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of domain complementation in abstract interpretation. Complementation provides a systematic

way to design new abstract domains, and it allows to systematically decompose domains. Also,

such an operation allows to simplify domain veri�cation problems, and it yields space-saving

representations for complex domains. We show that the complement exists in most cases, and we

apply complementation to three well-known abstract domains, notably to Cousot and Cousot's

interval domain for integer variable analysis, to Cousot and Cousot's domain for comportment

analysis of functional languages, and to the domain Sharing for aliasing analysis of logic languages.
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1 INTRODUCTION

Abstract interpretation is a general theory, introduced by Cousot and Cousot [1977;
1979], for describing the relationship among semantics of programming languages
at di�erent levels of abstraction. In this framework, program analysis is de�ned as
nonstandard program semantics, obtained from the standard one by substituting
its domain of computation, called concrete, (and the basic operations on it) with
an abstract domain (and corresponding abstract operations). The concrete and
the abstract domains are always complete lattices, where the ordering relations
describe the relative precision of the denotations, the top elements representing no
information. For example, assume that the concrete domain is the powerset }(ZZ)
of integer numbers. This may be the case whenever we perform a static analysis
on variables assuming integer values. Possible abstract domains are depicted in
the picture below. The interpretation of their elements is straightforward: for
instance, 0+ represents the set of nonnegative integers whereas � represents the
set of negative integers.
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The relation of abstraction between abstract domains is traditionally formalized
in terms of Galois insertions (cf. Cousot and Cousot [1977]). A domain D is an
abstraction of C, if there exists a monotone abstraction function � : C ! D, which
is part of a Galois insertion. This happens whenever � is surjective, i.e., all the
elements of D are approximations of elements in C, and if c 2 C is such an element,
then �(c) 2 D is the least (unique) element in D which corresponds to an object

in C approximating the meaning of c. This correspondence is de�ned in terms of
an adjoint function 
 : D ! C, providing a representation in C for the elements
of D. The relation between domains established by a Galois insertion ensures that
the abstract domain contains only the best (viz., most precise) approximations of
the elements of the concrete one. This is the case of A+ and Sign in the example
above. In this case, �0 2 Sign is abstracted into ZZ of A+, which corresponds to
the least set in A+ containing nonpositive numbers, while 0 2 Sign is approximated
by 0+ 2 A+, which corresponds to the least set in A+ containing 0.

Already in their early works Cousot and Cousot [1977; 1979], have pointed out
the importance of incrementally designing abstract domains. Richer domains can be
obtained by combining simpler ones or by lifting them by systematically adding new
information. The �rst kind of operations are known as domain combinators, while
the latter ones are known as domain completions. Both operations are devoted to
enhance the expressive power of domains and have been called domain re�nements

(cf. Fil�e et al. [1996]). All these domain operations provide high-level facilities
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to tune the analysis in accuracy and cost. Among these operations for domain
re�nement, reduced product [Cousot and Cousot 1979] is probably the most common
and widely known one. It has been included as an important tool for design aid
in many modern systems for program analysis, like for instance in System Z [Yi
and Harrison 1993]. In Codish et al. [1995] the cost/precision tradeo� between
using two separate abstract domains and using their reduced product has been
experimentally evaluated for the analysis of logic programs in the system PLAI.
Reduced product corresponds to cartesian product of domains, where equivalent

tuples are identi�ed, viz., reduced. Let us use the abstract domains introduced
above in order to illustrate reduced product. The reduced product of A+ and A�

is Sign. Observe that Sign has two new elements with respect to A+ and A�:
0 and ;. These elements are obtained by combining, by conjunction, which is set
intersection of the corresponding sets of integers, respectively, 0+ with �0 and +
with �. In this example, reduction is necessary only for identifying distinct pairs
of elements denoting ;, as, for instance, the pairs h+;�i and h+;�0i.

The Problem: Domain Decomposition in Abstract Interpretation. A natural ques-
tion that arises in this setting is whether it is possible to de�ne the inverse of reduced
product , namely an operation which, starting from any two domains C and D, with
D more abstract than C, gives as result the most abstract domain C �D, whose
reduced product with D is exactly C. Recall that in the setting of abstract inter-
pretation a domainD is more abstract than C, if C contains all the information of
D, by simplifying: D � C, up to isomorphic representation of domain objects. In
the example above, for instance, A+ is more abstract than Sign.
Because of the peculiar structure of domains in abstract interpretation, the above

problem cannot be solved by simply considering the set-theoretic complementCnD
of D into C. This is because the result would not be in general an abstract domain.
In our example, for instance, Sign nA+ = f�0;�; 0; ;g is not an abstract domain:
in particular, SignnA+ does not contain any correct (with respect to the standard
meaning of signs as sets of integers) denotation representing no information at all,
namely denoting the set of all integers. In contrast, it is easy to verify that the
domainsA� and Sign above, and the domainsA�;, A�0, A(�0)+, and A�0 depicted
below, are all and only those abstractions of Sign which, once combined with A+

by reduced product, give Sign back.
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It is worth noting that A� is contained in (viz., more abstract than) all these do-
mains. Hence, in this sense, A� = Sign � A+. The main question is therefore
whether for any two domains C and D as above, the domain C � D always ex-
ists. A positive answer to this question would �ll one gap of abstract interpretation
theory, providing a methodology for systematic domain decomposition. This is
important for several reasons. First, it can be useful for designing new abstract
domains and for minimizing their space requirement, yielding compact representa-
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tions for complex domains as tuples of simpler (i.e., more abstract) factors. This
can be particularly interesting for those domains that were not originally designed
through composition, which is the case for most of the abstract domains used in
practical analyses. Furthermore, decomposing domains allows to decompose also
their veri�cation. In fact, instead of proving some property for a complex domain,
it may be convenient to verify it for the simpler components of a decomposition of
this domain. Clearly, this is a viable technique only provided that the considered
property is preserved under reduced product. Finally, domain decomposition helps
to understand the internal structure of complex domains, which, as already ob-
served, are in most cases de�ned as a whole and not by composition of elementary
domains. Such an operation would allow to show for instance that Sign�A+ = A�

and Sign�A� = A+, and thus that hA+; A�i provides a minimal way of decom-
posing Sign, in the sense that no component can be simpli�ed without changing
the other one.

The Idea: Pseudocomplementation for Domain Decomposition. In order to solve
the problem of inverting reduced product in a general setting, i.e., for any domain in
abstract interpretation, we need a formal framework, where properties of abstract
domains can be studied independently from the representation of their objects. In
fact, the de�nition of abstraction in terms of Galois insertions su�ers from being
dependent on the way domain objects are represented.

The closure operator approach to abstract interpretation provides a very use-
ful mathematical framework for studying abstract domains and in particular the
above operation for domain decomposition. The equivalence between Galois in-
sertions and closure operators is well known in lattice theory (cf. Birkho� [1967]).
Cousot and Couost [1979] applied this equivalence, observing that every abstrac-
tion of a concrete domain C can be associated with an (upper) closure operator
on C, and the operation of reduced product between abstract domains can be in-
terpreted as the corresponding lattice-theoretic operation of greatest lower bound

u on the complete lattice uco(C) of all (upper) closure operators on C. Closure
operators play here the role of approximating operations. The intuition behind
this construction is simple. A closure operator � : C ! C is a function which is
monotonic, idempotent (i.e., �(�(c)) = �(c)), and extensive (i.e., �(c) � c). Mono-
tonicity ensures that the abstraction monotonically approximates domain objects.
Idempotence ensures that the approximation is performed all at once, while exten-
sivity captures the situation where the approximation of an object c contains all
the information in c. Closure operators capture therefore the essence of the process
of abstraction. Moreover, they have the advantage of simplicity, e.g., one single
function, and specify abstractions independently from isomorphic representation of
domain objects. Hence, they provide precisely the right high-level setting which is
needed when reasoning about properties of abstract domains. For example, it is
easy to verify that A+ and A� correspond, up to object names, to the image of
Sign under the following closure operators:

�A+ (x) =

8>><
>>:

x if x 2 f+; 0+;ZZg
0+ if x = 0
+ if x = ;

ZZ if x 2 f�;�0g;

�A� (x) =

8>><
>>:

x if x 2 f�;�0;ZZg
�0 if x = 0
� if x = ;

ZZ if x 2 f+; 0+g.
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The lattice of abstract interpretations of a domain C is therefore isomorphic to
the lattice uco(C) of closure operators on C. The bottom element in uco(C) cor-
responds to the identical abstraction, which leaves C unchanged, while the top
element corresponds to the straightforward abstraction, which forgets about the
whole structure of C, mapping C into its top element. In this setting, asking
whether C � D exists for any C and D (with D abstracting C) is equivalent to
ask whether uco(C) is pseudocomplemented . Being a pseudocomplement of D in
uco(C) for a domain (closure operator) C �D means that whenever there exists
another domain X, such that D u X = C, then X is always more concrete than
C �D. Therefore, in the context of abstract interpretation, the lattice-theoretic
notion of pseudocomplementation [Birkho� 1967] captures precisely the intended
meaning of inverting reduced product. In the example above, it is easy to see that
A+ uA� = Sign, and for any domainX such that A+ uX = Sign, e.g., X = A�0,
X contains Sign�A+ = A�.

The attentive reader may wonder why we have de�ned the operation � as the
pseudocomplement instead of the complement, which would additionally require
that the least upper bound of C �D and D in uco(C) is the top element. This
is the case in our example, where the most abstract domain (viz., the top closure)
fZZg is the only common abstraction of A+ and A�. Although some closure (do-
main) may have accidentally a complement, this is not true in general, i.e., for
any closure. This would clearly correspond to requiring that uco(C) is comple-

mented , but Dwinger [1954] and, successively, Morgado [1962] proved that uco(C)
is complemented if and only if C is a complete well-ordered chain. This condition
is clearly too restrictive to be applied in static analysis and abstract interpretation
of programming languages, because concrete and abstract domains for semantics
and analysis in general are not complete chains. On the contrary, the requirement
that uco(C) is pseudocomplemented can be met in most cases of interest. In fact,
recently, Giacobazzi et al. [1996] have given a su�cient condition for uco(C) to be
pseudocomplemented. In the present article, we point out that this condition is
satis�ed by most of the known concrete and abstract domains for semantics and
analysis of programming languages.

