preF ∈ preF . *+
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8.3 The Knaster–Tarski Fixed Point Theorem

Let P be a complete lattice and F : P → P a monotone map. Then∧ { x ∈ P : F (x) � x }

is the least fixed point of F . Dually, F has a greatest fixed point, given by∨ { x ∈ P : F (x) � x }.

Proof. This is immediate from 8.2 and its dual. *+

8.4 Exercise

Let P be a complete lattice and let F : P → P be a monotone map. Stated
in the terminology of this section, the Prefix Lemma in 5.8 says that preF is
a complete lattice. Prove that fixF is a complete lattice. Specifically, for X a
subset of P , define

Y := { y ∈ P : (∀x ∈ X) y � F (y) � x }

and let α :=
∨

P Y . Prove that α =
∧

fixF X and then appeal to 4.9.

8.5 Exercise

Let P be a complete lattice and define F : ℘(P ) → ℘(P ) by F : A #→ ↓∨
A.

Show that F is monotone and that fixF ∼= P . (Consequently, every complete
lattice is, up to isomorphism, a lattice of fixed points—this last fact is actually
a triviality (why?).)

8.6 From Complete Lattices to CPOs

The Knaster–Tarski Theorem is mathematically slick, but it has certain deficien-
cies as regards computer science. First of all, in a semantic domain a top element
will represent an overdetermined, or inconsistent, state, and topless models are
often to be preferred. Also, the Knaster–Tarski proof identifies a fixed point, but
does not supply an algorithm for computing it.

Let P be a poset with ⊥ and let F : P → P be a monotone endofunction.
Then a natural way to try to construct a fixed point is to consider the sequence
⊥, F (⊥), F (F (⊥)), . . . and to hope that ‘in the limit’ we arrive at a fixed point.
To make this precise, we let, recursively, x0 = ⊥ and xn+1 := F (xn) for n � 0.
Then an easy proof by induction shows that we have a chain

x0 � x1 � . . . � xn � xn+1 � . . . ,

each member of which is half way to being a fixed point. Make the assumptions

(a) α :=
∨{ xn : n = 0, 1, 2, . . .} exists, and

(b) F (
∨

C) =
∨

F (C) for any non-empty chain C.
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Then

F (α) =
∨

n�0
F (xn) (by (b), with C as {xn})

=
∨

n�0
xn+1 (by definition of xn+1)

=
∨

n�0
xn (since x0 = ⊥)

= α (by definition of α).

So our assumptions allow us to assert that F has a fixed point. Note that infima
play no role in the argument. The condition on F is stronger than monotonicity
(recall 4.11); the condition on P is strictly weaker than lattice completeness (look
at IN⊥). This suggests that we should look at posets in which suprema exist for
all chains (the supremum of the empty chain supplies ⊥; see 4.7). It turns out
to be no more restrictive, and in some ways more natural, to consider sets more
general than chains.

8.7 A Sense of Direction

In the context of information orderings, an element is frequently the supremum
of approximations below it: partial maps approximating total maps, finite strings
approximating infinite strings, and so on. Take the example of a map F : IN→ IN.
We may obtain F as the supremum of the partial maps which are the restrictions
of F to finite subsets of IN. These approximations are mutually compatible, in
the sense that any two of them give consistent information about F at any k ∈ IN
at which both are defined. Conversely, suppose we have a family D of elements
of IN�→IN with the property that, for any pair π1 and π2 in D, we have π ∈ D
with π1 � π and π2 � π in the ordering of IN �→ IN (so π extends both of
π1, π2). Then the union of the graphs of the elements of D defines a partial map,
which is

∨
D.

Let S be a non-empty subset of a poset P . Then S is said to be directed if
each pair of elements x, y ∈ S has an upper bound lying in S. An easy induction
shows that S is directed if and only if, for each non-empty finite subset F of S,
there exists z ∈ S such that z � y for all y ∈ F , that is, z ∈ Fu. This definition
should be compared with another which naturally arises in computer science
contexts, namely that of a consistent set: S is consistent if for every non-empty
finite subset F of S there exists z ∈ P such that zinFu.

Clearly any non-empty chain in a poset is directed. In a poset P satisfying
(ACC) (as defined in 4.10) a non-empty subset D of P is directed if and only
if D has a greatest element. We leave the easy verification as a Mini-exercise.

8.8 Exercise (Sups and Directed Sups Related)

Let P be a complete lattice. Assume that ∅ �= S ⊆ P . Prove that∨
S =

⊔ {∨
F : ∅ �= F ⊆ S, F finite

}
.
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8.9 CPOs

We say that a poset P is a CPO (an abbreviation for complete partially
ordered set) if

(i) P has a bottom element, ⊥,
(ii)

∨
D exists for each directed subset D of P .

