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1 Introduction

The semantics of logic programs is characterised by a variety of forms and
methods, ranging from the more traditional operational and denotational se-
mantics towards the more logic-based ones related with the view of the in-
terpreter as a theorem prover. Examples of this variety include the semantics
of predicate logic as a programming language in [1,2], the operational and
denotational semantics of Prolog [3–7], the logical models of Prolog con-
trol features [8–10], the (fixpoint) observational models in [11–19], and the so
called or-compositional models in [20–25], the last culminating in the so called
s-semantics approach to logic program semantics [26], which is comprehensive
of different observational semantics.

The essence in the study of comparative semantics in logic programming is
the attempt to capture the difference between the various aspects of logic as a
programming language, ranging from its view in theorem proving to its use in
concrete programming. Theorem proving corresponds to restricting programs
as theories of definite Horn clauses. In this context both a model-theoretic se-
mantics (unique Herbrand representative model) and a proof-procedure (e.g.
SLD resolution) are given [1,27]. Programming instead considers resolution
strategies and backtracking control mechanisms such as cut as essential parts
of the art of logic programming [28,29]. For these latter aspects, the model-
theoretic semantics is not adequate. This wide range of possible interpretation
for a logic program has led researchers to develop a number of different se-
mantics capturing specific aspects of logic as a programming language, from
operational (resolution-based) semantics to denotational, model-theoretic, etc.
Several attempts have been made in order to construct a comprehensive hierar-
chy of semantics [18], some of them using abstract interpretation for specifying
semantics at different levels of abstraction [30–33].

In this paper we develop a hierarchy of semantics for resolution-based lan-
guages by incremental abstractions of a maximal trace semantics. The trace
semantics is constructed by generalising transitional semantics of context-free
grammars akin push-down automata to resolution-based derivations of Horn-
like clauses. The result is a hierarchy of top-down and bottom-up semantics of
logic programs including as abstract interpretations most of the well-known
semantics: the partial correctness semantics, the success semantics, the ground
(Herbrand) models, the SLD-semantics, the breadth-first semantics and the
cut semantics. All semantics are derived as abstract interpretations, where
consecutive abstractions specify a Prolog interpreter modelling the different
observable properties of the program.
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2 Mathematical Notations

We let B , {true, false} be the Boolean truth values (∧ is conjunction, etc),
i, n, . . . ∈ N be the set of natural numbers λ, µ ∈ O be the class of ordinals
both with infimum 0 and natural ordering 6, 〈xi, i ∈ ∆〉 be the indexed family
of elements xi indexed by i ∈ ∆ which is a sequence when 〈∆, <〉 is totally
ordered with infimum (e.g. ∆ is N or O). The concatenation of sequences is
denoted by juxtaposition and 〈〈xij, j ∈ ∆2〉, i ∈ ∆1〉 is 〈xij, 〈i, j〉 ∈ ∆1×∆2〉
where ∆1 ×∆2 is totally ordered lexicographically.

3 Languages

Let A be an alphabet, that is a finite set of letters. A sentence σ ∈ A ? over
the alphabet A of length |σ| , n > 0 is a possibly empty finite sequence
σ1σ2 . . . σn of letters σ1, σ2, . . . , σn ∈ A . For n = 0, the empty sentence is
denoted ε of length |ε| = 0. A language Σ over the alphabet A is a set
of sentences Σ ∈ ℘(A ?). We represent concatenation by juxtaposition. It is
extended to languages as ΣΣ′ , {σσ′ | σ ∈ Σ ∧ σ′ ∈ Σ′}. Given a set P
, {[i | i ∈ ∆} ∪ {]i | i ∈ ∆} of matching parentheses and an alphabet A ,
the Dyck language DP,A ⊆ (P ∪ A )? over P and A is the set of well-
parenthesized sentences over P ∪A . In any sentence σ ∈ DP,A the number
of opening parentheses [i for i ∈ ∆ is equal to the number of matching closing
parentheses ]i while in any prefix of σ there are no fewer opening parentheses
than closing parentheses. A pure Dyck language has A = ∅. The parenthesized
language over P and A is PP,A , {[iσ]i | i ∈ ∆ ∧ σ ∈ DP,A \ {ε}}.

4 Syntax of Logic Programs

We let f be a set of function symbols f ∈ f, f/n ∈ f/n be the subset of
function symbols of arity n > 0 (unless otherwise stated f/0 6= ∅), v be
a set of variable symbols v ∈ v (such that f ∩ v = ∅), ~v ∈ ~v be possibly
empty sequences of variable symbols ~v = v1, . . . , vn, n > 0 (~ε being the empty
sequence of variables), t be the set of terms T, U, ... ∈ t built on f and v, p
be a set of predicate symbols p ∈ p (such that p ∩ v = ∅ and p ∩ f = ∅),
p/n ∈ p/n be the subset of predicate symbols of arity n > 0, A be a set of
atoms A,B ∈ A built on p and t, B ∈ B be possibly empty sequences of
atoms B = B1 . . . Bn, n > 0 (ε being the empty sequence of atoms), C ∈ C
, A × B be definite clauses of the form C = A ← B where the head A ∈ A
is an atom and the body B ∈ B is a sequence of atoms (B is empty for unit
clauses), P ∈ Pn , [0, n[ 7→ C be the set of all Prolog programs which are
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non-empty sequences of clauses P = P0...Pn−1 of length |P | = n > 1, P ,⋃
n>1 P

n be the set of all Prolog programs, L , ℘(C) \ {∅} be the set of
logic programs P ∈ L which are nonempty (unordered) sets of clauses, G ,
{p(v) | p ∈ p ∧ v ∈ v} be the set of most general atomic goals. There is
an obvious abstraction of a Prolog program P ∈ Pn into a logic program
αL(P ) , {P1, . . . , Pn} ∈ L which forgets about the ordering of clauses.
Example 1 The following Prolog program defines natural numbers (0 ∈
f/0, s ∈ f/1, n ∈ p/1 and x ∈ v).

0: n(0) ←
1: n(s(x)) ← n(x)

2

We let vars(e) be the set of variables of the syntactic expression e ∈ e. If E ∈
℘(e) is a set of syntactic expressions then ground(E ) , {e ∈ E | vars(e) = ∅}
is the subset of ground expressions. The subset of ground expressions in e is
written e , {e ∈ e | vars(e) = ∅}. For example t is the set of all ground
terms, A is the set of all ground atoms, etc.