Structure of the Article. On the basis of the result in Giacobazzi et al. [1996], we
de�ne the operation of pseudocomplementation of abstract domains. For the sake
of simplicity, this operation will be simply called complementation. We study the
basic properties of complementation for abstract domain decomposition, and we
provide a constructive iterative characterization of complements. We introduce the
notion of minimal decomposition for an abstract domain, and we provide an itera-
tive method to construct minimal decompositions, i.e., decompositions of domains
involving the most abstract factors. The usefulness of complementation for domain
decomposition is illustrated by means of several examples. First, we consider some
general properties of domains which can be veri�ed compositionally on the simpler
factors of their decompositions. Then, we apply domain decomposition to speci�c
well-known domains for program analysis. Cousot and Cousot's [1976; 1977] do-
main for integer interval analysis of programs with integer variables provides the
�rst simple, but useful, example for explaining some subtle technical points of the
complementation. More complex examples of the use of complementation for do-
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main decomposition are given by considering a domain for aliasing analysis in logic
programming, notably Sharing , introduced by Jacobs and Langen [1989; 1992],
and Cousot and Cousot's [1994] domain for comportment analysis for higher-order
functional languages.
The domain for comportment analysis was originally obtained by disjunctive

completion of a simpler domain of basic comportments for functions. We prove
that the domain of basic comportments can be decomposed by complementation as
reduced product of Mycroft's [1980; 1981] domains for termination and strictness

analysis. This provides a reduction of the lattice-structure of comportments as
well as an intuitive interpretation of comportment analysis as the space of relations
between the domains for termination and strictness. For the sake of simplicity, the
domain of comportment analysis is considered for the case of functional basic types
only.
We use complementation for decomposing Sharing into a component expressing

the ability of Sharing to compute ground dependency information and a compo-
nent expressing the remaining information of Sharing. Cortesi et al. [1992] proved
that the information for ground dependency analysis of Sharing is expressed by a
more abstract domain, which we show to coincide with the domain Def for ground
dependency analysis. Def was introduced by Marriott and S�ndergaard [1993], as
an adaptation of Dart's [1988; 1991] work on groundness in deductive databases.
As expectable, the complement of Def relative to Sharing , called Sharing+, cap-
tures precisely variable aliasing and no ground dependency information. It is worth
mentioning that Sharing+ corresponds to a simple and elegant closure operator on
Sharing.
The rest of the article is organized as follows. Section 2 contains some prelim-

inaries about lattice theory and abstract interpretation. Section 3 introduces the
notion of complementation of abstract domains and studies its properties. In this
section, we also give the constructive �xpoint characterization of complementation
of closure operators, which is the basis for an iterative construction of complements
of abstract domains. Section 4 gives systematic ways to decompose domains and
exempli�es how the notion of complementation actually works. In Section 5 we give
some examples of domain properties which can be veri�ed on the simpler factors
of their decompositions. Section 6 presents complements of some abstractions of
Cousot and Cousot's integer interval domain. Section 7 provides decompositions
of Cousot and Cousot's domain for comportment analysis. Section 8 describes the
application of the complement to the domain Sharing . Section 9 concludes.

2 PRELIMINARIES

Throughout the article, we will assume familiarity with the basic notions of lattice
theory (e.g., see Birkho� [1967], Davey and Priestley [1990], and Gr�atzer [1978]) and
abstract interpretation [Cousot and Cousot 1977; 1979]. Now, we brie
y introduce
some notation and recall some well-known notions.

2.1 Mathematical Notation

Let C and D be sets. The powerset of C is denoted by }(C), and the cardinality
of C by jCj. The set-di�erence between C and D is denoted by C nD. If f is a
function de�ned on C and D � C then f(D) = ff(x) j x 2 Dg. By g �f we denote
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the composition of the functions f and g, i.e., 8x: (g � f)(x) = g(f(x)). The set D
equipped with a partial order � is denoted by hD;�i. If D is a poset, we usually
denote by �D the corresponding partial order. A complete lattice D with partial
order �, greatest lower bound (glb) ^, least upper bound (lub) _, top element
> = ^; = _D, and bottom element ? = _; = ^D is denoted by hD;�;^;_;>;?i.
WhenD is a lattice, _D, ^D, >D, and ?D denote the corresponding basic operators
and elements. In the following, we will often abuse notation by denoting lattices
with their poset notation. We use C �= D to denote that the ordered structures C
and D are isomorphic.

2.2 Galois Connections and Closure Operators

We recall the notions of Galois connection and insertion and closure operator, which
are fundamental in the standard theory of abstract interpretation [Cousot and
Cousot 1977; 1979]. If C and D are posets, and � : C ! D, 
 : D ! C are
monotonic functions such that 8c 2 C: c �C 
(�(c)) and 8d 2 D: �(
(d)) �D d,
then we call the quadruple (
;D;C; �) aGalois connection (G.c.) between C andD.
If in addition 8d 2 D: �(
(d)) = d, then we call (
;D;C; �) a Galois insertion (G.i.)
of D in C. We also recall that the above de�nition of G.c. is equivalent to that of
adjunction: (
;D;C; �) is an adjunction if 8c 2 C:8d 2 D: �(c) �D d, c �C 
(d).
Abstract interpretations are traditionally speci�ed in terms of Galois insertions.
Any G.c. may be lifted to a G.i. identifying in an equivalence class those values
of the abstract domain with the same concrete meaning. This process is known
as reduction of the abstract domain. In the setting of abstract interpretation, C
and D are called, respectively, the concrete and the abstract domain, and they are
assumed to be complete lattices, whereas � and 
 are called the abstraction and
the concretization maps, respectively. Also, D is called an abstraction (or abstract
interpretation) of C, and C a concretization of D. Furthermore, if C is not an
abstraction of D, then we say that D is a strict abstraction of C. Note that, if
(
;D;C; �) is a G.i., then the concretization and abstraction mappings, 
 and �,
are 1-1 and onto, respectively. In this case, each value of the abstract domain D
is useful in the representation of the concrete domain C, as all the elements of D
represent distinct members of C.
An (upper) closure operator , or simply a closure, on the poset hL;�i is a mono-

tonic, idempotent, and extensive (viz., 8x 2 L: x � �(x)) operator � : L ! L.
If hL;�;^;_;>;?i is a complete lattice then each closure operator � is uniquely
determined by the set of its �xpoints, which is its image �(L). A set X � L is the
set of �xpoints of a closure operator i� X is a Moore-family of L, i.e., > 2 X and
X is meet-closed (viz., for any Y � X, ^Y 2 X). Furthermore, the set of �xpoints
�(L) is a complete lattice with respect to the order of L, but, in general, it is not
a complete sublattice of L, since the lub in �(L) might be di�erent from that in
L. Hence, in the following, a closure operator � will often denote the set of its
�xpoints �(L). Being a set, the set of �xpoints of a closure is often denoted with
capital Latin letters. Denoting closures by sets will be particularly convenient when
closure operators will denote domains. In the following, we will keep Greek letters
only as denotations for closures in lattice-theoretic notions and results and will use
capital Latin ones to emphasize their role as domains. However, viewing closures
as functions is also important in abstract interpretation, because they de�ne the
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abstraction function. Hence, in the following, we will keep this soft ambiguity by
using both notations and will leave to the reader to distinguish their use as func-
tions or sets, according to the context. Ward [1942, Theorem 4.2] proved that if L
is a complete lattice, then huco(L);v;u;t; �x:>; �x:xi is a complete lattice, where
for every �; � 2 uco(L), f�igi2I � uco(L), and x 2 L:

|� v � i� 8x 2 L: �(x) � �(x), or, equivalently, � v � i� �(L) � �(L);

|(ui2I�i)(x) = ^i2I�i(x);

|(ti2I�i)(x) = x , 8i 2 I: �i(x) = x;

|�x:> is the top element, whereas �x:x is the bottom element.

2.3 Abstract Interpretation and Closure Operators: Reduced Product Revisited

A key point in abstract interpretation theory [Cousot and Cousot 1979] is the equiv-
alence between the Galois insertion and closure operator approach to the design of
abstract domains. Usually, the Galois insertion approach is the most used. In this
case, D is an abstraction of C if there exist � and 
 such that (
;D;C; �) is a
Galois insertion. It is well known since Cousot and Cousot [1979] that the real
essence of an abstract domain lies with the closure operator associated with the
corresponding G.i. Actually, an abstract domain is just a \computer representa-
tion" of its logical meaning, namely its image in the concrete domain. In fact,
using a di�erent but lattice-theoretic isomorphic domain changes nothing in the
abstract reasoning. This logical meaning of an abstract domain is exactly captured
by the associated closure operator on the concrete domain. More formally, on one
hand, if (
;D;C; �) is a G.i. then the closure associated with D is the operator
� = 
 � � on C. On the other hand, if � is a closure on C and � : �(C) ! D is an
isomorphism of complete lattices (with inverse ��1) then (��1; D;C; � � �) is a G.i.
By the above equivalence, it is not restrictive, and often more convenient, to use
the closure operator approach to reason about abstract properties up to isomorphic
representations of abstract domains. Thus, in the rest of the article, we will feel
free to use this approach most of the time, and whenever we will say that D is an
abstraction of C (or C a concretization of D), we will mean that D �= �(C) for
some closure � 2 uco(C). It is well known [Cousot and Cousot 1979] that the order
relation on uco(C) corresponds to the order by means of which abstract domains
are compared with regard to their precision of representation. More formally, if
�i 2 uco(C) and Di

�= �i(C) (i = 1; 2), D1 is more precise than D2 i� �1 v �2
(i.e., �2(C) � �1(C)). Since, clearly, D1 is more precise than D2 i� there exists
� 2 uco(D1) such that D2

�= �(D1); then we can equivalently write D1 v D2.
Therefore, to compare domains with regard to their precision, we will only speak
about abstractions between them and will use v to relate both nonhomogeneous
domains, i.e., domains which are not Moore-families of the same concrete domain,
and homogeneous domains, i.e., closure operators on a concrete domain. Further,
because we will be independent from object representations in domains, we will
often use the equality symbol = between domains instead of the more rigorous
symbol of isomorphism �=.
In view of this equivalence, the lub and glb on uco(C) get a clear meaning. Sup-

pose f�igi2I � uco(C) and Di
�= �i(C) for each i 2 I. Any domain D isomorphic

to the least upper bound (ti2I�i)(C) is the most concrete among the domains
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which are abstractions of all the Di, i.e., D is the least common abstraction of all
the Di. The interpretation of the glb operation on uco(C) is twofold. First, any
domain D isomorphic to the greatest lower bound (ui2I�i)(C) is (isomorphic to)
the well-known reduced product [Cousot and Cousot 1979] of all the domains Di.
Further, the glb D, and hence reduced product, is the most abstract among the
domains (abstracting C) which are more concrete than every Di. Thus, we will
denote reduced product of abstract domains by the glb symbol u.

3 (PSEUDO)COMPLEMENTS OF ABSTRACT DOMAINS

A consequence of the isomorphism between the lattice of abstract interpretations
of a concrete domain C and the corresponding lattice of closure operators uco(C)
is that it is not possible, in general, to de�ne the lattice-theoretic complement of
abstract domains, i.e., for any domain D such that C v D, a domain �D such that
D u �D = C and D t �D = f>Cg. This follows from results by Dwinger [1954]
and Morgado [1962], saying that uco(C) is complemented (or a Boolean algebra)
i� C is a complete well-ordered chain. A similar condition, on arbitrary complete
chains, is also necessary and su�cient for uco(C) to be distributive [Dwinger 1954].
Both these conditions are clearly too restrictive for abstract interpretation of pro-
gramming languages. The following example shows this problem in a simple �nite
lattice.

Example 3.1. Consider the following �nite lattice C.

�

� �

�

b

>

a

?
@
@
�
�

@
@

�
�

The closure operators (or equivalently abstract interpretations) on C are the fol-
lowing:

�1 = f>g; �2 = f>; ag; �3 = f>;?g; �4 = f>; bg;

�5 = f>; a;?g; �6 = f>; b;?g; �7 = f>; a; b;?g:

They form the lattice uco(C) depicted below.

�

� � �

� �

�

�1

�2 �3 �4

�5 �6

�7

�
�
�

Q
Q

Q

S
S
S
S

�
�
�
�

�
�
S
S

It is immediate to observe that uco(C) is not complemented. For instance, �3 does
not have the complement in uco(C).

