
Abstract Interpretation-based Protection

Robertto Giacobazzi

Università di Verona, Italy

roberto.giacobazzi@univr.it

Hiding information means both hiding as making it imperceptible and ob-
scuring as making it incomprehensible [9]. In programming, perception and com-
prehension of code’s structure and behaviour are deep semantic concepts, which
depend on the relative degree of abstraction of the observer, which corresponds
precisely to program semantics. In this tutorial we show that abstract interpre-
tation can be used as an adequate model for developing a unifying theory for
information hiding in software, by modeling observers (i.e., malicious host at-
tackers) O as suitable abstract interpreters. An observation can be any static
or dynamic interpretation of programs intended to extract properties from its
semantics and abstract interpretation [2] provides the best framework to under-
stand semantics at different levels of abstraction. The long standing experience in
digital media protection by obscurity is inspiring here. It is known that practical
steganography is an issue where compression methods are inefficient: “Where ef-
ficient compression is available, information hiding becomes vacuous.” [1]. This
means that the gain provided by compression can be used for hiding informa-
tion. This, in contrast to cryptography, strongly relies upon the understanding
of the supporting media: if we have a source which is completely understandable,
i.e., it can be perfectly compressed, then steganography becomes trivial. In pro-
gramming languages, a complete understanding of semantics means that no loss
of precision is introduced by approximating data and control components while
analysing computations. Complete abstractions [3, 8] model precisely the com-
plete understanding of program semantics by an approximate observer, which
corresponds to the possibility of replacing, with no loss of precision, concrete
computations with abstract ones —some sort of perfect semantic compressibility
around a given property. This includes, for instance, both static and dynamic,
via monitoring, approaches to information disclosure and reverse engineering
[4]. The lack of completeness of the observer is therefore the corresponding of
its poor understanding of program semantics, and provides the key aspect for
understanding and designing a new family of methods and tools for software
steganography and obfuscation. Consider the simple statement, C : x = a ∗ b,
multiplying a and b, and storing the result in x. An automated program sign
analysis replacing concrete computations with approximated ones (i.e., the rule
of signs) is able to catch, with no loss of precision, the intended sign behaviour
of C because the sign abstraction O = {+, 0,−}, is complete for integer multi-
plication. If we replace C with O(C): x = 0; if b ≤ 0 then {a =−a; b =−b};



while b 6= 0 {x = a + x; b = b − 1} we obfuscate the observer O because
the rule of signs is incomplete for integer addition. Intervals, i.e., a far more
concrete observer, are required in order to automatically understand the sign
computed in O(C). We show how this idea can be extended to arbitrary obfus-
cation methods and exploited for code steganography, providing the basis for
a unifying theory for these technologies in terms of abstract interpretation. We
show how obfuscation can be viewed as a program transformation making ab-
stractions incomplete and at the same time we show how watermark extraction
can be viewed as a complete abstract interpretation against a secret program
property, extending abstract watermarking [5] to any watermarking method.
Both obfuscation and watermarking can be specified as transformers to achieve
completeness/incompleteness in abstract interpretation [7], provided that the
transformed code does not interfere with the expected input/output behaviour
of programs. This latter correctness criteria can be again specified as a com-
pleteness problem by considering abstract non-interference [6] as the method for
controlling information leakage in obfuscation and steganography. Our approach
is language independent and can be applied to most known obfuscation and wa-
termarking methods, providing a common ground for their understanding and
comparison.

References

1. R.J. Andesron and F. Petitcolas. On the limits of steganography. IEEE J. of Selected

Areas in Communications, 16(4):474–481, 1998.

2. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In Proc. of

POPL ’77 , pp. 238–252, 1977. ACM Press.

3. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In

Proc. of POPL ’79 , pp. 269–282, 1979. ACM Press.

4. P. Cousot and R. Cousot. Systematic design of program transformation frameworks

by abstract interpretation. In Proc. of POPL ’02 , pp. 178–190, 2002. ACM Press.

5. P. Cousot and R. Cousot. An abstract interpretation-based framework for software

watermarking. In Proc. of POPL ’04 , pp. 173–185, 2004. ACM Press.

6. R. Giacobazzi and I. Mastroeni. Abstract non-interference: Parameterizing non-

interference by abstract interpretation. In Proc. of POPL ’04 , pp. 186–197, 2004.

ACM-Press.

7. R. Giacobazzi and I. Mastroeni. Transforming abstract interpretations by abstract

interpretation. In Proc. of SAS’08, LNCS 5079, pp. 1–17. Springer-Verlag, 2008.

8. R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpretations com-

plete. J. of the ACM., 47(2):361–416, 2000.

9. F. A. P. Petitcolas, R. J. Anderson, and M. G. Kuhn. Information hiding – A survey.

Proc. of the IEEE, 87(7):1062–1078, 1999.

2