5 Substitutions

A substitution ϑ, σ ∈ S is a map ϑ ∈ v 7→ t whose domain dom(ϑ) , {v ∈ v |
ϑ(v) 6= v} is finite. The result of applying a substitution ϑ to a term T is the
instance of T denoted ϑ(T ). We let inst(T ) , {ϑ(T ) | ϑ ∈ S} be the set of
instances of term T ∈ t and inst(T ) , ⋃{ϑ(T ) | ϑ ∈ S∧T ∈ T } be the set of
instances of a set T ∈ ℘(t) of terms. The empty substitution ε has dom(ε) =
∅. The range of substitution ϑ is rng(ϑ) , ⋃{vars(ϑ(v)) | v ∈ dom(ϑ)}. The
restriction of a substitution ϑ to the variables vars(e) of a syntactic expression
e is ϑ|e. The composition ϑ ◦ σ is λ v .ϑ(σ(v)). A substitution ϑ is idempotent
whenever ϑ ◦ ϑ = ϑ or equivalently dom(ϑ)∩ rng(ϑ) = ∅. We let S◦ be the set
of idempotent substitutions. A renaming ρ is a (non-idempotent) substitution
which has an inverse ρ−1 such that ρ−1 ◦ ρ = ρ ◦ ρ−1 = ε. The preorder � on
substitutions is ϑ � σ (σ “is more general than” ϑ) if and only if there exists
σ′ such that ϑ = σ′ ◦ σ. The corresponding equivalence relation is ϑ ' ϑ′ if
and only if ϑ � ϑ′ and ϑ′ � ϑ. [ϑ]' , {ϑ′ ∈ S | ϑ′ ' ϑ} is the equivalence class
of ϑ ∈ S. S /' , {[ϑ]' | ϑ ∈ S } is the set of equivalence classes of S ∈ ℘(S).
S◦/' is the set of idempotent substitutions considered up to renaming. 〈S◦/',
�〉 is a complete lattice [34]. It is a complete Heyting algebra when closed by
instantiation.

Similarly for terms T and T ′, T � T ′ (T ′ “is more general than” T or T “is an
instance of ” T ′) if and only if there exists a substitution ϑ such that ϑ(T ′) = T
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or equivalently inst(T ) ⊆ inst(T ′). The corresponding equivalence relation is
term renaming that is T ' T ′ if and only if T � T ′ and T ′ � T . T

∅
/' is the

set of equivalence classes [T ]', T ∈ T augmented with infimum ∅.

6 Unification

A substitution ϑ is a unifier of a set of terms T ∈ ℘(t) if and only if ∀T, T ′ ∈
T : ϑ(T ) = ϑ(T ′) in which case T is said to be unifiable. A unifiable set
of terms T has an idempotent most general unifier σ which is unique up to
renaming and we write mgu(T ) = {σ}. By convention, we let mgu(T ) , ∅
when T is not unifiable. This notion of unification with respect to a set of
terms is equivalent to unification with respect to a set of equations E ∈ E
of the form T = U with T, U ∈ t where E = {Ti = Ui | i ∈ ∆} is unifiable
if there exists a substitution ϑ such that ∀i ∈ ∆ : ϑ(Ti) ' ϑ(Ui) in which
case there exists a most general idempotent unifier mgu(E) of E , which is
unique up to renaming. The set of equations corresponding to a substitution
ϑ is E(ϑ) , {v = ϑ(v) | v ∈ dom(ϑ)}. The parallel composition of idempotent
substitutions ↑ ∈ S◦/' × S◦/' 7→ S◦/' is ϑ ↑ σ , mgu(E(ϑ) ∪ E(σ)) [34],
which corresponds to the least upper bound (lub) of classes of idempotent
substitutions.

7 Labelled Transition Systems

A labelled transition system is a quadruple 〈E , L , −→, I 〉 where E is a non-
empty set of states η, L is a non-empty set of labels `, −→ ∈ ℘(E ×L × E )
is the transition relation and I ⊆ E is the set of initial states ι. We write
η

`−→ η′ for 〈η, `, η′〉 ∈ −→ and η 6−→ for ∀η′ ∈ E : 〈η, `, η′〉 6∈ −→.

8 Traces and maximal derivations

8.1 Finite Traces

A finite trace θ ∈ Θ[n + 1] of length |θ| = n + 1, n > 0, has the form θ =
η0

`0−→ η1 . . . ηn−1
`n−1−−−→ ηn whence it is a pair θ = 〈θ, θ〉 where θ ∈ [0, n] 7→ E

is a nonempty finite sequence of states θi = ηi, i = 0, . . . , n and θ ∈ [0, n−1] 7→
L is a finite sequence of labels θj = `j, j = 0, . . . , n− 1 (which is the empty
sequence ε when |θ| = 1).
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A finite trace θ ∈Θ∗ is nonempty, finite, of any length so Θ∗ ,
⋃
n∈[1,+∞[ Θ[n].

The concatenation θ
`−→ θ′ of traces θ and θ′ through label ` is extended to

sets. We also need the junction of sets of traces Θ,Θ′ ∈ ℘(Θ), as follows

Θ ;Θ′ , {θ `−→ η
`′−→ θ′ | θ `−→ η ∈ Θ ∧ η′ `′−→ θ′ ∈ Θ′ ∧ η = η′} . (1)

8.2 Maximal Derivations

A derivation of the labelled transition system S = 〈E , L , −→, I 〉 is a trace
θ = η0

`0−→ η1 . . . ηk−1
`k−1−−−→ ηk . . . generated by the transition system S, that

is ∀i ∈ [0, |θ|[: ηi
`i−→ ηi+1.

By abuse of notation, a state η is assimilated to the derivation θ ∈ Θ[1]
such that θ0 = η and θ = ε, while a transition η

`−→ η′ is assimilated to the
derivation θ ∈Θ[2] such that θ0 = η, θ0 = ` and θ1 = η′.

A prefix derivation of S = 〈E , L , −→, I 〉 is a derivation of S starting with an
initial state η0 ∈ I . A suffix derivation of S is a derivation of S which is finite
of length n = |θ| and ending with an final state ∀η ∈ E : ∀` ∈ L : ¬(ηn `−→ η).
A maximal derivation of the labelled transition system S is both a prefix and
a suffix derivation of S.

9 Terminal Labelled Transition System of Prolog Programs

9.1 Labels and Parentheses

We let L , O ∪ C be the set of labels ` ∈ L where O , {L i:C/σ| i ∈
N ∧ C ∈ C ∧ σ ∈ S} is the set of opening parentheses while C , {i:C M | C ∈
C ∧ i ∈ N} is the set of closing parentheses. A matching pair of parentheses
L i:C/σ. . .i:C M delimits a derivation for the labelled clause i:C instantiated
by substitution σ.