The idea of this article is to use a di�erent and somehow weaker notion of com-
plementation in uco(C) as a systematic approach for domain complementation in
abstract interpretation. Indeed, while in general uco(C) is not complemented, it is
always pseudocomplemented, as proved in Giacobazzi et al. [1996]. We recall the
lattice-theoretic notion of pseudocomplement.
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De�nition 3.2. Let hL;�;^;?i be a meet semilattice with bottom. The pseu-

docomplement of x 2 L, if it exists, is the (unique) element x� 2 L such that
x ^ x� = ? and 8y 2 L: (x ^ y = ?) ) (y � x�). If every x 2 L has the
pseudocomplement, we say that L is pseudocomplemented.

Pseudocomplement is in this sense weaker than complement because, in general,
if L is a lattice, the least upper bound between x and x� is not the top element
of L. It is worth noting that if the pseudocomplement of x 2 L exists then it is
unique, and in a complete lattice L, it is always de�ned as (cf. Gr�atzer [1978])

x� = _fy 2 L j x ^ y = ?g: (y)

Example 3.3. Consider the lattice uco(C) of closure operators of Example 3.1.
It is easy to verify the following pseudocomplements for the elements in uco(C):
��1 = �7, �

�
2 = �4, �

�
3 = �7, �

�
4 = �2, �

�
5 = �4, �

�
6 = �2, and �

�
7 = �1.

In the following, we assume that L is a complete lattice.

De�nition 3.4. L is meet-continuous if, for any chain C � L and for each x 2 L,
x ^ (_C) = _y2C(x ^ y).

Remark 3.5. It is worth noting that meet-continuity is strictly weaker than the
well-known complete inf-distributivity property (viz., 8x 2 L:8Y � L: x ^ (_Y ) =
_y2Y (x ^ y)). For instance, any lattice satisfying the ascending chain condition is
obviously meet-continuous, but not necessarily complete inf-distributive (which for
a �nite lattice amounts to be distributive). Moreover complete Heyting algebras,
continuous, algebraic, arithmetic, completely distributive, and Boolean complete
lattices are always meet-continuous [Gierz et al. 1980, p. 96].

This notion of meet-continuity is central in the following result.

Theorem 3.6 [Giacobazzi et al. 1996]. If L is meet-continuous then uco(L)
is pseudocomplemented.

By the above remark, the following corollary is immediate.

Corollary 3.7. If L either satis�es the ascending chain condition, or it is a

complete Heyting algebra, or continuous, or algebraic, or arithmetic, or completely

distributive, or a Boolean lattice, then uco(L) is pseudocomplemented.

Therefore, it is possible to de�ne a weaker notion of domain complementation
for abstract interpretation, which is precisely pseudocomplementation. In this case,
the abstract domain to factorize plays the role of L.
Suppose D is an abstraction of the complete lattice C, and assume that C is

meet-continuous. Exploiting Theorem 3.6 we can give the following de�nition of
the complement of abstract domains.

De�nition 3.8. The complement of D relative to (or in) C is the complete lattice
C�D given by the set of �xpoints of the pseudocomplement D� (in uco(C)) of D.

It is immediate to observe that if C v D then C v C � D. Therefore, the
complement C�D is an abstraction of C. By equation (y), the pseudocomplement
of D is expressible as

D� = tfE 2 uco(C) j D uE = Cg:
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This equality makes clear the meaning of the complement: C � D is the most
abstract among the domains (abstracting C and) such that their reduced product
with D yields C. The following picture shows the relation between the di�erent
domains involved in complementation.

�

� �

�

�
f>g

C�D

(C�D) tD

D

(C�D) uD = C

@
@
�
�

@
@

�
�

...6

abstract

Moreover, C may be thought of either as a concrete domain or as an abstract
domain. In both cases, the complement C�D intuitively captures what program
properties representable by the domainC are ignored and left out by its abstraction
D, allowing to understand more in depth how the abstraction process led from C

to D. By De�nition 3.8, we �x in C the representation of the complement C�D,
being C � D a closure on C. Hence, C � D is often intended as a subset of C.
Obviously, any other lattice isomorphic to C�D can be considered in all respects
as the complement. From now on, whenever we will speak about complements, we
will suppose that the conditions for their existence hold.
The following technical result is recalled from Cousot [1978, Theorem 4.2.0.4.7]

and provides a simple way to generalize domain complementation to arbitrary ab-
stractions in the lattice of abstract interpretations of a given domain. For the sake
of completeness, we present a sketch of the proof.

Proposition 3.9 [Cousot 1978]. Let L be a complete lattice and � 2 uco(L).
Then, uco(�) �= "� = f� 2 uco(L) j � v �g.

Proof Sketch. Let L be a complete lattice and � 2 uco(L). Since � is a
complete lattice, uco(�) is also a complete lattice. Clearly, the principal �lter "� of
uco(L) is a complete (sub)lattice too, and uco(�) and "� are isomorphic complete
lattices. Indeed, the isomorphism is given by the mappings 	 : uco(�) !" � such
that 	(�) = � � �, and � :"�! uco(�) such that 8x 2 �: �(�)(x) = �(x).

By this result, we can apply Theorem 3.6 to arbitrary pairs of elements in the
lattice of abstract interpretations. In general, if C is a concrete domain, D an
abstraction of C (i.e., D 2 uco(C)), and E an abstraction of D (i.e., E 2 uco(D)),
then while the computation of D � E requires that D is meet-continuous, the
domain C can be merely a complete lattice. The complementD�E is given in this
case by the set of �xpoints of the pseudocomplement E� = tfX 2 uco(D) j E u

X = Dg, which is a closure operator on D. Proposition 3.9 says that uco(D) and
fX 2 uco(C) j D v Xg are isomorphic complete lattices. Hence, the complement
D�E can be equivalently obtained as a pseudocomplement on the more concrete
domainC, using the isomorphismof Proposition 3.9. In fact, if, by the isomorphism
of Proposition 3.9, we view E as a closure on C (viz., E = E �D 2 uco(C)), then
E� = tfX 2 uco(C) j (E � D) u X = Dg, which corresponds precisely to the
expected intuitive meaning of D�E as closure on C.
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Meet-continuity of the concrete domain of reference plays a central role in the
existence of the complement (cf. Theorem 3.6). Giacobazzi et al. [1996] observed
that meet-continuity is preserved by continuous closures (� 2 uco(L) is continuous
if for any chain C � L, �(_C) = _�(C)).

Proposition 3.10 [Giacobazzi et al. 1996]. If L is meet-continuous, and

� 2 uco(L) is continuous, then �(L) is meet-continuous.

Therefore, this result provides a su�cient condition on the closure de�ning an
abstract domain D in order to verify the meet-continuity of D.
The following algebraic properties of the complement operation�on abstract do-

mains can be easily derived from similar properties of pseudocomplemented lattices
(see Birkho� [1967], Frink [1962], Gr�atzer [1978], and Varlet [1963]). Note that (j)
includes one of De Morgan's laws.

Proposition 3.11. Let C be a meet-continuous lattice, C v D;E, and C v Di

for each i 2 I. De�ne > as the most abstract interpretation of C. Then,

(a) D v C� (C�D);

(b) (D v E)) (C�E) v (C�D);

(c) (C�D) = C� (C� (C�D));

(d) (D v (C�E) and D v E), (D = C);

(e) ((C�D) < (C�E)), (C� (C�E) < C� (C�D));

(f) (C�D = >), (D = C);

(g) C�> = C and C�C = >;

(h) (C� (D uE)) = C� ((C� (C�D)) u (C� (C�E)));

(i) C� (C� (D uE)) = ((C� (C�D)) u (C� (C�E)));

(j) (C� (D uE)) = C� (C� ((C�D) t (C�E))) and
(C� (D tE)) = (C�D) u (C�E);

(k) f(C�D) j C v Dg is a Moore-family of the abstract interpretations of C,

containing C and such that ui2I(C�Di) = (C� (C� (ui2I(C�Di)))):

Proof. The proofs of these algebraic properties can be found in Frink [1962]
and Gr�atzer [1978]. Varlet [1963] also contains a survey on the above standard
algebraic properties of pseudocomplement. In particular, the proof of (a), (b), and
(c) can be found in the proof of Glivenko's Theorem [Gr�atzer 1978, Theorem 4, p.
49]. Their proof can also be found by observing that they correspond precisely to
Eqs. (8), (9), and (11) in Frink [1962], respectively. The proof of (e), (g), (i), and
(j) can be found in Frink [1962], corresponding to Eqs. (10), (15), (18), and (19),
respectively. Part (d) is immediate by de�nition of pseudocomplement, while (f) is
immediate from (a). Parts (h) and (k) can be derived as corollaries of Glivenko's
Theorem [Gr�atzer 1978, Theorem 4, p. 49]. Also, (h) corresponds precisely to Eq.
(17) in Frink [1962].

There exists a wide class of abstract domains for which we can always compute the
complement (cf. Corollary 3.7). Indeed, the overwhelming majority of the abstract
domains used as the basis of a static analysis satis�es the ascending chain condition
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(even most of them are �nite domains). Furthermore, even if the abstract domain
does not satisfy the ascending chain condition, meet-continuity can be checked for
it. As a remarkable example, we show later in Section 6 that the abstract lattice
of intervals of integer numbers introduced in Cousot and Cousot [1977] to analyze
the values of an integer variable does not satisfy the ascending chain condition and
is not distributive, but it is meet-continuous.

Example 3.12. Let us consider the typical example of the rule of signs [Cousot
and Cousot 1977; 1979] given by the lattice C depicted below. The concrete domain
is }(ZZ) (ordered with set-theoretic inclusion�). The concretization and abstraction
maps are the obvious ones.

�

� �

�

�

� 0

>

� 0

0

?

@
@@
�
��

@
@@

�
��

It is easy to verify that all the possible abstractions of this domain, i.e., all the
closures on C, are the following:

D1 = f>g; D2 = f>;� 0g; D3 = f>; 0g; D4 = f>;?g; D5 = f>;� 0g;

D6 = f>;� 0;?g; D7 = f>;� 0; 0g; D8 = f>; 0;?g; D9 = f>;� 0; 0g;

D10 = f>;� 0;?g; D11 = f>;� 0; 0;?g; D12 = f>;� 0;� 0; 0g;

D13 = f>;� 0; 0;?g; D14 = D:

Since C is a �nite lattice, by Corollary 3.7 uco(C) is a pseudocomplemented lat-
tice. In fact, uco(C) is the lattice depicted below, and it is simple to verify the
pseudocomplementation of uco(C) straight from its Hasse diagram.
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�
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Indeed, the pseudocomplements, i.e., the complements relative to C of the above
abstractions, are as follows.

D�
1 = D14; D

�
2 = D10; D

�
3 = D14; D

�
4 = D12; D

�
5 = D6; D

�
6 = D5; D

�
7 = D10;

D�
8 = D12; D

�
9 = D6; D

�
10 = D2; D

�
11 = D5; D

�
12 = D4; D

�
13 = D2; D

�
14 = D1:

This example shows how complementation can work for domain decomposition.
Suppose C has been incrementally designed by reduced product of the domainsD2

and D13. The complement (D2 u D13)�D2 is just the domain corresponding to
the closure D�

2 = D10. In this case, (D2 uD13)�D2 is a strict abstraction of D13.
It is worth noting that we can safely substitute D13 by (D2 uD13)�D13, getting
a more concise representation of the product (see the �gure below).

�

� �

�

�

� 0

>

� 0

0

?
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�
��

@
@@

�
��

C =

�

�

>

� 0

D2 u

�

�

�

�

>

� 0

0

?

D13 =

�

�

>

� 0

D2 u

�

�

�

>

� 0

?

