Types for interpreters, compilers, and partial evaluators 337

©p(%,Y) = Conixex) (V)

which is just the ‘mix equation’ in another guise.

The standard proof of the s-m-n property for Turing machines in essence uses
a trivial construction that never gains efficiency, but this suffices for the purposes
of recursive function theory. Efficiency is very important in applications though,
so partial evaluation may be regarded as the quest for efficient implementations of
the s-m-n theorem:.

Clearly each of the languages we have studied in earlier chapters is an acceptable
programming system.

The traditional usage of natural numbers in recursive function theory is simple,
abstract and elegant, but involves a high computational price: all program struc-
tures and non-numeric data must be encoded by means of Godel numbers, and
operations must be done on encoded values. Letting programs and data have the
same form allows the theory to be developed without the trick of Godel numbering.
This is a substantial advantage when doing recursion theoretic constructions such
as needed to prove Kleene’s s-m-n and Second Recursion theorems, and leads to
faster constructed programs.

16.2 Types for interpreters, compilers, and partial evalu-
ators

High-level operations in programming languages

Programming languages of higher and higher abstraction levels have evolved since
the first years of computing, when programming languages were just symbolic
codes reflecting the computer’s architecture. Due to higher level basic operations,
modern functional languages allow a mathematical style of thinking while pro-
gramming, for example using function composition, partial function application,
set comprehension, and pattern matching. This is possible since these operations
are all in the so-called ‘constructable’ part of mathematics, known to give com-
putable results when applied to computable arguments.

Many operations on mathematical objects can be faithfully realized by corre-
sponding operations on symbolic expressions. Classically, algebraic manipulation
is used to organize arithmetic computations more efficiently — possible because
algebra abstractly but correctly describes concrete operations on numbers. On dig-
ital computers, symbolic operations are specified by textual objects, i.e. programs
and their subexpressions. The term ‘symbolic computation’ often refers to alge-
braic manipulations when realized on the computer, but can be interpreted more
broadly to describe the entire theme of this book?.

2Much of this material is from [132].

338 Larger Perspectives

Operations on functions and programs
Two useful operations on (mathematical) functions are:

e Composition of f with g as in Chapter 2, written as f;g or go f.

e Function specialization of f(x,y), obtaining for example a one-argument func-
tion fi,—a(y) = f(a,y) by ‘freezing’ z to a fixed value a.

Corresponding symbolic operations on programs (assuming for concreteness that
they are written in the A-calculus):

Symbolic composition. The symbolic composition of expressions ey and g could be
expression Az.eg4(ef(z)).

Partial evaluation. The specialization of function f to x = a can be realized
symbolically as the program Ay.es(a, y). In the context of recursive function theory
this is Kleene’s s-m-n theorem [149,226], and its efficient realization is of course
the theme of this book.

Efficient operations on programs
The symbolic operations above, while computable, do not lead to particularly ef-
ficient programs. For example, the program above realizing function composition,
Ax.e4(ef(x)), is no faster than just running the two programs from which it is
constructed, one after the other. A main theme of this book is the efficient imple-
mentation of program operations that realize mathematical operations.
Deforestation as in Chapter 17 symbolically realizes function composition, and
partial evaluation is of course a symbolic realization of function specialization.

Data and program types

How can one describe the types of operations on symbolic expressions? A symbolic
composition operator (for example) takes programs pys, p, computing f : A — B
and g : B — C (respectively) into a program q computing f; g : A — C. The same
symbolic composer works, independently of A, B,C. Thus a symbolic operation
should in some sense be polymorphic [185] in the types of its arguments.

A more subtle problem is the ‘level shift’ that occurs when going from a program
text p to the function [p]y it denotes when regarded as a program in language X.
To describe this symbolically we assume assume given a fixed collection of pro-
gramming languages generically called X, and extend the usual concept of type
according to the following syntax:

titype n=ty | firstorder | txt | t =t

Type firstorder describes values in D, for example S-expressions, and function types
and products are as usual. For each language X and type ¢ we have a type ,,

Types for interpreters, compilers, and partial evaluators 339

erp Ly expr : b —t, expy: by
[explly : t expi(ezpz) 4

exp : t X
firstordervalue : firstorder exp : firstorder

Figure 16.1: Some type inference rules for closed expressions.

meaning the type of all X-programs which denote values of type ¢. For exam-
ple, atom 1066 has type firstorder, and Scheme program (quote 1066) has type

firstorder g, .