We shall write
⊔

D in place of
∨

D when D is directed, as a reminder of the
directedness.

An appropriate setting for the fixed point existence proof in 8.6 can now
be seen to be a CPO. The need for ⊥ in that proof is clear. In other contexts
posets in which directed sups exist, but which do not necessarily possess ⊥, are
important. Often, such a poset is called a dcpo (and a CPO given the name
dcppo, the extra ‘p’ signifying ‘pointed’).

Here are some simple examples.

(1) Any complete lattice is a CPO.
(2) Let S be an antichain. Then S⊥ is a CPO. In particular, IN⊥ is a CPO.

Indeed, this example is a motivation for the introduction of the lifting con-
struction. More generally, any poset P with ⊥ satisfying (ACC) is a CPO.

(3) Any closure system which is closed under directed unions is a CPO, with
⊔

coinciding with
⋃

(recall reflat-sets).

Our examples justify the introduction of directed sets. However it turns out,
highly non-trivially, that a poset with ⊥ is a CPO if and only if it is chain-
complete (that is,

⊔
C exists for every non-empty chain C).

8.10 Directed Sets and Continuity

It is natural to regard
∨

S as the limit of S precisely when S is directed. Ac-
cordingly a map F between CPOs preserving directed sups is called continuous:
this means that

⊔
F (D) = F (

⊔
D) for any directed set D. The following facts

are elementary: if D is a directed subset in P and if F is monotone then the set
F (D) is directed and

⊔
F (D) � F (

⊔
D) (see 4.11). Also, since {x, y} is directed

when x � y, it is easily seen that every continuous function is monotone.

Mini-exercise Define F : ℘(IN)→ ℘(IN) by

F (S) =

{
∅ if S is finite,
IN otherwise.

Prove that F is monotone but fails to preserve the (directed) supremum of the
family of finite subsets of IN. So not every monotone map is continuous.
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Mini-exercise Prove that a monotone endofunction F : P → P is continuous
whenever P satisfies (ACC).

The topological connotations of continuity are more than superficial analo-
gies. The symbiotic relationship between topology and order has been extensively
researched and exploited; see Gierz et al. [9], and Abramsky & Jung [2] and the
references therein.

8.11 New CPOs from Old

A significant virtue of CPOs as a class in which to work is that it has excellent
closure properties. Given CPOs P and Q the following are also CPOs:

(P
·∪ Q)⊥, P ×Q, [P → Q];

Here [P → Q] denotes the set of of all continuous maps from P to Q, with the
customary pointwise ordering. There is an alternative to the separated sum
above. We can also form the coalesced sum) by taking P

·∪Q and identifying
⊥P and ⊥Q. The proofs that all these constructions do indeed yield CPOs are
notation chases, of varying difficulty. See ILO2, Chapter 8, for guidance on the
harder ones.

8.12 Fixed Point Theorem for a Continuous Function on a CPO

With the appropriate terminology in place we can record as a theorem what we
proved in 8.6, and claim a bit more.

Let P be a CPO, let F : P → P be a continuous map and let

α :=
⊔

n�0 F
n(⊥).

Then the least fixed point µ(F ) exists and equals α. Mini-exercise: prove the
leastness assertion.

8.13 From Continuity to Monotonicity

Continuity is often an undesirably strong assumption. Relaxing continuity to
monotonicity is feasible but requires more powerful mathematical machinery.
One approach builds on the elementary proof in 8.6, using ordinals and trans-
finite induction. Several other approaches to proving that any monotonic end-
ofunction on a CPO has a least fixed point have been devised, most notably
the recent elegant proof obtained by D. Pataraia. This proof is presented, with
Pataraia’s permission, in ILO2. Unlike earlier proofs it does not rely on first
proving the independently interesting result that a fixed point exists for any in-
creasing endofunction on a CPO (F being increasing if x � F (x) for all x). The
method we adopt below is much simpler, but necessitates calling on a property
of CPOs which we shall take as an axiom: it says that any CPO has a maximal
element.
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8.14 An Assumption: Zorn’s Lemma (ZL), CPO Form

Let P be a CPO. Then MaxP �= ∅.
To indicate that this is very plausible, we consider first the special case that

the CPO P satisfies (ACC). Let x0 = ⊥. If x0 /∈ MaxP , pick x1 > x0. If x1 /∈
MaxP , pick x2 > x1, and so on. This process terminates, at a maximal element,
because we cannot have an infinite strictly ascending chain in P ; the maximal
element is the largest element of our chain, and necessarily its supremum. Thus
for CPOs satisfying (ACC) we cannot climb for ever strictly upwards via a chain.
For a general CPO the existence of suprema for directed sets, and in particular
for non-empty chains, suggests that every non-empty chain is ‘capped’ by a
maximal element of P . Those content to accept (ZL) for CPOs may without
detriment skip over the next paragraph.