((D2 uD13)�D2)

Domain decomposition by complementation will be considered later in Section 4.

3.1 Construction of Complements

In this section, we present a method to generate the complement C�D, when C is
a �nite set. We will build C�D as the saturation point of an increasing sequence
of closure operators.
In the following, given a complete lattice hC;�i, and X � C, we will denote

by maxs(X) the set of maximal elements of X, viz., the objects x 2 X such that
8y 2 X: x � y ) x = y, and by Cl(X) the greatest (w.r.t. v) closure operator
containing X. Observe that, if X;Y are (sets of �xpoints of) closure operators on
C, then Cl(X [ Y ) = X u Y = fx^ y j x 2 X and y 2 Y g, and that Cl(X) can be
computed by adding to X all the greatest lower bounds of subsets of X.
Let fXngn2IN be the following family:

X0 = f>g

X1 = Cl(X0 [maxs(C nCl(X0 [D)))
...

Xn = Cl(Xn�1 [maxs(C nCl(Xn�1 [D)))
...

The following proposition shows some properties of Xn, for n 2 IN.

Proposition 3.1.1. In the family fXngn2IN de�ned as above, we have that

(1) 8n 2 IN: Xn 2 uco(C),

(2) 8n 2 IN: Xn � Xn+1,
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(3) 8n 2 IN:8Y 2 uco(C): (Y uD = C ) Xn � Y ).

Proof. Points (1) and (2) are obvious by de�nition. Let us now prove (3), by
induction with respect to n.

(n = 0). Obvious.

(n > 0). Assume Y 2 uco(C) and Y uD = C. Let x 2 Xn. Then there exists
X � Xn�1 [ maxs(C n Cl(Xn�1 [ D)) such that x = ^X. Let X0 � Xn�1,
X00 � maxs(C nCl(Xn�1 [D)) such that X = X0 [X00. By inductive hypothesis,
X0 � Y . It is therefore su�cient to show that X00 � Y and then use the fact that Y
is closed with respect to the operation of greatest lower bound. Consider z 2 X00.
Since Y u D = C, there exist y 2 Y; y0 2 D such that z = y ^ y0. It turns out
that y 62 Cl(Xn�1 [D), as otherwise we would have z 2 Cl(Xn�1 [D). Hence,
y � z, since z is a maximal of the complement of the set Cl(Xn�1 [D). But from
z = y ^ y0, it follows also that z � y; hence z = y 2 Y .

This concludes the proof.

If C is �nite, then from the above proposition, we derive that the sequence
fXngn2IN converges in a �nite number of steps to the complement C�D.

Corollary 3.1.2. If C is �nite, then there exists �n such that X�n+1 = X�n and

X�n = C�D.

Proof. From Proposition 3.1.1, point (2), we have that X�n+1 = X�n for some
�n � jCj. By de�nition ofX�n+1, this implies that Cl(X�n[D) = C, i.e.,X�nuD = C.
The rest follows from Proposition 3.1.1, points (1) and (3).

The above corollary constitutes a proof of Theorem 3.6, in the �nite case. If
C is in�nite, then the construction can be extended so as to obtain a trans�nite
sequence, by de�ning X� = Cl(X��1 [maxs(C n Cl(X��1 [D))) for � successor
ordinal, and X� = Cl(

S
�<�X�), for � limit ordinal. It is possible to show that

X�� = C�D, where �� is the smallest ordinal such that j��j > jCj. For the detailed
(nonconstructive) proof of Theorem 3.6, however, we refer to Giacobazzi et al.
[1996].

Example 3.1.3. Consider the domains C and D2 of Example 3.12. Let us com-
pute the complement C �D2 using the method described above. It is simple to
verify that the sequence of all the Xn is as follows: X0 = f>g, X1 = f>;� 0g,
X2 = f>;� 0;?g, X3 = X2. Thus, the construction of the Xn generates the
complement in three steps.

4 COMPLEMENTS TO DECOMPOSE ABSTRACT DOMAINS

Often, abstract domains for analysis are incrementally designed using reduced prod-
uct of simpler domains (e.g., in logic program analysis see Codish et al. [1995],
Muthukumar and Hermenegildo [1991], and Sundararajan and Conery [1992]). This
introduces modularity in domain design, which is helpful both to design domain-
dependent abstract operations and to simplify proofs of properties for complex
domains for analysis. The inverse operation of domain decomposition does not ex-
ist in the standard theory of abstract interpretation. This would be clearly helpful
to achieve modularity from domains which are not originally designed as reduced
product.
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De�nition 4.1. A (conjunctive) decomposition for a domain D is any tuple of
domains hDiii2I such that D = ui2IDi.

Obviously, with u being the greatest lower bound operation on domains, if hDiii2I

is a decomposition of D then each Di is an abstraction of D. Moreover, notice that
trivial decompositions always exist. In fact, for any domain D, hDi and the pair
hD;>i (and h>; Di) are evidently (straightforward) decompositions of D.

Example 4.2. Consider Example 3.12. hD1; D2i and hD1; C�D1i are both bi-
nary decompositions for C.

Clearly, the complement operation provides a systematic way to factorize a given
domain into binary decompositions. This may be helpful to decompose domains
that are not originally designed by products of more abstract domains. The case
of the domain Sharing, designed by Jacobs and Langen [1989; 1992] for aliasing
analysis of logic programs, is a typical case of a complex abstract domain for which
no decomposition is known in the literature. This case will be discussed in Section 8.
It is well known (cf. Ward [1942]) that uco(C), for any complete lattice C, is dual-

atomistic. Recall that a complete lattice L is (dual-) atomistic if every element of L
is the join (meet) of the (dual-)atoms in L preceding (following) it. A (dual-)atom
is a nonbottom (top) element a 2 L such that for any b 2 L, ? � b � a ) a = b

(a � b � > ) a = b). Hence, each closure which is di�erent from the top closure
�x:> is the in�mum of the set of dual-atoms following it. It is therefore always
possible to decompose any abstract domain in terms of a (possibly in�nite) family
of basic domains. If C is a complete lattice, we call basic domains those abstract
domains which correspond to dual-atoms in uco(C). The dual-atoms in uco(C) are
all and only those closures 'x, for x 2 C, with x 6= >, such that 'x(C) = fx;>g

[Ward 1942], namely the functions

'x(y) =

�
x if y �C x;
> otherwise.

Therefore, the basic abstract domains for a concrete domain C are all and only the
two-element domains f>; xg, for x 2 C n f>g. This decomposition is straightfor-
ward, and corresponds, in most cases, to enumerating the elements of the domain.

Example 4.3. Consider the domain C of Example 3.12. Its basic abstract do-
mains are those associated with the dual-atoms D2; D3; D4, and D5. However,
it is immediate to verify that hD2; D4; D5i is a decomposition for C as well, i.e.,
C = D2 u D4 u D5, involving only three dual-atoms. The corresponding basic
domains are the two-point lattices f>;� 0g, f>;� 0g, and f>;?g, respectively.

The following de�nition introduces a natural preordering relation between de-
compositions of a given domain.

De�nition 4.4. If hDiii2I and hDjij2J are decompositions of D, then hDiii2I is
space better than hDjij2J if

P
i2I jDij �

P
j2J jDjj.

Thus, the above de�nition allows to compare decompositions with respect to their
\space complexity." This de�nition gives rise to space minimal decompositions,
where a decomposition hDiii2I for a domain D is space minimal if D has no de-
composition strictly space better than hDiii2I .
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On the other hand, it is possible to compare decompositions of �xed length in a
pointwise manner, exploiting the order of precision between abstract domains.

De�nition 4.5. If hDiii2I and hEiii2I are decompositions of D (of the same
length), then hDiii2I is better than hEiii2I if 8i 2 I: Ei v Di.

It is immediate to observe that this de�nition actually induces a partial ordering.
However, least decompositions (w.r.t. this order) of a given �xed length in general
do not exist. In fact, for any domain D, with jDj > 1, hD;>i and h>; Di are
uncomparable minimal binary decompositions of D. Moreover, as observed in Fil�e
and Ranzato [1996], it is simple to verify that hDiii2I is a minimal decomposition
of D if for all k 2 I, (Dk < Ek)) (C < (ui2InfkgDi) uEk).
As the following straightforward lemma states, complementation naturally in-

duces minimal decompositions.

Lemma 4.6 [Fil�e and Ranzato 1996]. hDiii2I is a decomposition of D such

that for any k 2 I, D� (ui2InfkgDi) = Dk i� it is minimal.

In particular, note that ifD v E then, using the above lemma and Proposition 3.11
part (c), hD�E;D� (D�E)i always yields a minimal binary decomposition for
D. The role played by complementation for the decompositions is particularly
important whenever we deal with an abstract domain built by reduced product of
simpler domains. Suppose that D = ui2IDi and jIj = n. Then, complementation
allows to improve on the representation of D. In fact, for any k 2 I,

hD1; . . . ; Dk�1; D� (ui2InfkgDi); Dk+1; . . . ; Dni (�)

is a decomposition both better and space better than the starting one hDiii2I .
Moreover, each one of these decompositions can be further improved by iterating
this process, applying complementation to the other components, until a minimal
decomposition is reached. In this case, we get a minimal decomposition if, by iterat-
ing this kind of application of the complementation, we get a domain decomposition
where each component has been considered in at least one step of (�). The following
proposition proves the correctness of the algorithm in Figure 1. This algorithm is
nondeterministic, since the function choose selects an arbitrary element from an
input set.

Proposition 4.7. The algorithm in Figure 1 correctly computes a minimal de-

composition for D.

Proof. It is immediate to observe that the algorithm terminates in n steps.
Let I = f1; :::; ng, and assume that D = hA1; :::; Ani is the decomposition given
as output by the algorithm. Note that for any i 2 I, we have that Ai = D�Ei,
for a suitable domain Ei, since, for each component of the input decomposition,
a step (�) has been applied. Note also that, by construction, for any j 2 I, D �

(ui2InfjgDi) v D�Ej. By Lemma 4.6, it is enough to verify that for any k 2 I,
D� (ui2InfkgD�Ei) = D�Ek. Obviously, for any i 2 I, Di v D�Ei. Then, with
�xed k 2 I, we have that ui2InfkgDi v ui2InfkgD�Ei. Then, by Proposition 3.11
part (b), we get D � (ui2InfkgD � Ei) v D � (ui2InfkgDi) v D � Ek. On the
other hand, D�Ek v D� (ui2InfkgD�Ei) evidently holds, hence concluding the
proof.
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Input: A decomposition for D as an array D of n domains.

Output: A minimal decomposition for D in D.

begin

J := f1; :::; ng;

repeat

k := choose(J);

J := J n fkg;

A := >;

for i := 1 to n do

if i 6= k then A := A uD[i];

D[k] := D�A

until J = ;

end

Fig. 1. An algorithm for minimal decompositions.

For instance, if D = D1 uD2 uD3 then by calling E = D� (D1 uD2),

hD� ((D� (D1 uE)) uE); D� (D1 uE); Ei

is a minimaldecomposition both better and space better than hD1; D2; D3i. Clearly,
if D = ui2IDi and jIj = n, then by this process we can get at most n! di�erent
minimal decompositions of D, all better and space better than the starting one. In
the binary case, if we start from a decomposition hD1; D2i of D then we get the
two minimal decompositions: hD�D2; D� (D�D2)i and hD� (D�D1); D�D1i.