The subscript X will often be dropped when the language being discussed is the
standard implementation language, always called L.

Semantics of types. The meaning of type expression ¢ is a set T (t) defined as
follows, where [A — B] is the set of all functions from A to B:

T (firstorder) = D

T(th—t) = [T(t) = T(t)]
T(txt) = {(vi,vs) | vi € T(t), v2 € T(ta)}
T(ty) = {ped | [ply € T())}

Polymorphism. We shall also allow polymorphic type expressions to be written
containing type variables «, 3,7, Such a polymorphic type will always be un-
derstood as standing for the set of all the monomorphic instances obtained from
it by consistently replacing type variables by variable-free type expressions. To
emphasize this, we will often (informally) quantify type variables universally, e.g.
Va.(a — «). The result of replacing type variables is called an instance of the
polymorphic type.

Type inference rules. Figure 16.1 contains some rules sufficient to infer the types
involved in program runs, i.e. evaluations of closed expressions. Note that an
object p of type ¢, is a program text and thus in itself a value in D, i.e. ¢, denotes
a subset of D. On the other hand, p’s meaning [p]ly may be any value, for example
a higher-order function.

Program equivalence. 1t is important to be able to say when two programs p, q
€ D are computationally equivalent. In recent years two views have developed,
semantic equivalence and observational equivalence [244,219]3. Both concepts make
sense in our framework, defined as follows. Let p, q € D. Then p and q are

3A denotational semantics is said to be fully abstract with respect to an operational semantics
if observational and semantic equivalence are the same.

340 Larger Perspectives
semantically equivalent if [p] = [q]

observationally equivalent if [p] =~ [q], where we define f =~ ¢ to mean that for
alln > 0 and for alldy,...,d, € Dand d € D,

(fdy...d, = d) if and only if (¢d;...d, = d)

The first definition is the easier to formulate, but a case can be made that the
second is more relevant in practice. The reason is that establishing the first requires
verifying equality between two elements of a semantic function domain. This can
be a tricky task, and computationally speaking too strict if the semantic function
[-] is not fully abstract.

The second definition is a version of the observational equivalence studied by
Plotkin, Milner, and others, limited to first-order applicative contexts. It only
involves assertions that can in principle be verified by running the program on first-
order inputs and observing its first-order outputs or nontermination behaviour.

16.2.1 Efficient symbolic composition

Symbolic composition can be described as commutativity of the diagram in Figure
16.2, where «, 3,y range over all types. We now list some examples of symbolic
composition, and discuss what is saved computationally.

Vector spaces and matriz multiplication. Suppose M, N are n X n matrices over
(for example) the real numbers R. Each determines a linear transformation, e.g.
[M] : R™ — R™ If M - N is their matrix product, then

[0 - N](w) = [M](IN] (@)
The composite linear transformation can be computed in either of two ways:

e by applying first N and then M to &, taking time 2n?; or

e by first multiplying M and N (time n® by the usual algorithm), and applying
the result to @ (time n?)

It may be asked: what if anything has been saved? The answer is: nothing, if the
goal is only to transform a single vector, since the second time always exceeds the
first. There is, however, a net saving if more than n vectors are to be transformed
since the matrix product need only be computed once.

The moral: an operation so familiar as matrix multiplication can be thought of
as symbolic composition, and composition can save computational time.

Other examples of efficient symbolic composition include the fact that two fi-
nite state transducers can be combined into one with no intermediate symbols;
deforestation, seen in Chapter 17; and composition of derivors or of attribute cou-
pled grammars. The latter two can be used automatically to combine multipass
compiler phases into a single phase.

Types for interpreters, compilers, and partial evaluators 341

((a— B)x (8—=7))—L,((a—7)) Syntactic composition

[-1} <[] [-]

Y

((a— B)x (8—7))—’>((0 —)) Semantic composition

Figure 16.2: Symbolic composition.