9.2 Stacks

In the following we use the grammar LALR-based notation in [35] for sets of
clauses. We let stacks $ ∈ S , K + for a program P ∈ P be non-empty
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sequences of control states κ ∈ K , C�∪M which are either a clause state in
C� , {[i:A ← B�B′] | i:A ← BB′ ∈ P} specifying the control state of the
derivation (B has been derived while B′ is still to be derived) or a marker M
= {[` A], [a2] | A ∈ A} where [` A] is the initial stack marker while [a2] is
the final empty stack marker for the beginning (resp. the end) of a derivation
for the initial question A ∈ A. The height of a stack $ is its length |$|.

9.3 States

We let states η ∈ E ,S ×S be pairs η =〈$, ϑ〉 of a stack$ and a substitution
ϑ. The stack $ specifies a return point, i.e., the corresponding clauses, after
a procedure call for a clause while the substitution ϑ is returned by the call.

9.4 Prolog Labelled Transition System

Given a Prolog program P ∈ P, we define a concrete labelled transition
system StJP K , 〈E , L , −→t, I 〉 (akin to the Warren machine [36,37]). The
set of initial states is I , {〈[` A], ϑ〉 | A ∈ A ∧ ϑ ∈ S} where 〈[` A], ϑ〉
specifies the goal ϑ(A) (most often ϑ is chosen as the empty substitution ε) 1 .
Let i:A← B A P means that i:A← B is a clause of the Prolog program P
renamed/standardized apart using fresh variables [38]. The labelled transition
relation `−→t, ` ∈ L is

〈[` A], ϑ〉
Li:A′←B/σ
−−−−−−−−→t 〈[a2][i:A′ ← �B], ϑ′〉

if i:A′ ← B A P , σ ∈ mgu(ϑ(A), A′), ϑ′ ∈ σ ↑ ϑ (2)

〈$[i:A← B�BB′], ϑ〉
Lj:B′←B′′/σ
−−−−−−−−−→t 〈$[i:A← BB�B′][j:B′ ← �B′′], ϑ′〉

if i:A← BBB′, j:B′ ← B′′ A P , σ ∈ mgu(ϑ(B), B′), ϑ′ ∈ σ ↑ ϑ (3)

〈$[i:A← B�], ϑ〉
i:A←B M
−−−−−−→t 〈$, ϑ〉 if i:A← B A P . (4)

Examples of transitions `−→t are given in Ex. 2 below.

The intuition of (2) is that the goal ϑ(A) is unified with the head A′ of the
renamed apart clause i:A′ ← B of the Prolog program by the most general
substitution σ and so it remains to prove σ ↑ ϑ(B) so [i:A′ ← �B] is pushed
on the stack and σ ↑ ϑ is recorded in the state. In particular for the empty

1 A conjunction of goals can be handled by adding a clause to the program.
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substitution 〈[` A], ε〉
Li:A′←B/σ
−−−−−−−−→t 〈[a2][i:A′ ← �B], σ〉 and it remains to

prove σ(B).

If and when the proof succeeds, the final marker [a2] on the stack will indicate
that the proof is finished while the substitution ϑ′′ in the final state 〈[a2], ϑ′′〉
will be the answer substitution.

The intuition of (3) is that the subgoal ϑ(B) is unified with the head B′ of
the renamed apart clause j:B′ ← B′′ of the Prolog program by the most
general substitution σ and so it remains first to prove σ ↑ ϑ(B′′) so [j:B′ ←
�B′′] is pushed on the stack and σ ↑ ϑ is recorded in the state, and second to
prove B′ as indicated by the control state [i:A ← BB�B′] on the stack and
finally to terminate the proof as indicated by the bottom $ of the stack.

The intuition of (4) is that the proof of B is finished and so the proof goes on
as indicated by the bottom $ of the stack.

The final states are either

• answer substitution states in E AS , {〈[a2], ϑ〉 | ϑ ∈ S} for successful traces,
or
• finite failure states in E FF , {〈$[i:A ← B�BB′], ϑ〉 | ∀j:B′ ← B′′ A P :

mgu(ϑ(B), B′) = ∅} for failing traces.

10 Most General Maximal Terminal Derivation Semantics of Logic
Programs

10.1 Maximal Derivations of Logic Programs

The maximal derivations of a Prolog program P ∈ P are traces for the
transition system StJP K , 〈E , L , −→t, I 〉, as defined in Sec. 8.2.

Example 2 A maximal derivation for the ground goal n(s(s(0))) (the encod-
ing of the natural number 2) as defined by the Prolog program of Ex. 1
is:

〈[` n(s(s(0)))], ε〉 Hinitial stateI
L1:n(s(x))←n(x)/{x←s(0)}
−−−−−−−−−−−−−−−−−−→t Hby (2)I

〈[a2][1:n(s(x))← �n(x)], {x← s(0)}〉
L1:n(s(x′))←n(x′)/{x′←0}
−−−−−−−−−−−−−−−−−−→t Hby (3)I
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〈[a2][1:n(s(x))← n(x)�][1:n(s(x′))← �n(x′)], {x← s(0), x′ ← 0}〉
L0:n(0)←/ε
−−−−−−−−→t Hby (3)I

〈[a2][1:n(s(x))← n(x)�][1:n(s(x′))← n(x′)�][0:n(0)← �],

{x← s(0), x′ ← 0}〉
0:n(0)← M
−−−−−−−→t Hby (4)I

〈[a2][1:n(s(x))← n(x)�][1:n(s(x′))← n(x′)�], {x← s(0), x′ ← 0}〉
1:n(s(x′))←n(x′) M
−−−−−−−−−−−−→t Hby (4)I

〈[a2][1:n(s(x))← n(x)�], {x← s(0), x′ ← 0}〉
1:n(s(x))←n(x) M
−−−−−−−−−−−→t Hby (4)I

〈[a2], {x← s(0), x′ ← 0}〉 2

Example 3 A maximal derivation for the most general non-ground goal n(x)
as defined by the Prolog program of Ex. 1 is (among many others):

〈[` n(x)], ε〉 Hinitial stateI
L1:n(s(x′))←n(x′)/{x←s(x′)}
−−−−−−−−−−−−−−−−−−−−→t Hby (2)I

〈[a2][1:n(s(x′))← �n(x′)], {x← s(x′)}〉
L1:n(s(x′′))←n(x′′)/{x′←s(x′′)}
−−−−−−−−−−−−−−−−−−−−−→t Hby (3)I