5 COMPOSITIONAL VERIFICATION OF DOMAIN PROPERTIES

One of the advantages of abstract domain decompositions lies in checking prop-
erties of abstract domains compositionally , by checking them on domain factors.
Instead of proving properties for general domains, one can prove properties for more
abstract (and simple) factors, provided that these properties are preserved under
composition, which is in our case reduced product.
In the following sections, we consider two examples of domain properties which

are particularly important in abstract interpretation and which can be veri�ed on
the factors of domain decompositions. This may greatly simplify their test for
complex domains.

5.1 Dual-Atomicity

Atomicity and dual-atomicity are important lattice-theoretic properties which can
allow e�cient domain implementation. The intuition behind atomicity in abstract
domains is simple: atoms represent primitive properties for program analysis.1

(Dual-)atomistic domains can therefore be generated by considering only their
(dual-)atoms. It turns out that dual-atomicity can be veri�ed on the factors of
domain decomposition. We need �rst some preliminary de�nitions. Given a com-
plete lattice L, we say that two subsets A;B � L are not comparable in L if for
any a 2 A; b 2 B, a 6� b and a 6� b. A closure operator (or equivalently an abstract

1This observation, in the context of program analysis, has been done �rst by Nielson [1985].
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domain) is (dual-)atomistic if the set of its �xpoints is a (dual-)atomistic lattice.
We denote by DAtom(L) the set of dual-atoms of L.

Proposition 5.1.1. Let f�igi2I be a set of dual-atomistic closure operators on

a complete lattice L, such that DAtom(�i) and DAtom(�j ) are not comparable in

L, for any i; j 2 I with i 6= j. If K � I then uk2K�k is dual-atomistic.

Proof. Trivial if K = ;. Thus, assume that ; 6= K � I. We observe �rst
that any element x 2 uk2K�k is such that there exists Y � [k2KDAtom(�k)
for which x = ^Y . This is immediate because by de�nition of reduced prod-
uct x = ^k2Kyk, where, for any k 2 K, yk 2 �k. Therefore, because f�kgk2K
is a set of dual-atomistic closure operators, we have that for any k 2 K, there
exist Yk � DAtom(�k) such that yk = ^Yk. Hence, x = ^k2K(^Yk) for some
Yk � DAtom(�k), and k 2 K. Thus, in order to conclude, we have to prove that
[k2KDAtom(�k ) = DAtom(uk2K�k).

(�). Assume that x 2 DAtom(�j ) for some j 2 K, but x 62 DAtom(uk2K�k).
By de�nition of dual-atom, there exists y 2 uk2K�k, y 6= >, such that x � y.
Because any y 2 uk2K�k can be generated as glb of elements in [k2KDAtom(�k ),
then there exist k 2 K and z 2 DAtom(�k) (with z 6= >), such that y � z. Clearly
k 6= j; otherwise x cannot be a dual-atom in �j . Moreover, if k 6= j then we also
have a contradiction because, by hypothesis, DAtom(�k) and DAtom(�j ) are not
comparable sets, and therefore x 6� z.

(�). Assume that x 2 DAtom(uk2K�k), but x 62 [k2KDAtom(�k). Since x can
be generated as glb of elements in [k2KDAtom(�k ), there exist k 2 K and y 2

DAtom(�k) (with y 6= >), such that x � y. For any k 2 K, DAtom(�k) � uk2K�k,
and therefore y 2 uk2K�k, which contradicts the fact that x was an atom.

This concludes the proof.

Let us now consider an example. Consider the domains for parity , sign, and
�1-interval analysis, respectively Parity, Sign, and Sign�1, for data-
ow analysis
of integer variables, depicted below. In Sign�1, which is a strict abstraction of the
Cousot and Cousot [1976; 1977] lattice of intervals later considered in Section 6, �1
represents the closed interval [�1; 1], while � �1 and � 1 represent the intervals
(�1;�1] and [1;+1), respectively. In the abstract domain Parity, od, and ev

represent the set of odd and even numbers, respectively. The concrete domain is
h}(ZZ);�i. By these identi�cations, the concretization and abstraction maps for
these domains are the obvious ones.
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Fig. 2. Sign�1 u Parity.

Sign�1 and Parity are dual-atomistic lattices, where both DAtom(Sign�1) =
f� �1;�1;� 1g and DAtom(Parity) = fod; evg are not comparable in }(ZZ).
Therefore, by Proposition 5.1.1, the reduced product Sign�1 u Parity depicted
in Figure 2 is a dual-atomistic lattice. It is worth noting that the reduced product
Sign�1 u Parity provides also a characterization for 0, which is h�1; evi. Because
of dual-atomicity, any element in Sign�1 u Parity can be represented as a set of
atoms in DAtom(Sign�1 ) [DAtom(Parity) = f��1;�1;�1; ev; odg. For exam-
ple, h+1; odi can be equivalently represented by the dual-atoms f�1;� 1g.

The condition in Proposition 5.1.1, specifying that dual-atoms of a conjunctive
decomposition have to be uncomparable, is essential to maintain dual-atomicity

by reduced product. Consider the domains Sign and Parity above. The domain
Sign is di�erent from that in Example 3.12, as it does not characterize possibly
null or negative (positive) values. Note that while Sign is clearly both atom-
istic and dual-atomistic, the domain C in Example 3.12 is neither atomistic nor
dual-atomistic. Note however that the sets of dual-atoms of Sign and Parity con-
tain comparable elements in }(ZZ). In this case, DAtom(Sign) = f+; 0;�g and
DAtom(Parity) = fev; odg, and 0 is contained in ev. Indeed, the reduced prod-
uct Sign u Parity, which is depicted in Figure 3, is not dual-atomistic, because
h0; evi cannot be constructed as meet of dual-atoms in DAtom(Sign u Parity) =
fh�;>i; h>; odi; h+;>i; h>; evig.

5.2 Domain Completeness

Traditionally, abstract interpretation is intended to create sound approximations of
concrete semantics (cf. Cousot and Cousot [1977]). If C is a concrete domain, and
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Fig. 3. Sign u Parity.

TP : C ! C is a monotone semantic operation for a program P , then the soundness
criterion for an abstraction given by a G.i. (
;D;C; �), and an abstract semantic

operator T ]P : D ! D, is � � TP �D T
]
P � �. This ensures that the least-�xpoint

abstract semantics lfp(T ]P ) approximates lfp(TP ), i.e., �(lfp(TP )) �D lfp(T ]P ) (cf.

Cousot and Cousot [1977]). Completeness is the dual relation T ]P � � �D � � TP .
Because soundness is required in most abstract interpretations, in the following
we abuse terminology and say that (
;D;C; �) and T ]P are complete w.r.t. TP if

� � TP = T
]
P � �.

Completeness is recurrent in the relations between (concrete) semantics of pro-
gramming languages at di�erent levels of abstraction (cf. Comini and Levi [1994],
Cousot and Cousot [1992b], and Giacobazzi [1996]). In the context of program
analysis, it has been studied by Cousot and Cousot [1977], Mycroft [1993], and

Cortesi et al. [1996]. This condition ensures that �(lfp(TP )) = lfp(T
]
P ). Hence, in

analysis, complete abstract interpretations represent, in a sense, an ideal situation,
where no loss of precision is introduced in the analysis by using abstract operations.
Completeness can be made a property of domains, by making this notion inde-

pendent on the choice for T
]
P . It is well known [Cousot and Cousot 1977; 1979]

that, given a concrete semantic operation TP , any G.i. naturally de�nes an ab-
stract semantic operation for TP , which is its best correct approximation in D, viz.,
� � TP � 
. Hence, because 
 is always a 1-1 function in a G.i., and by the corre-
spondence between G.i.'s and closure operators (see Section 2.3), we can de�ne a
notion of completeness for closure operators relatively to any monotonic function
as follows.

De�nition 5.2.1. Let C be a complete lattice and f : C ! C be a monotone
function. Then, � 2 uco(C) is complete w.r.t. f if � � f = � � f � �.

Example 5.2.2. The lattice C in Example 3.12 for sign analysis is complete with
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respect to integer multiplication. This proves that the rule of sign is complete (see
Mycroft [1993]).

Completeness can be veri�ed compositionally, by verifying it on the factors of
a domain decomposition. Let C be a complete lattice, and let f : C ! C be a
monotone function. De�ne �(f) = f� 2 uco(C) j � � f = � � f � �g as the set of
complete domains w.r.t. f .

Proposition 5.2.3. If f�igi2I � �(f) then ui2I�i 2 �(f).

Proof. Let f�igi2I � �(f). Then, by de�nition, for any i 2 I we have �i � f =
�i �f ��i. Let x 2 C. Clearly, by extensivity of closure operators, ^i2I�i(f(x)) �C

^i2I�i(f(^i2I�i(x))). Moreover, by monotonicitywe have ^i2I�i(f(^i2I�i(x))) �C

^i2I�i(f(�i(x))). By completeness, we have ^i2I�i(f(�i(x))) = ^i2I�i(f(x)).
Hence, ^i2I�i(f(x)) = ^i2I�i(f(^i2I�i(x))), which concludes the proof.

Clearly, both the straightforward abstractions given by the identity closure C
and the top closure f>Cg are complete. Hence, �(f) 2 uco(uco(C)).

6 IMPERATIVEPROGRAMMING:DECOMPOSING INTEGER INTERVALDOMAIN

In this section, we apply complementation to some abstractions of the standard
lattice of integer intervals, introduced by Cousot and Cousot [1976; 1977] as an
abstract domain for data-
ow analysis of (imperative) programs with variables as-
suming integer values. The lattice of integer intervals is particularly important
because it provides a typical example of abstract domain for analysis which is
meet-continuous, but it is neither distributive nor does it satisfy the ascending
chain condition.

6.1 Domains for Integer Variable Analysis

For simplicity, we consider a single integer variable to analyze (the generalization is
straightforward), and therefore the domain of concrete denotations is the powerset
of the integers, }(ZZ), ordered by subset inclusion.
The abstract domain I of integer intervals is de�ned as follows:

I = f[a; b] j a; b 2 ZZ; a � bg [ f(�1; b] j b 2 ZZg[

f[a;+1) j a 2 ZZg [ f(�1;+1)g [ f?g;

where the ordering � on ZZ is the natural ordering on the integer numbers. The
ordering relation �I on intervals is de�ned as follows:

|for any x 2 I, ? �I x �I (�1;+1),

|for any a; b; c; d 2 ZZ, [a; b] �I [c; d], c � a & b � d,

|for any b; d 2 ZZ, (�1; b] �I (�1; d], b � d,

|for any a; b; d 2 ZZ, [a; b] �I (�1; d], b � d,

|for any a; c 2 ZZ, [a;+1) �I [c;+1), c � a,

|for any a; b; c 2 ZZ, [a; b] �I [c;+1), c � a.

This domain I is depicted in Figure 4. Notice that the top element in I is the
interval (�1;+1). As pointed out in Cousot and Cousot [1977], it turns out that
hI;�Ii is a complete lattice.
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Fig. 4. The abstract domain I.

I enjoys a Galois insertion with h}(ZZ);�i, which is determined by the following
mappings:

�I(S) =

8>>>><
>>>>:

? if S = ;

[a; b] if min(S) = a and max (S) = b

(�1; b] if 6 9min(S) and max (S) = b

[a;+1) if min(S) = a and 6 9max (S)
(�1;+1) if 6 9min(S) and 6 9max (S);


I (x) =

8>>>><
>>>>:

; if x = ?

fz 2 ZZ j a � z � bg if x = [a; b]
fz 2 ZZ j z � bg if x = (�1; b]
fz 2 ZZ j a � zg if x = [a;+1)
ZZ if x = (�1;+1):

Cousot and Cousot [1977] introduced some abstractions of the domain of the
intervals. We recall these domains in Figure 5.
An abstraction of the intervals I is given by the domain ICS depicted in Figure 5.