16.2.2 Symbolic function specialization = partial evaluation

Specializing (also called restricting) a two-argument function f(z,y) : a x f — v
to x = a gives the function f,—,(y) = f(a,y). Function specialization thus has
polymorphic type

fs:(axf =) xa—=(8—=7)

Partial evaluation is the symbolic operation corresponding to function specializa-
tion. Using peval = [mix] to denote the partial evaluation function, its correctness
is expressed by commutativity of the diagram in Figure 16.3. Partial evaluation
has polymorphic type

peval : (ax B =) xa— (8—7)

Redefinition of partial evaluation
The description of peval can be both simplified and generalized by writing the
functions involved in curried form®. This gives peval a new polymorphic type:

peval : a—(f—v)—>a—F—y

which is an instance of a more general polymorphic type:
peval : p—o—p—0o

Maintaining our emphasis on observable values, we will require p to be a first-order
type (i.e. base or a type t).

*The well-known ‘curry’ isomorphism on functions is (a—(3—7)) =~ (a x f—7).

342 Larger Perspectives

(laxBo)xa) ~((8=1)
[-]l|x Identity -1

(axp=)xa ——ue(((5)

Figure 16.3: Function specialization and partial evaluation.

Remark. The second input to peval is a value of type p, and not representation
of a value. In practice, especially if peval is programmed in a strongly typed
language, one may need to work with representations rather than directly with
values. We ignore this aspect partly because of notational complexity, and partly
because the use of representations leads quickly to problems of size explosion when
dealing with representations of representations of This problem has been
addressed by Launchbury [169], and appears in Chapter 11.

The mix equation revisited. mix € D is a partial evaluator if for all p, a € D,

[p] a=~ [[mix] pa]
Thus for any n+1 first-order values d, d,,...,d,, we have [p] ad;...d, =d if and
only if [[mix]] pa]d;...d, = d.
16.2.3 Compiler and interpreter types

Similarly, the definitions of interpreter and compiler of Section 3.1.1 may be ele-
gantly restated, a little more generally than before:

= {int | [s]g~ [int] s}

and

Types for interpreters, compilers, and partial evaluators 343

S — T
L

= { comp | [s]g~ [[comp]; sl }

Can an interpreter be typed?

Suppose we have an interpreter up for language L, and written in the same language
— a universal program or self-interpreter. By definition up must satisfy [p]] ~ [up]
p for any L-program p. Consequently as p ranges over all L-programs, [up] p can
take on any program-expressible type. A difficult question arises: is it possible to
define the type of up non-trivially®?

A traditional response to this problem has been to write an interpreter in an
untyped language, e.g. Scheme. This has the disadvantage that it is hard to verify
that the interpreter correctly implements the type system of its input language
(if any). The reason is that there are two classes of possible errors: those caused
by errors in the program being interpreted, and those caused by a badly written
interpreter. Without a type system it is difficult to distinguish the one class of
interpret-time errors from the other.

Well-typed language processors

Given a source S-program denoting a value of some type ¢, an S-interpreter should
return a value whose type is ¢t. From the same source program, a compiler should
yield a target language program whose T-denotation is identical to its source pro-
gram’s S-denotation. This agrees with daily experience—a compiler is a meaning-
preserving program transformation, insensitive to the type of its input program
(provided only that it is well-typed). Analogous requirements apply to partial
evaluators.

A well-typed interpreter is required to have many types: one for every possi-
ble input program type. Thus to satisfy these definitions we must dispense with
type unicity, and allow the type of the interpreting program not to be uniquely
determined by its syntax.

Compilers must satisfy an analogous demand. One example: Ax.x has type
t,—t, for all types ¢. It is thus a trivial but well-typed compiling function from L
to L. (Henceforth we omit the subscript L.)

A well-typed partial evaluator can be applied to any program p accepting at
least one first-order input, together with a value a for p’s first input. Suppose p
has type p — o where p is first-order and a € [[p]. Then [mix]p a is a program
pa whose result type is o, the type of [p]a. Thus p, has type o.

5This question does not arise at all in classical computability theory since there is only one
data type, the natural numbers, and all programs denote functions on them. On the other hand,
computer scientists are unwilling to code all data as numbers and so demand programs with
varying input, output and data types.