〈[a2][1:n(s(x′))← n(x′)�][1:n(s(x′′))← �n(x′′)],

{x← s(x′), x′ ← s(x′′)}〉
L0:n(0)←/{x′′←0}
−−−−−−−−−−−−−→t Hby (3)I

〈[a2][1:n(s(x′))← n(x′)�][1:n(s(x′′))← n(x′′)�][0:n(0)← �],

{x← s(x′), x′ ← s(x′′), x′′ ← 0}〉
0:n(0)← M
−−−−−−−→t Hby (4)I

〈[a2][1:n(s(x′))← n(x′)�][1:n(x′′)← n(x′′)�],

{x← s(x′), x′ ← s(x′′), x′′ ← 0}〉
1:n(s(x′′))←n(x′′) M
−−−−−−−−−−−−−→t Hby (4)I

〈[a2][1:n(s(x′))← n(x′)�], {x← s(x′), x′ ← s(x′′), x′′ ← 0}〉
1:n(s(x′))←n(x′) M
−−−−−−−−−−−−→t Hby (4)I

〈[a2], {x← s(x′), x′ ← s(x′′), x′′ ← 0}〉
2
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The selection of the traces in a set Θ ∈ ℘(Θ) of traces for an atom A ∈ A is
denoted Θ.A and defined as

Θ.A , {η
Li:A′←B/σ
−−−−−−−→ θ | η

Li:A′←B/σ
−−−−−−−→ θ A Θ ∧ A ' A′ ∧ η ∈ E ∧ θ ∈Θ} (5)

and similarly the traces starting with a given state η ∈ E are denoted Θ.η
defined as

Θ.η , {η′
Li:A←B/σ
−−−−−−−→ θ | η ' η′ ∧ η′

Li:A←B/σ
−−−−−−−→ θ A Θ} . (6)

10.2 Transitional Most General Maximal Derivation Semantics

The most general maximal derivation semantics SdJP K ∈ ℘(Θ) of a Prolog
program P ∈ P is the set of all possible maximal derivations for the con-
crete labelled transition system StJP K of this program P (defined by (2)—(4))
starting from most general goals {p(v) | p ∈ p ∧ v ∈ v}.

SdJP K , {η0
`0−→ η1 . . . ηn−1

`n−1−−−→ ηn ∈Θ[n+ 1] | n > 0 ∧ (7)
η0 = 〈[` p(v)], ε〉 ∧ p ∈ p ∧ v ∈ v ∧ ∀i ∈ [0, n− 1] : ηi

`i−→t ηi+1 ∧

∀η ∈ S : ∀` ∈ L : ¬(ηn `−→t η)} .

By def. (2)—(4) of −→t, a final state ηf such that ∀η ∈ S : ∀` ∈ L : ¬(ηf `−→t

η) is an answer substitution state ηf ∈ E AS (of the form ηf = 〈[a2], ϑ〉 where
ϑ is the computed answer) or is a finite failure state ηf ∈ E FF.

Example 4 The trace for n(x) for the Prolog program of Ex. 1 given in
the Ex. 3 is a most general maximal derivation while the trace for n(s(s(0)))
given in the Ex. 2 is not. 2

Semantic derivations are well-parenthesized so that the structure of computa-
tions can be described by trees. Let us define the parenthesis abstraction αp

as follows

αp($$′) , αp($′)αp($), for stacks

αp([` A]) , ε

αp([a2]) , ε

αp([i:A← B�B′]) , i:A← BB′ M

αp(L i:A← B/σ) , L i:A← B, for labels
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αp(i:A← B M) , i:A← B M

αp(〈$, ϑ〉) , αp($), for states

αp(η0
`0−→ η1 . . . ηn−1

`n−1−−−→ ηn) , αp(`0)αp(`1) . . . αp(`n−1)αp(ηn) for traces.

Example 5 The parenthesis abstraction of the following prefix of the max-
imal derivation given in Ex. 3 for the Prolog program of Ex. 1 and the
non-ground goal n(x)

〈[` n(x)], ε〉
L1:n(s(x′))←n(x′)/{x←s(x′)}
−−−−−−−−−−−−−−−−−−→t

〈[a2][1:n(s(x′))← �n(x′)], {x← s(x′)}〉
L1:n(s(x′′))←n(x′′)/{x′←s(x′′)}
−−−−−−−−−−−−−−−−−−−→t

〈[a2][1:n(s(x′))← n(x′)�][1:n(s(x′′))← �n(x′′)], {x← s(x′), x′ ← s(x′′)}〉

is
L 1:n(s(x′))← n(x′) L 1:n(s(x′′))← n(x′′) 1:n(s(x′′))← n(x′′) M
1:n(s(x′))← n(x′) M .

2

Lemma 6 For any prefix derivation θ of a program P , αp(θ) ∈ DP,∅ is a
pure Dyck language. e

Proof Let

θ = 〈[` A], ε〉 `0−→ 〈$1, ϑ1〉 . . . 〈$n−1, ϑn−1〉
`n−1−−−→ 〈$n, ϑn〉 ∈ SdJP K .

The proof is by induction on the length of θ so that we assume, by induc-
tion hypothesis, that αp(〈[` A], ε〉 `0−→ 〈$1, ϑ1〉 . . . 〈$n−2, ϑn−2〉

`n−2−−−→ 〈$n−1,
ϑn−1〉) is well-parenthesized.

By definition of SdJP K, we have that $n−1 6= [a2] so that $n−1 has the form
$n−1 = [` A] or $n−1 = $[i:A← B�B′].

In case 1, $n−1 = [` A], we have n = 1 by definition of `−→t and so

〈$n−1, ϑn−1〉
`n−1−−−→ 〈$n, ϑn〉 = 〈[` A], ε〉

Li:A′←B/σ
−−−−−−−−→ 〈[a2][i:A′ ← �B], σ〉

by (2) where i:A′ ← B A P and σ ∈ mgu(A,A′). By definition of SdJP K, we
have

11



αp(θ) = αp(〈[` A], ε〉
Li:′←B/σ
−−−−−−−→ 〈[a2][i:A′ ← �B], σ〉)

= L i:A′ ← B/σ i:A′ ← B/σ M

which is well-parenthesized.

In case 2, $n−1 = $[i:A← B�BB′],

〈$n−1, ϑn−1〉
`n−1−−−→ 〈$n, ϑn〉 =

〈$[i:A← B�BB′], ϑ〉
Lj:B′←B′′/σ
−−−−−−−−−→t 〈$[i:A← BB�B′][j:B′ ← �B′′], ϑ′〉

by (3) where i:A← BBB′, j:B′ ← B′′ A P , σ ∈ mgu(ϑ(B), B′), ϑ′ ∈ σ ↑ ϑ.
So αp(θ) = αp(`0) . . . L j:B′ ← B′′/σ)αp([j:B′ ← �B′′])αp([i:A ← BB�B′]
)αp($) = αp(`0) . . . L j:B′ ← B′′/σ [j:B′ ← �B′′] M [i:A← BB�B′] M αp($)
which is well-parenthesized if and only if αp(`0) . . .[i:A← BB�B′] M αp($)
is well-parenthesized, which is the case if and only if αp(〈[` A], ε〉 `0−→ 〈$1,
ϑ1〉 . . . 〈$n−1, ϑn−1〉) is well-parenthesized, which is true by induction hypoth-
esis.