This domain is obtained by identifying any integer number z by the interval [z; z],
the elements � and + by (-1,0] and [0,+1), respectively, and the element > by
(-1,+1). It is clear that ICS is an abstraction of I, since it corresponds to a Moore-
family of elements of I. ICS is an appropriate domain for constant propagation and
sign analysis.
A further abstraction of ICS , and hence of I, is given by the domain IC also
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Fig. 5. The abstract domains ICS, IC , and IS.

depicted in Figure 5. IC is clearly a Moore-family of elements of ICS and therefore
an abstraction of ICS .
Finally, a third abstraction of ICS , incomparable with IC , is the domain IS also

given in Figure 5. Also in this case, IS is obviously a Moore-family of ICS and
hence an abstraction of it.
The domain IC is the standard lattice for constant propagation analysis [Kam and

Ullman 1977; Kildall 1973], namely used to detect program expressions computing
the same value on all executions of the program, while IS is used for sign analysis
[Cousot and Cousot 1977]. ICS is an enrichment of both IC and IS . Indeed, it is
immediate to observe that ICS is exactly the reduced product of IC and IS .

Lemma 6.1.1. ICS = IC u IS .

6.2 The Complements

Evidently, the lattice of intervals I does not satisfy the ascending chain condition.
Moreover I is not distributive; in fact, (A_B) ^C di�ers from (A ^C)_ (B ^C),
with A = [�1;�1], B = [�1; 0], and C = [1; 1]. Nevertheless, complementation is
equally possible, since a simple direct inspection of the Hasse diagram of I reveals
that I is meet-continuous, and hence Theorem 3.6 is applicable. Thus, we can
compute the three complements I�ICS , I�IC , and I�IS . First, we will compute

I�IC and I�IS , and then I�ICS will be a simple consequence of these two.
The complement of constant propagation relative to intervals is somehow surpris-

ing; in fact, it turns out that this complement is precisely the lattice of intervals
itself.

Proposition 6.2.1. I�IC = I.

Proof. Trivially, IC u I = I. I � IC must contain the top (-1,+1). Also,
every proper interval (namely, each interval x such that j
I(x)j > 1) must belong
to I � IC , since the closure on I associated with the abstraction of IC maps each
of them into >. Consequently, I�IC contains clearly ? and each [z; z], for z 2 ZZ,
since every [z; z] is the meet of two proper intervals (viz., [z; z] = [z�1; z]^[z; z+1]).
Thus, we conclude that I�IC = I.

The complement of the sign domain IS relative to the interval domain I is given
by the Hasse diagram of Figure 6. Thus, the elements of this complement are
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Fig. 6. The complement I�IS .

exactly given by

I�IS = I n (f[z; 0] 2 I j z 2 ZZg [ f[0; z] 2 I j z 2 ZZg [ f(�1; 0]; [0;+1)g):

Hence, this domain I � IS is not able to represent those intervals having 0 as an
extreme. In this sense, I�IS captures interval information but not sign.

Proposition 6.2.2. I�IS is the domain depicted in Figure 6.

Proof. First of all, note that the domain of Figure 6, let us call it D, is indeed
an abstraction of I, being closed by glb. Also, IS uD = I: in fact, it is enough
to observe that each element [z; 0], for -1 < z �-1, can be obtained by reduced
product as [z; 0] = (-1; 0] ^ [z; 1] (analogously for each [0; z], for 1 � z < +1).
Finally, D is actually the complement I � IS . This follows because each element
of D must belong to I � IS ; otherwise there is no way to recover it by reduced
product.

Finally, we compute the complement of the domain ICS relative to the interval
lattice I. It turns out that this complement is precisely the above-computed I�IS ,
which is depicted in Figure 6.

Proposition 6.2.3. I�ICS = I�IS .

Proof. By Lemma 6.1.1, we know that ICS = IC u IS . Then, exploiting Propo-
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Table I. Basic Comportment Analysis BC

truth 
�!�(top) = D�!�

strictness 
�!�(str) = ff j f(?) = ?g

totality 
�!�(tot) = ff j 8x 2 D� n f?g: f(x) 6= ?g

identity 
�!�(ide) = ff j 8x 2 D�: f(x) = ? , x = ?g

divergence 
�!�(div) = ff j 8x 2 D�: f(x) = ?g

convergence 
�!�(con) = ff j 8x 2 D�: f(x) 6= ?g

falsity 
�!�(;) = ;

sition 3.11 parts (e) and (j) and Proposition 6.2.1, we get the following equalities:

I�ICS = I� (IC u IS )
= I� (I� ((I�IC) t (I�IS)))
= I� (I� (I t (I�IS)))
= I� (I� (I� (I�IS )))
= I�IS :

This concludes the proof.

7 FUNCTIONAL PROGRAMMING: DECOMPOSING COMPORTMENTS

In this application, we consider complements relative to the lattice of comportment

analysis, designed by Cousot and Cousot [1994] in order to generalize Mycroft's
strictness and termination analysis [Mycroft 1980; 1981], Wadler and Hughes' pro-
jection analysis [Wadler and Hughes 1987], and Hunt's PER analysis [Hunt 1990].
This provides a decomposition of the lattice of comportments into sensible factors,
which gives a better comprehension of its structure.
The comportment analysis applies to higher-order monomorphically typed lazy

functional programming languages. To illustrate Cousot and Cousot's comportment
analysis, we consider abstract interpretation of a simply typed lambda calculus with
basic types �. Denote D� the domain of values of a type � , and by ? its bottom
element. For simplicity, we consider abstractions of functional basic types � ! �

(i.e., elements in D�!� = D� ! D� , the lattice of total continuous functions from
D� to D� ordered pointwise). The following abstract domain BC represents the
lattice of basic comportment analysis, ordered with respect to the approximation
order, for function basic types � ! �.

�

� �

�

tot

top

str
ide
HH

HH
��

��
HH

HH

��
��

�

� �

HH
HH

��
��

;

div con

Basic comportments BC

The meaning of basic comportments in BC is given in Table I, in terms of a con-
cretization function 
�!� mapping basic comportments into }(D�!� ), the concrete
domain of the standard collecting semantics.



Complementation in Abstract Interpretation � 27

It is easy to verify that both the standard Mycroft strictness S and termination T
analyses are actually abstract interpretations of BC, yielding the following simpler
domains, respectively:

�

�

�

div

str

top

Strictness S

�

�

�

con

tot

top

Termination T

By an inspection of the lattice of basic comportments BC , we notice that the com-
plement of the strictness (termination) domain relative to BC is the termination
(strictness) analysis.

Proposition 7.1. BC�S = T and BC�T = S

Proof. Note that BC is a �nite lattice. Hence, by the iterative method in
Section 3.1 applied to BC�S, we get X0 = ftopg, X1 = ftop; totg, and X2 = X3 =
ftop; tot; cong = T . The proof for BC�T is analogous.

Hence, by Lemma 4.6, hS; T i is a minimal decomposition for the lattice of basic
comportments. In particular, the identity information ide as well as ; can be both
constructed by conjunction of strictness and termination values (str and tot for ide
and div and con for ;). Therefore, the lattice of basic comportments BC is precisely
the reduced product of strictness and termination. As we will show later on, in
this example the identity information will be always de�nable as the conjunction of
factors involving strictness information (i.e., in factorizations of analysis involving
strictness, such as strictness or projection analysis), even though the lattice of
comportments will be lifted at a powerset level.
As proved by Cousot and Cousot [1994], more precise comportment properties

for higher-order functional languages can be characterized by lifting the domain of
basic comportments to its disjunctive completion. Disjunctive completion is here
used to mimic the collecting semantics construction. Collecting semantics are de-
�ned by \collecting" in sets the possible output values corresponding to a given
set of possible input values, as de�ned by the standard semantics of the language.
Hence, in order to exploit sets of values, Cousot and Cousot considered a powerset
completion of the abstract domain, which corresponds, at the level of abstract do-
mains, to the collecting semantics construction. The abstraction of sets of functions
in D�!� yields a corresponding abstract domain for comportments which can be
systematically derived by reduction of a powerset completion of the lattice of basic
comportments BC. In this case, the meaning of sets 	 of basic comportments is
given by a concretization function 
} such that 
}(	) = [f
�!�( ) j  2 	g.
The following lattice C, ordered by the approximation order, corresponds precisely
to this (disjunctive) comportment analysis. It is obtained by (e.g., antichain) pow-
erset completion and reduction (viz., sets of basic comportments denoting the same
object in }(D�!� ) are identi�ed). The new element abs corresponds here to the
set of basic comportments fcon; divg and represents absence.
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Comportments C

As shown in Cousot and Cousot [1994], this lattice generalizes projection P and
dual-projection DP depicted respectively below, as well as the above strictness S
and termination T analyses (in the latter case, the concretization in C of an element
x is the singleton fxg).
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Dual-projection DP

Some interesting properties of comportment analysis can be studied by looking
at the complements of projection, dual-projection, strictness, and termination in C.

Proposition 7.2.

(1 ) C�P = fftopg; ftot; divg; ftotgg,

(2 ) C�S = fftopg; ftot; divg; ftotg; abs; fcongg, and

(3 ) C�T = C�DP = fftopg; ftot; divg; fstrg; abs; fide; divg; fdivgg.

Proof. We only include the proof for

C�T = C�DP = fftopg; ftot; divg; fstrg; abs; fide; divg; fdivgg

since the other proofs are similar. Because C is a �nite domain, by applying the
iterative method in Section 3.1, we obtain

|X0 = fftopgg,

|X1 = fftopg; ftot; divg; fstrg; fide; divgg, and

|X2 = X3 = fftopg; ftot; divg; fstrg; fide; divg; abs; fdivgg.
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The equality C � T = C � DP is a consequence of the fact that fdivg is always
obtained by combining the maximal elements abs and fide; divg which are both
neither included in T , nor in DP .

The complements C�P, C�S, and C�T are depicted below.
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C�T = C�DP

Note that C�P characterizes possible divergence in total functions. This domain
factorizes C, where in particular the (disjunctive) identity information, i.e., fideg
and fide; divg, as well as the convergence fcong can be reconstructed by reduced
product involving C � P and P. The identity and convergence information is
therefore redundant for the decomposition hP; C�Pi. C�S is a domain for totality
analysis. This domain characterizes precisely the nonstrictness comportments. It
is worth noting that also in this case the identity information, as well as ;, can be
reconstructed by composing C � S with strictness, and it is therefore redundant.
As observed in Proposition 7.2, C � T = C � DP . This domain characterizes
exactly the nonterminating (or divergent) comportments. Note that both hP; C �
Pi and hS; C � Si provide binary decompositions of the lattice of comportments,
which are strictly space better than hT ; C�T i. A domain for nonterminating and
nonstrictness comportments can be further obtained as the complement of strictness
relative to C�T , or equivalently as the complement of termination relative to C�S,
i.e., (C � S)�T = (C � T )�S = (C �DP)�S, as depicted below. We omit the
proofs for this complement, since it is similar to that in Proposition 7.2.

ftot; divg

ftopg

abs
�

�

�

(C�S)�T = (C�T )�S = (C�DP)�S

Note that hS; T ; (C�S)�T i is a decomposition for the lattice of comportments
C. Hence, by iterating complementation of these factors, by Proposition 4.7, we get
the following minimal decomposition for C.