Replacing the informal ‘and so on’ above by a rigorous argument requires
invocation of what is known as the Axiom of Choice. This famous optional add-
on to ZF set theory is one of a cluster of equivalent statements. One of these is
Zorn’s Lemma in the form it is most often stated, another is (ZL) for CPOs. We
do not wish to digress to present this background material here. A self-contained
account of the equivalences most useful in the context of posets and lattices is
given in ILO2, Chapter 10. Mathematics, and in particular order theory and
algebra, are considerably impoverished if we deny ourselves (AC) and (ZL).
However it can be proved that a set-theoretic world in which the negation of
(AC) operates is not internally inconsistent.

8.15 The Fixed Point Theorem
for a Monotone Endofunction on a CPO

Assume that P is a CPO and that F : P → P is monotone. Then F has a least
fixed point.

Proof. (with (ZL); due to A.W. Roscoe, [15], p. 175) Let

Q := { x ∈ P : x � F (x) & (∀y ∈ fixF )x � y }.

It is important to realize that in the definition of Q we are not claiming that
F has a fixed point: The second clause in the definition is satisfied vacuously if
fixF = ∅. It serves to ensure that a fixed point of F in Q is the least fixed point
of F .

We first claim that Q is a CPO (in the inherited order). Certainly ⊥P ∈ Q.
Now let D ⊆ Q be directed and denote

⊔
P D by α. Then, because F (D) is

directed and
⊔

F (D) � F
( ⊔

D
)

(recall the remarks in 8.9),

x ∈ D =⇒ x � F (x) (by the definition of Q)
=⇒ x �

⊔
F (D) (the join existing as F (D) is directed)

=⇒ x � F
( ⊔

D
)

= F (α) (by (po3))).
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Hence α � F (α). Also

y ∈ F =⇒ (∀x ∈ D)x � y (since D ⊆ Q)
=⇒ α � y (by definition of α).

Therefore α ∈ Q. This proves that Q is a CPO. (Compare this with the proof
in 5.6).

By (ZL) for CPOs, Q has a maximal element, β say. By definition of Q we
have β � F (β). Clearly
(a) F (β) � F (F (β)) (since F is monotone), and
(b) y ∈ fixF =⇒ β � y, so that F (β) � F (y) = y.
Hence F (β) ∈ Q, so maximality of β gives β = F (β). By the definition of Q, we
must have β = µ(F ). *+

8.16 Exercise

This exercise indicates a proof that the set of fixed points fixF of a monotone
endofunction F on a CPO P is itself a CPO; compare with 8.4).)

Let D be a directed set in fixF and let α :=
⊔

D. Prove, with the aid of 8.2,
that F maps ↑α to ↑α. Deduce that G, the restriction of F to ↑α, has a least
fixed point, which is given by

⊔
fixF D.

8.17 Exercise

We have used (ZL) for CPOs to prove the fixed point theorem in 8.15. This
exercise gives another application of (ZL) within order theory. Let X be a set.
Let

S := {R< ∈ ℘(X ×X) : < is a strict partial order on X }.

(i) Prove that S is a CPO.
(ii) Prove that any maximal element of S is a linear order (that is, it makes X

a chain).
(iii) Deduce that any strict partial order is contained in a strict linear order.

(This is hard. Part (iii) is a well-known result from order theory (Szpilrajn’s
Theorem) whose proof requires Zorn’s Lemma in some form.

8.18 Concluding Remarks

The theorems in 8.3 and 8.15 are in a sense optimal. The following converses
exist. Both are difficult to prove; see Markowsky [13].

(i) Let L be a lattice and assume that every monotone endofunction F : L→
L has a fixed point. Then L is a complete lattice.

(ii) Let P be a poset and assume that every monotone endofunction F : P →
P has a least fixed point. Then P is a CPO.
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9 Speaking Categorically

9.1 Categories

It is uncommon for a class of structures of a given type to be introduced without
an associated class of structure-preserving maps following hard on its heels.
Posets + monotone maps is one example. Others are complete lattices + maps
preserving

∨
and

∧
, groups + group homomorphisms, topological spaces +

continuous maps, etc., etc., etc. The recognition that an appropriate unit for
study is a class of structures all of the same type, together with a class of
structure-preserving maps between these, leads to category theory. Computer
scientists have embraced this with such enthusiasm that it seems unnecessary to
repeat the formal definitions here. Loosely, a category C consists of a collection
Obj(C) of objects and a collection Arr(C) of arrows (also called morphisms).
Each arrow f ∈ Arr(C) has a source A ∈ Obj(C) and a target B in Obj(C), and
there is an operation of composition of arrows satisfying a rudimentary set of
conditions demanding

(cat1) the existence of an identity arrow id A : A→ A for each object A,
(cat2) arrows can be composed in the same way that maps between sets can

be.