In case 3, $n−1 = $[i:A← B�],

〈$n−1, ϑn−1〉
`n−1−−−→ 〈$n, ϑn〉 = 〈$[i:A← B�], ϑ〉

i:A←B M
−−−−−−→t 〈$, ϑ〉

by (4) where i:A← B A P . In this case, we have

αp(θ) = αp(`0) . . . αp(`n−1) i:A← B M αp($)
= αp(`0) . . . αp(`n−1) αp($[i:A← B�)]
= αp(〈[` A], ε〉 `0−→ 〈$1, ϑ1〉 . . . 〈$n−1, ϑn−1〉)

which is a pure Dyck language by induction hypothesis. �

In particular, Lem. 6 implies that a maximal succesfull derivation θ = η0
`0−→

η1 . . . ηn−1
`n−1−−−→ ηn, ηn ∈ E AS of P is well-parenthesized in that αp(θ) =

αp(`0)αp(`1) . . . αp(`n−1) ∈ DP,∅ is a pure Dyck language.

11 The Hierarchy of Abstractions

We define abstractions of sets of most general derivations to get classical se-
mantics of Prolog and logic programs.

12



11.1 The Partial Correctness Abstractions

The derivations in the most general maximal derivations semantics SdJP K have
finite success and finite failure derivations. The partial correctness abstractions
forget about finite failures.

11.1.1 Success Abstraction

The success abstraction eliminates finite failures

αsd(Θ) , {θ `−→ 〈[a2], ϑ〉 | ϑ ∈ S ∧ θ `−→ 〈[a2], ϑ〉 ∈ Θ}

Note that the instantiation of a failure (i.e., a failing derivation) is still a
failure so no potential success behavior is eliminated but the instantiation of a
potential finite success behavior might be a finite failure so not all instantiated
finite failures might have been eliminated yet (see e.g. Sec. 11.2.1).

11.1.2 The Partial Correctness Abstraction Hierarchy

Defining the partial correctness semantics SsdJP K , αsd(SdJP K), we get the
first dimension in our hierarchy of semantics:

• SsdJP K success

αsd

SdJP K most general•

11.2 The Derivation Instantiation Abstractions

The most general maximal derivation semantics SdJP K for most general goals
[` p(v)], p ∈ p, v ∈ v can be abstracted by instantiating the derivations by
non-ground or ground substitutions.

11.2.1 The Derivation Non-Ground Instantiation Abstraction

The derivation instantiation abstraction maps derivations for most general
goals to derivations for instantiations of these goals.

13



α′
id(〈$, ϑ〉)σ , 〈〈$, ϑ′〉, b〉 where b = (ϑ′ ∈ ϑ ↑ σ)

αid(〈[` p(v)], ε〉)σ , 〈[` σ(p(v))], σ〉

let 〈η′2, b〉 = α′id(η2)σ in

αid(η1
Li:A←B/ϑ
−−−−−−→t η2

`−→ θ)σ , η1
Li:A←B/ϑ′
−−−−−−→t αid(η′2

`−→ θ)σ if b ∧ ϑ′ ∈ ϑ ↑ σ
, η1 if ¬b ∨ ϑ′ 6∈ ϑ ↑ σ

αid(η1
i:A←B M
−−−−−−→t η2

`−→ θ)σ , η1
i:A←B M
−−−−−−→t αid(η′2

`−→ θ)σ if b
, η1 if ¬b

αid(η1
i:A←B M
−−−−−→t 〈[a2], ϑ〉)σ , η1

i:A←B M
−−−−−−→t 〈[a2], ϑ′〉 if ϑ′ ∈ ϑ ↑ σ

, η1 if ϑ′ 6∈ ϑ ↑ σ

αid(Θ) , {αid(θ)σ | θ ∈ Θ ∧ σ ∈ S}

The initial substitution is propagated along traces unless some instantiation
fails along the trace, in which case the trace is truncated, now finishing in a
finite failure.

Example 7 The Prolog program

0: n(0) ←
1: n(s(x)) ← n(x)
2: p(a) ←

has the following most general derivation

〈[` n(x)], ε〉
L1:n(s(x′))←n(x′)/{x←s(x′)}
−−−−−−−−−−−−−−−−−−→t

〈[a2][1:n(s(x′))← �n(x′)], {x← s(x′)}〉
L1:n(s(x′′))←n(x′′)/{x′←s(x′′)}
−−−−−−−−−−−−−−−−−−−→t

〈[a2][1:n(s(x′))← n(x′)�][1:n(s(x′′))← �n(x′′)],

{x← s(x′), x′ ← s(x′′)}〉
L1:n(0)←/{x′′←0}
−−−−−−−−−−−−→t

14



〈[a2][1:n(s(x′))← n(x′)�][1:n(s(x′′))← n(x′′)�][1:n(0)← �],

{x← s(x′), x′ ← s(x′′), x′′ ← 0}〉
1:n(0)← M
−−−−−−→t

〈[a2][1:n(s(x′))← n(x′)�][1:n(s(x′′))← n(x′′)�],

{x← s(x′), x′ ← s(x′′), x′′ ← 0}〉
1:n(s(x′′))←n(x′′) M
−−−−−−−−−−−−→t

〈[a2][1:n(s(x′))← n(x′)�], {x← s(x′), x′ ← s(x′′), x′′ ← 0}〉
1:n(s(x′))←n(x′) M
−−−−−−−−−−−→t

〈[a2], {x← s(x′), x′ ← s(x′′), x′′ ← 0}〉

The instance for the substitution {x ← s(a)} leads to the following finite
failure

〈[` n(s(a))], {x← s(a)}〉
L1:n(s(x′))←n(x′)/{x←s(x′),x′←a}
−−−−−−−−−−−−−−−−−−−−−→t

〈[a2][1:n(s(x′))← �n(x′)], {x← s(x′), x′ ← a}〉

since {x′ ← a} ↑ {x′ ← s(x′′)} = ∅. 2

More generally, the instantiation of a finite success or finite failure can lead
to an earlier finite failure.

11.2.2 The Derivation Ground Instantiation Abstraction

The derivation ground instantiation abstraction maps derivations for non-
ground goals to derivations for ground instantiations of these goals. The initial
ground substitution σ ∈ S is propagated along traces unless the instantiation
fails in which case the trace is ignored.