Proposition 7.3. hfftopg; fstrgg; fftopg; ftotgg; fftopg; ftot; divg; absgi is a

minimal decomposition for C.
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Proof. We iterate the application of complementation, as suggested in Propo-
sition 4.7, to the input decomposition hS; T ; (C�S)�T i. It is worth noting that
((C � S) � T ) u T = (C � S), and because (C � S) � T = (C � T ) � S, then
((C�S)�T ) u S = (C�T ). Moreover, by Proposition 7.1, S u T = BC . Hence, by
applying the iterative method in Section 3.1, we get

C� (C�S): X0 = fftopgg, X1 = fftopg; fstrgg, which is a �xpoint;

C� (C�T ): X0 = fftopgg, X1 = fftopg; ftotgg, which is a �xpoint;

C�BC : X0 = fftopgg, X1 = fftopg; ftot; divgg, X2 = fftopg; ftot; divg; absg

which is a �xpoint. Hence, C�BC = (C�S)�T .

The proof follows by Proposition 4.7.

Therefore, the whole domain of comportments C can be represented, more con-
cisely, by the following decomposition:

hfftopg; fstrgg; fftopg; ftotgg;fftopg;ftot; divg; absgi

which is just a tuple of chains, corresponding to the data structure below.

�
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�

�
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@

The above decomposition shows the logical relation between comportment and
strictness and termination analysis in abstract interpretation of functional lan-
guages. The following diagram summarizes the relation (in uco(C)) between some
of the complements obtained above, involving strictness and termination only.

�
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As far as dual-projection is concerned, we have shown that the comportment anal-
ysis cannot be obtained as the reduced product of projection and dual-projection,
because the elements ftot; divg and fide; divg cannot be reconstructed. Indeed,
C�P is not comparable (as abstract interpretation) with DP . However, note that
C = P u DP u (C�P) may provide an alternative decomposition of the domain of
comportments. Finally, the factorization of the domain of basic comportments into
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the pair hS; T i proves that the domain of comportments is indeed (isomorphic to)
the space of all relations between strictness and termination (at least for the case
of the functional basic types). This clari�es the relationship between the domain
of comportments and the domains for termination and strictness analysis.

8 LOGIC PROGRAMMING: A DECOMPOSITION FOR SHARING

In this section, we apply complementation to the case of Sharing , a well-known
domain for variable aliasing and groundness analysis of logic programs introduced
by Jacobs and Langen [1989; 1992]. In Cortesi et al. [1992], it has been shown that
Sharing represents, in addition to variable sharing, ground dependency. We prove
that Sharing enjoys a Galois insertion (not only a Galois connection as proved
in Cortesi et al. [1992]) with the domain Def [Marriott and S�ndergaard 1993].
Further, we investigate what is left of Sharing once we remove Def , i.e., the com-
plement of Def with respect to Sharing . This domain, on the one hand, must
represent variable independency and sharing and, on the other hand, must disre-
gard ground dependency. We show that such a domain is characterized by a simple
closure operator on Sharing.

8.1 Notation on Substitutions

Let Var be a countable set of variables x; y; z; . . ., and let A be an alphabet of
constant and function symbols. A substitution � on (A;Var) is a function mapping
each x 2 Var to a term �(x) built on the variables of Var and on the symbols of
A, and such that �(x) 6= x holds only for a �nite number of variables x. We denote
a substitution by the list of its nontrivial bindings, i.e., � = fx=�(x) j �(x) 6= xg.
Given a term t, we denote by var(t) the set of variables which occur in t. Given
two substitutions � and �, the composition ��� is de�ned as the substitution which
maps each x into �(�(x)), where �(t) is the term obtained from t by replacing each
y 2 var(t) by �(y). A substitution � is idempotent if � � � = �. We denote by
Subst the set of idempotent substitutions. It is possible to de�ne the relation �
of instantiation on Subst (actually a preorder) in the usual way: if �; � 2 Subst

then � � � i� there exists a substitution � (possibly nonidempotent) such that
� = � � �. In this case, we say that � is an instance of �. The set of all instances of
� is denoted by ��. The concrete domain of computation of a logic program is the
set }(Subst) ordered by set inclusion. In the following, we illustrate the domains
Sharing and Def as abstractions of }(Subst) with respect to a given �nite set of
variables of interest VI � Var .

8.2 The Domain Sharing

The abstract domain Sharing is de�ned as the set

fS � }(VI ) j S 6= ; ) ; 2 Sg

ordered with respect to set inclusion. For instance, if VI= fx; yg, then Sharing is
the domain illustrated in Figure 7.
Jacobs and Langen [1989; 1992] proved that Sharing enjoys a Galois insertion into

the concrete domain }(Subst). We recall brie
y the construction of the mappings.
For x 2 Var and � 2 Subst , let share(�; x) be the set of variables of interest whose
images under � contain the variable x, i.e., share(�; x) = fy 2 VI j x 2 var(�(y))g.
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Fig. 7. The domains Sharing and Def for VI=fx; yg.

The abstraction and concretization functions between }(Subst) and Sharing are
then de�ned as follows. For � 2 }(Subst) and S 2 Sharing

�Sharing(�) = fshare(�; x) j � 2 �; x 2 Varg;


Sharing(S) = f� 2 Subst j �Sharing(f�g) � Sg:

Intuitively, �Sharing extracts the sharing information from substitutions, i.e., for
a substitution �, we have that y1; y2; . . . share under � (i.e., their images under �
share a variable) i� there exists A 2 �Sharing(f�g) such that y1; y2; . . . 2 A. As a
particular case, we obtain also the ground information: y is ground in � (i.e., its
image under � is a ground term) i� for every A 2 �Sharing(f�g), y 62 A.
For example, let VI = fx; y; z; wg, and consider the set f;; fwg; fy; z; wgg 2

Sharing . This set represents the substitutions under which x is ground and y, z,
and w may share. In particular, �1 = fx=a; y=b; z=cg and �2 = fx=b; y=v; z=v; w=vg

(where a; b; c are constant symbols and where v is a variable) satisfy these properties.
Therefore, f�1; �2g � 
Sharing(f;; fwg; fy; z; wgg).

8.3 The Domain Def

The domain Def was introduced by Marriott and S�ndergaard [1993] to analyze
the ground dependencies induced by substitutions on a given set of variables of
interest VI . We recall brie
y its construction.

Assume thatVI = fx1; . . . ; xng. Given the Boolean domainB = ftrue; falseg, we
say that the Boolean function f : Bn ! B is positive i� f(true;. . . ; true) = true.
Given an interpretation m : VI ! B, and an n-ary boolean function f , we say
that m is a model of f (notation m j= f) i� f(m(x1);. . . ;m(xn)) = true. By
Models(f) we denote the set of models of a given f . We also say that f validates

f 0 (notation f j= f 0) i� all the models of f are models also of f 0. Given two
interpretations m1;m2, the conjunction m1 ^m2 is the pointwise extension of the
logical conjunction, i.e., 8x: (m1 ^ m2)(x) = m1(x) ^ m2(x). We will represent
an interpretation also as a set a variables, i.e., the set of elements of VI which
are mapped into true. For instance, fx; yg represents the interpretation which
assigns true to x and y and false to all the other variables of VI . Clearly, in this
representation conjunction corresponds to set intersection.
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The domain Def consists of all positive n-ary Boolean functions whose models
are closed under model conjunction, plus the bottom element false (the constant
function which always returns false), ordered by j=.

Obviously, n-ary Boolean functions can be represented by means of propositional
formulae on VI .2 It is possible to show that each formula of Def is equivalent to
false or to a conjunction of de�nite (propositional) clauses. It turns out that Def
is a (�nite) lattice (e.g., Armstrong et al. [1994]), where the glb is simply logical
conjunction, while the lub is f1 _Def f2 = ^ff 2 Def j f1 j= f and f2 j= fg. For
VI = fx; yg, Def is depicted in Figure 7.
We now recall the Galois insertion of Def into }(Subst). For � 2 Subst the

formula that expresses the ground dependencies of � is

gdep(�) = 9
V I
: ^ fx$ ^var(�(x)) j �(x) 6= xg

where 9VI is the existential quanti�cation over the variables of noninterest, i.e., the
variables in V ar nVI . The interpretation which speci�es which variables in VI are
bound by � to ground terms, and which are not, is

ground (�) = fx 2 VI j var(�(x)) = ;g:

The abstraction and concretization maps are as follows [Marriott and S�ndergaard
1993]. For any � 2 }(Subst) and f 2 Def

�Def (�) = _Def fgdep(�) j � 2 �g;

Def (f) = f� 2 Subst j 8�0 � �: ground (�0) j= fg:

These two mappings form a Galois insertion of Def into }(Subst) [Armstrong et al.
1994; Marriott and S�ndergaard 1993].
As an example, assume VI=fx; y; z; wg. The formula x ^ (y $ z) is an element

of Def that represents the substitutions � such that for any instance �0 of � the
following conditions hold: the term �0(x) is ground, and �0(y) is ground i� also
�0(z) is ground. In particular, �1 = fx=a; y=b; z=cg and �2 = fx=a; y=v; z=v; w=ug

satisfy these properties. Thus, f�1; �2g � 
Def (x ^ (y $ z)).

The following result relates a substitution with its abstraction in Def . It will be
useful later.

Lemma 8.3.1. For any � 2 Subst, Models(�Def (f�g))=fground(�
0)j�0 2 ��g:

Proof. The � inclusion follows by de�nition of �Def . For the other direction, we
show that for any m 2Models(�Def (f�g)), there exists a substitution �m = ��� 2

�� such that ground(�m) = m. Since m j= 9
V I
: ^ fx$ ^var(�(x)) j �(x) 6= xg,

there exists m0 that extends m on all the variables in � (also those not in V I), such
that m0 j= ^fx$ ^var(�(x)) j �(x) 6= xg. Using m0 we de�ne � as follows:

8x 2 V ar: �(x) =

�
a if x 2 m0

x otherwise.

2The formulae of propositional logic de�ned by taking as propositional variables the elements of

VI (see also Armstrong et al. [1994] and Marriott and S�ndergaard [1993]).
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It is easy to see that for any x 2 V ar, �m(x) is ground , x 2 m0. In fact

�m(x) is ground , �(�(x)) is ground
, m0 � V ar(�(x))
, x 2 m0 (since m0 j= x$ ^V ar(�(x))):

It su�ces now to observe that ground(�m) = m0 \ V I = m.

By this lemma, the following fact about the abstraction in Def of sets of sub-
stitutions is immediate. Here, the following notation is used: if A is any set and
X � }(A), then cli(X) is the least superset of X that is closed under intersection
of its elements.