The set of arrows in C with source A and target B will be denoted by Arr(A,B).
Commuting diagrams of objects and arrows expressing properties of categories
and their structure-preserving maps (called functors) form the basis of category
theory. Natural constructs within categories—products, limits, and so on—can
be described in terms of commuting diagrams, with the philosophy ‘everything
is an arrow’ perhaps sometimes taken to excess.

Every poset (or more generally pre-ordered set) P gives rise to a category
we shall call Cp: the objects are just the elements of P , and, for p, q ∈ P , there
is an arrow from p to q if and only if p � q, and just such arrow; so we identify
arrows with inequality statements. The existence of the arrow id p for each p is
just the reflexivity condition, (po1); the composition law on arrows is guaranteed
by transitivity, (po3). Figure 12 indicates the interpretations in categories CP of
some fundamental categorical notions.

To illustrate, we consider the most complicated of these correlations: Galois
connections as adjunctions. An adjunction is a symmetric relation between cate-
gories A and X set up by a pair of covariant functors F : A → X and G : X → A
which are ‘mutually inverse’. Explicitly, suppose that for each A ∈ A and each
X ∈ X there are arrows

eA : A→ GF (A) and εX : X → FG(X).

It is said that 〈F,G, e, ε〉 sets up an adjunction between A and X if:

(adj1) for u : A → B in A and ϕ : X → Y in X , the two square diagrams in
Figure 13 commute;
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P CP

⊥ initial object
� terminal object
dual poset opposite category
product product
disjoint sum coproduct
inf limit
sup colimit
monotone map functor
order-embedding monomorphism
Galois connection adjunction

(∀p) p 6 p� � unit

(∀q) q� �
6 q counit

closure operator monad

Fig. 12. From posets to categories

(adj2) for A ∈ A and X ∈ X there is a bijection between ArrA(A,G(X)) and
ArrX (X,F (A)) associating u and ϕ as given in the two commuting
triangle diagrams of Figure 13.

Of course, idA : A → A and GF : A → A are covariant functors and the left-hand
square of Figure 13 says precisely that e : idA → GF is a natural transforma-
tion. Similarly for the right-hand square.

All this may look complicated to beginners. But in the special case of a Galois
connection ( � ,� ) between posets P and Q it just sums up the basic calculus
for Galois connections: put

objects arrows functors

A := p1 u := p1 � p2 F :=�

B := p2 F := q1 � q2 G :=�

X := q1 eA := p1 � p1
� �

Y := q2 εX := q1 � q1
� �

and relabel the diagrams!

Mini-exercise (For those more at home with categories than with posets)

(i) Convince yourself that disjoint sums in P correspond to coproducts in CP .
(ii) Convince yourself that the notion of supremum in a poset P corresponds

to the notion of colimit in the category CP .

All this is well-trodden territory, mapped out in Maclane [12], for example.
Less familiar is the way in which Table 9.1 can be extended by observing that the
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✲

✲
❄ ❄

u
A B

GF (A)
GF (u)

GF (B)

eBeA

✲

✲

✻ ✻

F
X Y

FG(X)
FG(F )

FG(Y )

εYεX

✲

❄

❅
❅

❅
❅❘

eA
A GF (A)

G(X)

G(F )u

✲

❄

❅
❅

❅
❅❘

εX
X FG(X)

F (A)

F (u)F

Fig. 13. An adjunction

poset concepts of prefix points and postfix points, match up in the categorical
setting with algebras and coalgebras. Fixed point calculus in posets lifts to a
fixed point calculus in categories whose calculational rules (the Fusion Rule,
and so on) are highly useful in the context of coalgebras; Backhouse et al. [3]
show how the transition from posets to categories can be made.

There is another way in which adjunctions enter into the theory of lattices.
A particularly profitable kind of adjunction between categories A and X is one
in which the categories A and X are of different types and we are able to use
the adjunction as a tool for studying A by exploiting its properties as a category
and the way that the adjunction mirrors these in X . The most famous such
adjunctions are dual adjunctions (set up by contravariant rather than covariant
functors) and are dual equivalences rather than just adjunctions. They include
those which set up dualities between

Boolean algebras and Boolean spaces (Stone)
Finite distributive lattices and Finite posets (Birkhoff; see 6.2)
Distributive lattices and Priestley spaces (Priestley)

in each case with a natural class of morphisms. For the second of these, the func-
tor from finite posets to finite distributive lattices is, on objects, simply the map
taking a poset P to its up-set lattice U(P ). Because of the way that distributive
lattices with additional operations provide algebraic models for them, these du-
alities give a useful means of studying logics of various kinds; for a recent survey
see Davey & Priestley [6].
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