αgd(Θ) , {αid(θ)σ | θ ∈ Θ ∧ σ ∈ S}

Since program clauses are replaced by their ground instantiations, it is no
longer necessary to keep track of substitutions 2 .

2 In the following we use the above definition of ground derivations with (use-
less) substitutions so as not to have to consider the particular case where these
substitutions are dropped. So non-ground and ground derivations can be handled
uniformely.
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α′
gd(〈$, ϑ〉)σ , 〈$, b〉 where b = (ϑ′ ∈ ϑ ↑ σ)

let 〈$′2, b〉 = α′gd(η2)σ in

αgd(〈[` p(v)], ε〉)σ , [` σ(p(v))]

αgd($1
Li:A←B/ϑ
−−−−−−→t η2

`−→ θ)σ , $1
Li:A←B/ϑ′
−−−−−−→t αgd($′2

`−→ θ)σ if b ∧ ϑ′ ∈ ϑ ↑σ
, $1 if ¬b ∨ ϑ′ 6∈ ϑ ↑σ

αgd($1
i:A←B M
−−−−−→t η2

`−→ θ)σ , $1
i:A←B M
−−−−−→t αgd($′2

`−→ θ)σ if b
, $1 if ¬b

αgd($
i:A←B M
−−−−−→t 〈[a2], ϑ〉)σ , $

i:A←B M
−−−−−−→t 〈[a2], ϑ′〉 if ϑ′ ∈ ϑ ↑ σ

, $ if ϑ′ 6∈ ϑ ↑ σ

αgd(Θ) , {αgd(θ)σ | θ ∈ Θ ∧ σ ∈ S} .

11.2.3 The Derivation Instantiation Abstraction Hierarchy

By instantiating most general maximal derivation semantics, we get a second
dimension in our hierarchy of semantics relative to the degree of instantiation
of the initial goal.

• SgdJP K ground

αgd

• SidJP K instantiated/non-ground

αid

SdJP K most general•

Of course, this can be combined with partial correctness abstractions. For
example Herbrand models abstract away from finite failures and are relative
to ground derivations only.
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11.3 The Computational Information Abstractions

A third dimension abstracts away from the detailed information gathered by
derivations on the computations. The abstraction below gets rid of informa-
tion on computation, independently of partial correctness and instantiation
abstractions, so it is a third dimension in the hierarchy of abstractions. Not
all possible computational information abstractions have been considered here,
our aim is to provide a small representative panel only.

11.3.1 The SLD-abstraction

The SLD-abstraction records the set of derivations for a goal in the form of a
SLD-tree (as in [39,28] but keeping in addition the answer substitution). We
encode trees in parenthesized form through a prefix traversal

a
b

c

A

d e
B

E F

C

f

D

G

A J a B Jd E JK; e F JKK;

b C JK;

c D Jf G JKKK

so that the syntax of SLD-trees ξ ∈ Ξ is (n > 1)

ξ ::= ← B/σ Ji1 : A1←B1/ϑ1 ξ1; . . . ; in : An←Bn/ϑn ξnK SLD derivation

| ← B/σ JK failure

| σ JK success

The contradiction σ in the refutation contains the answer substitution σ. A
forest is an indexed family 〈ξi, i ∈ ∆〉 of SLD-trees ξi, i ∈ ∆. They naturally
arise in a Prolog interpreter when considering a sequence of goals (instead
of a set of goals).

The SLD-abstraction collects the nodes of the SLD-tree from the states of
traces.

αK(〈[` A], ϑ〉) , ← ϑ(A)/ϑ

αK(〈$, ϑ〉) , ← 〈α′K(〈$, ϑ〉), ϑ〉
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α′K collects pending subgoals in inverse order on the stack.

α′
K(〈$[i:A← B�BB′], ϑ〉) , ϑ(BB′)α′K(〈$, ϑ〉)

α′
K(〈[a2], ϑ〉) , ε

The SLD-trees are built from traces by grouping their common prefixes in the
order of the Prolog program clauses.

αK(Θ) , {αK(η)Ji1:`1α
K(Θ1); . . . ; in : `nαK(Θn)K | η ∈ E ∧ i1 < . . . < in ∧

Θ.η =
n⋃
k=1

Θk ∧ ∀k ∈ [1, n] : Θk = {θ | η
Lik:`k−−−−−→t θ ∈ Θ.η} 6= ∅} ∪

αK({θ | η
i:C M
−−−−→t θ ∈ Θ}) ∪ { ϑ JK | ∃ϑ : 〈[a2], ϑ〉 ∈ Θ} .

Example 8 An SLD-derivation tree for the Prolog program of Ex. 1 is

1 : n(s(x1))← n(x1)
{x1 ← s(x)}

n(s(s(x)))/ε

1 : n(s(x2))← n(x2)
{x2 ← x, x← x2}

n(s(x1))/{x1 ← s(x)}

0 : n(0)←
{x2 ← 0}

1 : n(s(x3))← n(x3)
{x2 ← s(x3)}

n(x2)/{x1 ← s(x), x2 ← x, x← x2}

{x2 ← x, x← x2,
x2 ← 0}

0 : n(0)←
{x3 ← 0}

1 : n(s(x4))← n(x4)
{x3 ← s(x4)}

n(x3)/{x1 ← s(x), x2 ← x,
x← x2, x2 ← s(x3)}

{x1 ← s(x), x2 ← x, x← x2,
x2 ← s(x3), x3 ← 0}

. . .

. . . . . .
2

αK can be easily extended to ground derivations as was done in Sect. 11.2
for traces.
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11.3.2 The Prolog abstraction

The Prolog abstraction abstracts a forest 〈ξi, i ∈ ∆〉 of SLD-trees ξi, i ∈ ∆
into the set of execution traces corresponding to a depth-first traversal of these
SLD-trees ξi (as in the Prolog interpreter [40]). SLD-trees may have infinite
branches so the execution sequence, defined by transfinite recursion, may be
transfinite (and is truncated to ω by Prolog interpreters, which is a further
abstraction).

αC(〈ξi, i ∈ ∆〉) , 〈αC(ξi), i ∈ ∆〉

αC(← B/σ Ji1 : A1 ← B1/ϑ1ξ1; . . . ; in : An ← Bn/ϑn ξnK) ,

← B/σ i1 : A1 ← B1/ϑ1α
C(ξ1) . . . in : An ← Bn/ϑnα

C(ξn)

αC(← B/σ JK) , ε

αC( σ JK) , σ .

11.3.3 The cut abstraction

Many Prolog implementations have a cut to trigger backtracking. Programs
can have cuts (denoted !) on the right-handside of clauses. We assume cuts are
kept “as is” in clauses by the transitional and maximal derivation semantics
and by the SLD tree abstraction.