Corollary 8.3.2. For any � � Subst,

�Def (�) = cli(fground(�0) j �0 2 ��; � 2 �g):

8.4 Relation between Def and Sharing

In Cortesi et al. [1992], it has been shown that there is a Galois connection between
Def and Sharing. We prove here something more, namely the existence of a Galois
insertion.
The abstraction function which maps an element S of Sharing into a formula of

Def capturing its ground dependency information is de�ned as follows:

�(S) = f; such that Models(f) = f[B j B 6= ; and B � Sg;

where [B is the set-theoretic complement of [B with respect to VI, i.e., [B =
VI n [B. It is not di�cult to see that, according to the above de�nition, � is well-
de�ned, i.e., �(S) 2 Def for all S 2 Sharing . In fact, Y = f[B j B 6= ; and B � Sg

is closed under intersection (i.e., conjunction of models):

8m1 = [B1;m2 = [B2 2 Y: m1 \m2 = [(B1 [B2) 2 Y:

For instance, if VI = fx; y; z; wg and S = f;; fx; yg; fx; zgg, then �(S) is the
formula in Def with the following models:

f;g � S
gives the model

�! fx; y; z; wg

ffx; ygg � S
gives the model

�! fz; wg

ffx; zgg � S
gives the model

�! fy; wg

ffx; yg; fx; zgg � S
gives the model

�! fwg:

From this, one sees that �(S) = w ^ (x$ (y ^ z)), which expresses that for every
� 2 
Sharing(S) the variable w is ground in �, and x is ground in � i� also y and z
are ground in �. Also observe that �(;) = false.
In Cortesi et al. [1992], an abstraction function from Sharing to Def was given

that looks di�erent from the � described above. However, it is easy to show that
the two functions coincide. The abstraction map C was given as follows:

C(S) =

�
false if S = ;

^f^W ! x j fxg;W � V I; 8A 2 S: x 2 A)W \A 6= ;g otherwise.

Lemma 8.4.1. C = �.
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Proof. The case of S = ; is trivial. It is easy to see that 8S 2 Sharing n

f;g: �(S) j= C(S): assume that m is a model of �(S) and that m 6j= C(S). Then,
there is a de�nite formula ^W ! x implied by C(S) such that W � m and x 62 m.
Since m = [X , for some X � S, this means that there is A 2 X (and thus in
S) such that x 2 A and W \ A = ;, but this contradicts the hypothesis that
C(S) j= ^W ! x.
For the other direction, assume that there is a model m of C(S) that is not a

model of �(S). Let X = fA 2 S j A � mg. By the hypothesis that m 6j= �(S),
it must be that [X � m, and thus there exists y 2 [X n m. It is obvious that
m 6j= ^m ! y. We will now show that C(S) j= ^m ! y, �nding a contradiction.
To this end, it su�ces to observe that all A 2 S such that A\m = ; are in X, and
thus, since y 2 [X, y is in none of these sets.

The concretization function from Def into Sharing , adjoint to �, is de�ned as
follows:


(f) = fm � VI j m j= fg:

The functions � and 
 are obviously monotonic. Indeed, they form a Galois
insertion.

Theorem 8.4.2. � and 
 form a Galois insertion of Def into Sharing.

Proof. We show the following points: (i) 8S 2 Sharing : S � 
(�(S)); (ii) 8f 2
Def : f = �(
(f)).

(i) If A 2 S 2 Sharing , by de�nition of �, A j= �(S), and thus, by de�nition of 
,
A 2 
(�(S)).

(ii) It su�ces to observe that, since each formula f 2 Def has its set of models
closed under intersection, 
(f) is an element of Sharing closed under union.
From this and the de�nition of �, the desired relation follows.

This concludes the proof.

The domain Def can therefore be represented as the closure operator 
 � � on
Sharing. From the proof of the above theorem, it will not be surprising that this
closure operator is as follows.

Lemma 8.4.3. The closure operator 
 � � is the function that, for any S 2

Sharing, gives the closure of S under set union. Formally, 
 � � = clu, where

clu(S) = fA j 9A1; . . . ; An 2 S: A = A1 [ . . .[Ang:

We show now that this insertion of Def into Sharing is coherent with the inser-
tions of Sharing into }(Subst), and of Def into }(Subst). More precisely, we show
that �Def = � � �Sharing and that 
Def = 
Sharing � 
. The following lemma is
useful for this purpose. It is interesting to observe the similarity of this result with
Lemma 8.3.1 and Corollary 8.3.2.

Lemma 8.4.4. Let � � Subst and �Sharing(�) = S. Then,

cli(fground(�0) j �0 2 ��; � 2 �g) = f[X j X � Sg:
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Proof.

(�). Let �0 2 �� and � 2 �. We de�ne

X = fshare(�; y) j y 2 V ar; var(�0(y)) 6= ;g:

We want to show that ground(�0) = [X: If �0(y) is not ground, then all the
variables x in share(�; y) are not ground in �0, i.e., var(�0(x)) contains var(�0(y));
conversly, if x 62 [X, then all variables in var(�(x)) are made ground by �0, and
thus x is also ground in �0. Let us consider now two substitutions �1 and �2 that are
instances of (possibly distinct) substitutions in �. By the above argument, there are
Xi � S; i = 1; 2; such that ground(�i) = [Xi; from this, ground(�1)\ground(�2) =
[(X1 [X2).

(�). By the argument just used, it su�ces to show the following:

8A 2 S:9� 2 �; �0 2 ��: ground(�
0) = A:

By de�nition of �Sharing, there must be y 2 V ar and � 2 � such that A =
share(�; y). The desired instance of � is �0 = � � �, with � as follows:

8x 2 V ar: �(x) =

�
a if share(�; x) 6= share(�; y);
x otherwise.

It is easy to see that ground(�0) = A.

This concludes the proof.

We can now prove the coherency of � and 
.

Theorem 8.4.5. �Def = � � �Sharing and 
Def = 
Sharing � 
.

Proof. Since the composition of Galois insertions produces a Galois insertion
[Cousot and Cousot 1992a], � ��Sharing and 
Sharing � 
 form a Galois insertion of
Def into }(Subst). From this and the well-known fact that in a Galois insertion
one of the two functions uniquely determines the other one [Cousot and Cousot
1992a], it su�ces to show only one of the two relations in order to prove the other
one too. We will show that �Def = � � �Sharing. For any � 2 }(Subst),

�Def (�) = cli(fground(�0) j �0 2 ��; � 2 �g) (by Corollary 8:3:2)

= f[X j X � �Sharing(�)g (by Lemma 8:4:4)
= �(�Sharing(�)) (by de�nition of �):

This concludes the proof.

As a consequence of previous results, we get the following corollary.

Corollary 8.4.6.

(i) � = �Def � 
Sharing ;

(ii) 
 = �Sharing � 
Def .

Proof. (i): From �Def = � � �Sharing, shown in Theorem 8.4.5, one obtains,
composing both sides with 
Sharing,

�Def � 
Sharing = � � �Sharing � 
Sharing:

It su�ces now to observe that �Sharing � 
Sharing is the identity, because the two
functions form a Galois insertion. Point (ii) is shown similarly.
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8.5 Sharing+: The Complement of Def w.r.t. Sharing

In previous sections, we have shown that Def corresponds to the closure operator
clu on Sharing , where for any S 2 Sharing , clu(S) is the closure of S under set
union. We now compute the complement of Def with respect to Sharing by using
the methodology illustrated in Section 3.1. We will call such a domain Sharing+.
In the following, we will use the representation of Def as (the set of �xpoints of)
clu, i.e., Def = fS 2 Sharing j S = clu(S)g.
We construct a chainX0; X1; X2; . . . of subsets of Sharing following the de�nitions

in Section 3.1. According to such de�nitions, we have that

X0 = f}(VI )g:

In order to construct X1, consider the set X = maxs(Sharing nDef ). The set X1

is de�ned as the closure of X0 [ X under the glb on Sharing, namely under set
intersection. Let us analyze X. For each S 2 X, S is not closed under set union
(otherwise S 2 Def ), and there exists only a nonempty set A � VI such that
A 62 S, i.e., S = }(V I) n fAg with A 6= ; (otherwise S would not be maximal).
Furthermore, since S is not closed under union, A cannot be a singleton. Hence,
we have

X = f}(VI ) n fAg j A � VI and jAj � 2g:

Observe now that every element of Sharing which contains the empty set and all
singletons of VI either is }(VI ), or it can be obtained by set intersection of suitable
elements of X. If we de�ne singletons(VI ) = ffxg j x 2 VIg, we therefore have

X1 = fS 2 Sharing j singletons(VI ) � Sg:

We show now that the closure of X1 [ Def under set intersection coincides with
Sharing, which implies that we have already reached the limit of the construction,
i.e., X2 = X1. Let S 2 Sharing . If S = ; then S 2 Def . Otherwise, observe that
S [ singletons(VI ) 2 X1, clu(S) 2 Def , and

(S [ singletons(VI )) \ clu(S) = (S \ clu(S)) [ (singletons(VI ) \ clu(S))
= S [ (singletons(VI ) \ S)
= S:

We can therefore conclude that X2 = X1. Thus, de�ning

Sharing+ = fS 2 Sharing j singletons(VI ) � Sg

we have proved the following theorem.

Theorem 8.5.1. Sharing�Def = Sharing+.

The closure operator on Sharing corresponding to Sharing
+ is, of course, the

closure under union with singletons(VI ). Formally, denoting such operator by cls,
we have cls(S) = S [ singletons(VI ): For instance, if VI=fx; yg, then Sharing+ is
the simple domain depicted below.

f;;fxg; fyg;fx; ygg

f;;fxg; fygg
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Let us try to interpret this result. If a set S 2 Sharing contains the singleton fxg,
then S gives no ground dependency information concerning x, i.e., it represents all
those substitutions where the groundness of x does not depend on the groundness
of any other variable in VI. Thus, the presence of singletons prevents expressing
ground dependencies. This intuition is con�rmed by the easy observation that for
any S 2 Sharing

+, �(S) = true. Apart from the ground dependencies, however,
for S 2 Sharing , all S0 such that S n singletons(VI ) � S0 � S [ singletons(VI ) do
provide the same sharing information as S. This is because for any y; z 2 VI and
any substitution �, the fact that y and z share under � is represented in Sharing

by a set of cardinality at least two. These observations are coherent with the fact
that Sharing+ is what remains of Sharing once Def is removed from it.

9 RELATED AND FURTHER WORK

In this article, we have introduced the notion of complementation in abstract in-
terpretation. Although our interest in this work is mainly concerned with abstract
interpretation for program analysis, the same notion of complementation can be
applied in any �eld where abstract interpretation theory is used. In particular,
complementation can also be used for semantics related by abstract interpreta-
tion. Cousot and Cousot [1992b] proved that abstract interpretation can be used
to systematically design hierarchies of semantics. In this case, both the standard
denotational and axiomatic semantics can be derived by abstract interpretation
of a generalized SOS operational semantics of the language. This technique has
been recently applied in logic programming in Comini and Levi [1994], and Gia-
cobazzi [1996], where hierarchies of collecting semantics are designed by abstracting
SLD resolution. The interest in complementation is therefore evident in this �eld.
Semantics, as well as analyses, can be composed and complemented, providing a
real algebra of observable properties and semantics of programming languages. A
preliminary report on this research is in Giacobazzi and Ranzato [1996].

Very recently, Fil�e and Ranzato [1996] have stated a new su�cient lattice-theore-
tic condition on the complete lattice L that guarantees the existence of pseudocom-
plements of closure operators on L. The relationship with the condition of meet-
continuity of L in Theorem 3.6 is, to the best of our knowledge, not yet known in
the lattice-theoretic literature. Also, Fil�e and Ranzato [1996] provided a practical
systematic methodology, based on standard lattice-theoretic notions, to compute
complements, having some analogy with that presented in Section 3.1. Further work
will be devoted to understand the precise relationship between the two approaches.
Another recent related work is in Marchiori [1996], where the author considers
decompositions of some domains for the analysis of logic programs characterized
by means of �rst-order formulae.
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