344 Larger Perspectives

1. Interpreter int €

2. Compiler comp € ‘%I is well-typed if it has type

Va.gs—>gT.

is well-typed if it has type® Va.a g — a.

[]

3. A partial evaluator mix is well-typed if it has type
Vp.Yo.p— o — p— g, where p ranges over first-order types.

Remark. The definition of a well-typed interpreter assumes that all observable
S-types are also L-types. Thus it does not take into account the possibility of
encoding S-values.

16.2.4 Self-application and types

Definitions involving self-application often (and rightly) cause concern as to their
well-typedness. We show here that natural types for mix-generated compilers and
target programs (and even cogen as well) can be deduced from the few type rules
of Figure 16.1. Let source: a g be an S-program denoting a value of type a.

First Futamura projection

We wish to find the type of target = [mix] int source. The following inference
concludes that the target program has type @ = a, i.e. that it is an L program of
the same type as the source program. The inference uses only the rules of Figure
16.1 and instantiation of polymorphic variables.

mix : p—0—p—0

[mix] : p—o—p—0o

int : Qg
—Q

[mix] : ag—a—ag

e source : Qg
[mix] int : ag—a

[mix] int source : «

Second Futamura projection
The previous inference showed that [mix] int has the type of a compiling function,
though it is not a compiler program. We now wish to find the type of compiler =

6As a consequence, [[int]]L has type Va. ag—a, that is to say type tg—t for every type t.

Types for interpreters, compilers, and partial evaluators 345

[mix]mix int. It turns out to be notationally simpler to begin with a program p
of more general type a— (3 than that of int.

mix : p—o—p—ao

[mix] : p—o—p—a

[mix] : a=f—a—f—a=f—a—p mix:af—a—p

[mix]mix : a—=f—a—p p:a2p

[mix|mixp: a—p

Some interesting substitution instances. Compilers can be generated by the sec-
ond Futamura projection: compiler = [mix]mix int. The type of int is 4 g9,
an instance of the type assigned to p above. By the same substitution we have
compiler : és—>§. Moreover, § was chosen arbitrarily, so [compiler] : V5.§8—>§
as desired.

The type of a compiler generator. FEven cogen can be given a type, namely
a—f—a—3 by exactly the same technique; but the tree is rather complex. One

substitution instance of cogen’s type is the conversion of an interpreter’s type into
that of a compiler.
The type of [cogen] is thus a—f—a— 3, which looks like the type of the identity

function(!) but with some underlining. It is substantially different, however, in that
it describes program generation. Specifically

1. [cogen] transforms a two-input program p into another program p-gen, such
that for any a€ D

2. p' = [p-gen]a is a program which

3. for any dy,...,d, € D computes

[p'ld:-..d, =~ [plad;...d,

One could even describe the function [[cogen]| as an intensional version of currying,
one that works on program texts instead of on functions. To follow this, the type
of [cogen] has as a substitution instance

[cogen] : a—(B—7)—a—F—y

346 Larger Perspectives

In most higher-order languages it requires only a trivial modification of a program
text with type (a x 3—y) to obtain a variant with type (a«—(8—+)), and with the
same (or better) computational complexity. So a variant cogen’ could be easily
constructed that would first carry out this modification on its program input, and
then run cogen on the result. The function computed by cogen’ would be of type:

[cogen'] : a x f—y—a—[—y

which is just the type of the curry transformation, plus some underlining.

16.3 Some research problems

Exercise 16.1 Informally verify type correctness of a simple interpreter with integer
and boolean data O

Exercise 16.2 Figure 16.1 contains no introduction rules for deducing that any
programs at all have types of form ¢ . Problem: for a fixed programming language,
find type inference rules appropriate for showing that given programs have given
types. O

Exercise 16.3 For a familiar language, e.g. the A-calculus, formulate a set of type
inference rules that is sufficiently general to verify type correctness of a range of
compilers, interpreters and partial evaluators. O

FEzercise 16.4 Find a suitable model theory for these types (domains, ideals, etc.).
The type semantics given earlier uses ordinary sets, but for computational purposes
it is desirable that the domains be w-algebraic, and that the values manipulated
by programs should only range over computable elements. O