The cut abstraction α!n abstracts a forest 〈ξi, i ∈ ∆〉 of SLD-trees ξi, i ∈ ∆
into a (transfinite) execution sequence corresponding to a depth-first traversal
of these SLD-trees ξi with cut (as in the Prolog interpreter [41]). If the
program has no cut, α!n boils down to αC.

α!n(〈ξi, i ∈ ∆〉) , 〈α!n(ξi), i ∈ ∆〉 .

We use α!n for non-deterministic traversal of the SLD-trees with backtracking.
In nondeterministic mode, the SLD-tree is traversed in depth-first order, top-
down, left to right.

α!n(← B/σ JK) , ε

α!n( σ JK) , σ
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α!n(← B/σ Ji1 : A1 ← B1/ϑ1ξ1; . . . ; in : An ← Bn/ϑn ξnK)

, ← B/σ i1 : A1 ← B1/ϑ1α
!n(ξ1) . . . in : An ← Bn/ϑnα

!n(ξn) if ! 6∈ B

We go into deterministic traversal mode the first time a clause with a cut is
encountered in nondeterministic traversal mode. We use α!d for deterministic
traversal of the SLD-trees with backtracking cut after the first success.

α!n(← B!B′/σ Ji1 : A1 ← B1/ϑ1ξ1; . . . ; in : An ← Bn/ϑn ξnK)

, let 〈π, –〉 = α!d(top,← B!B′/σ J i1 : A1 ← B1/ϑ1ξ1; . . . ;
in : An ← Bn/ϑn ξnK)

in π

The deterministic depth-first traversal of the SLD-tree with α!d goes top-down,
left to right until the first success. The deterministic traversal abstraction α!d

returns failure if resolution failed and success when it succeeded so as to keep
track of failures until the first success.

The deterministic traversal abstraction α!d has a marker parameter ` = top
or below to distinguish the level of the first encountered clause with a cut.
The level marker ` = top is used in deterministic mode when the first cut
is encountered. The level marker ` is then set to below when traversing the
SLD-trees at lower levels.

α!d(`,← B/σ JK) , 〈ε, failure〉

α!d(`, σ JK) , 〈σ, success〉

α!d(`,← B/σ Ji1 : A1 ← B1/ϑ1ξ1; . . . ; in : An ← Bn/ϑn ξnK)

, let 〈〈πi, fi〉, i = 1, . . . , n〉 , 〈α!d(below, ξi), i = 1, . . . , n〉 in

if
n∧
i=1

(fi = failure) then

〈← B/σ i1 : A1 ← B′1/ϑ1π1 . . . in : An ← B′n/ϑnπn, failure〉

else

〈← B/σ i1 : A1 ← B′1/ϑ1π1 . . . ik : Ak ← B′k/ϑkπk, success〉

where
k−1∧
i=1

(fi = failure) ∧ (fk = success)
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We go on in deterministic mode at lower levels where cuts are ignored. We also
go on in deterministic mode at top level before the last cut. Indeed all cuts
but the last one in the righthand side of a clause are useless hence ignored.

if (` = top =⇒ ! ∈ B) then
α!d(`,← !B/σ Ji1 : A1 ← B1/ϑ1ξ1; . . . ; in : An ← Bn/ϑn ξnK)

, α!d(`,← B/σ Ji1 : A1 ← B1/ϑ1ξ1; . . . ; in : An ← Bn/ϑn ξnK)

We go back in nondeterministic traversal mode after the last cut in the top
level clause.

if ! 6∈ B then
α!d(top,← !B/σ Ji1 : A1 ← B1/ϑ1ξ1; . . . ; in : An ← Bn/ϑn ξnK)

, 〈α!n(← B/σ Ji1 : A1 ← B1/ϑ1ξ1; . . . ; in : An ← Bn/ϑn ξnK), –〉

Therefore the SLD-tree is traversed in depth-first order, top-down, left to right
in nondeterministic mode with backtracks until a clause containing a cut is
encountered. The SLD-tree traversal goes on with that clause in determin-
istic mode without backtrack and goes back to nondeterministic mode only
after the last cut of the first clause with a cut encountered in the SLD-tree
nondeterministic traversal.

Example 9 The cut semantics of the following program

0: p(x, y) ← q(x) ! r(y)
1: q(a) ←
2: q(b) ←
3: r(c) ←
4: r(d) ←

contains exactly the two following executions

• ← p(x, y)/ε 0:p(x′, y′) ← q(x′) ! r(y′)/{x ← x′, x′ ← x, y ← y′, y′ ← y}
← q(x′)/{x← x′, x′ ← x, y ← y′, y′ ← y} 1:q(a)← /{x← x′, x′ ← x, y ←
y′, y′ ← y, x′ ← a} ← r(y′)/{x← x′, x′ ← x, y ← y′, y′ ← y, x′ ← a} 3:r(c)←
/{x ← x′, x′ ← x, y ← y′, y′ ← y, x′ ← a} {x ← x′, x′ ← x, y ← y′, y′ ←
y, x′ ← a, y′ ← c}
• ← p(x, y)/ε 0:p(x′, y′) ← q(x′) ! r(y′)/{x ← x′, x′ ← x, y ← y′, y′ ← y}
← q(x′)/{x← x′, x′ ← x, y ← y′, y′ ← y} 1:q(a)← /{x← x′, x′ ← x, y ←
y′, y′ ← y, x′ ← a} ← r(y′)/{x← x′, x′ ← x, y ← y′, y′ ← y, x′ ← a} 4:r(d)←
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/{x ← x′, x′ ← x, y ← y′, y′ ← y, x′ ← a} {x ← x′, x′ ← x, y ← y′, y′ ←
y, x′ ← a, y′ ← d} 2

11.3.4 Lazy backtracking

Some implementations of Prolog like the Ciao Prolog System [42] have lazy
backtracking meaning that the system will backtrack only as necessary to
obtain one solution (at the top level) and will not look for more solutions. This
lazy backtracking abstraction α` abstracts a forest 〈ξi, i ∈ ∆〉 of SLD-trees ξi,
i ∈ ∆ into a (transfinite) execution sequence corresponding to a depth-first
traversal of these SLD-trees ξi until the first success at the top-level

α`(〈ξi, i ∈ ∆〉) , 〈let 〈π, –〉 = α!d(top, ξi) in π, i ∈ ∆〉 .

Example 10 The lazy backtracking semantics of the program of Ex. 9 con-
tains only the first of the two executions. 2

11.3.5 The BF-semantics

The breadth-first abstraction explores the forest 〈ξi, i ∈ ∆〉 by traversal of
each tree ξi, i ∈ ∆ in the forest level by level.

αB(〈ξi, i ∈ ∆〉) , 〈αBr(ξi), i ∈ ∆〉αB(〈αBs(ξi), i ∈ ∆〉)

(where concatenation of sequences is denoted by juxtaposition). The explo-
ration of the roots

αBr(← B/σ Ji1 : A1 ← B1/ϑnξ1; . . . ; in : An ← Bn/ϑn ξnK) ,

← B/σA1 ← B1/ϑn . . . ;An ← Bn/ϑn

αBr(← B/σ JK) , ε

αBr( σ JK) , σ

is followed by the breadth-first exploration of the sons of each tree ξi, i ∈ ∆

αBs(← B/σ Ji1 : A1 ← B1/ϑnξ1; . . . ; in : An ← Bn/ϑn ξnK) , ξ1 . . . ξn

11.3.6 The call-patterns abstraction

The call-patterns abstraction collects the goal, call-patterns and the answer
substitution for each derivation, including those leading to finite failures [43].
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αp(〈ξi, i ∈ ∆〉) ,
⋃
{αp(ξi) | i ∈ ∆} SLD derivation forest

αp(← A/σ Ji1 : A1 ← B1/ϑ1 ξ1; . . . ; in : An ← Bn/ϑn ξnK) , SLD tree

α′
p(← A/σ Ji1 : A1 ← B1/ϑ1 ξ1; . . . ; in : An ← Bn/ϑn ξnK)(σ(A))

α′
p(← BB/σ Ji1 : A1 ← B1/ϑ1 ξ1; . . . ; in : An ← Bn/ϑn ξnK)A′ ,

{〈σ(A′), σ(B)〉} ∪
n⋃
i=1

α′
p(ξi)(A′)

α′
p(← B/σ JK)A′ , ∅ failure

α′
p( σ JK)A′ , {〈σ(A′), [a2]〉} success.

Combining with the αK abstraction, this can also be understood as the fol-
lowing abstraction of the derivation semantics

αp(Θ) ,
⋃
{αp(θ) | θ ∈ Θ}

αp(〈[` A], ϑ〉
Li:A′←B/ϑ
−−−−−−−−→t θ) , {〈ϑ(A), ϑ(A)〉} ∪ α′p(θ)ϑ(A)

α′
p(〈$[i:A← B�BB′], ϑ〉

Lj:B′←B′′/σ
−−−−−−−−−→t θ)A′ , {〈ϑ(A′), ϑ(B)〉} ∪ α′p(θ)A′

α′
p(〈$[i:A← B�], ϑ〉

i:A←B M
−−−−−−→t θ)A′ , α′

p(θ)A′

α′
p(〈$[i:A← B�BB′], ϑ〉)A′ , ∅ failure

α′
p(〈[a2], ϑ〉)A′ , {〈ϑ(A′), [a2]〉} success.

The above abstraction defines success/correct call patterns since finite failure
are disregarded. An alternative is to consider failure call patterns by redefin-
ing

α′
p(〈$[i:A← B�BB′], ϑ〉)A′ , 〈ϑ(A), [a!]〉 failure

where [a!] marks failure.

Example 11 For the following Prolog programs, we have
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0:p(a)←

1:p(x)← 0:p(x)←

2:q(x)← p(x) 1:q(x)← p(x)

SpJP K , {〈p(a), p(a)〉, 〈p(a), [a2]〉

〈p(x), p(x)〉, 〈p(x), [a2]〉

〈q(a), q(a)〉, 〈q(a), p(a)〉,

〈q(a), [a2]〉, 〈q(x), q(x)〉,

〈q(x), p(x)〉, 〈q(x), [a2]〉}

SpJP ′K , {〈p(x), p(x)〉, 〈p(x), [a2]〉

〈q(x), q(x)〉, 〈q(x), p(x)〉

〈q(x), [a2]〉}

2

11.3.7 The Model Abstraction

The model abstraction collects answers in the call patterns

αm(K) , {A ∈ A | 〈A, [a2]〉 ∈ K}

Example 12 For Ex. 11, we have

SmJP K , {p(a),p(x),q(a),q(x)} SmJP ′K , {p(x),q(x)}
2

11.3.8 The Computational Information Abstraction Hierarchy

The third dimension in the hierarchy is the following

•

•

lazy
S`JP K

α`

cut
S!nJP K

α!n

SmJP K models

αm

•

breadth-
first

SBJP K
•

αB

Prolog
SCJP K
•

αC

• SpJP K call patterns

αp

• SKJP K SLD-trees

αK

SdJP K derivations•
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(where the composition of partial correctness abstractions with αC leads to
non-computable semantics but are useful when reasoning on program imple-
mentations).

11.4 The Hierarchy of Abstractions and Semantics

The combination of the instantiation abstraction of Sec. 11.2.3 and the in-
formation abstraction of Sec. 11.3.8 yields to the two-dimensional hierarchy
of abstractions of Fig. 1. Missing in the picture is the partial correctness third
abstraction dimension of Sec. 11.1.2.

•
lazy

S`JP K

α`

cut
S!nJP K

α!n•

breadth-
first

SBJP K
•

αB

Prolog
SCJP K
•

αC

• computed
answers
s-models
SmJP K

αm

most general
call patterns

SpJP K

•

αp

most general
SLD-trees

SKJP K

•

αK

most general
derivations

SdJP K

•

• correct
answers
c-models
SimJP K

αm

• instantiated
call patterns

SipJP K

αp

• instantiated
SLD-trees

SiKJP K

αK

• instantiated
derivations

SidJP K

•
ground

Herbrand
models
SgmJP K

αm

•
ground

call patterns
SgpJP K

αp

•
ground

SLD-trees
SgKJP K

αK

•
ground

derivations
SgdJP K

αid

αiK

αip

αim

αgd

αgK

αgp

αgm

Fig. 1. The hierarchy of maximal abstractions

By applying this hierarchy of abstractions to the most general maximal deriva-
tion semantics SdJP K, we get the hierarchy of maximal semantics given in Fig.
2. Classical examples in the hierarchy of semantics is given in Fig. 3, some of
which are detailed below.

11.4.1 The s-semantics

The s-semantics SsJP K provides computed answers [46]:

SsJP K , αds(SdJP K)
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derivations SLD-trees call patterns models

ground SgdJP K, SgKJP K , SgpJP K, SgmJP K,

αgd(SidJP K) αgK(SgdJP K) αgp(SgKJP K) αgm(SgpJP K)

instantiation SidJP K , SiKJP K , SipJP K , SimJP K ,

αid(SdJP K) αiK(SidJP K) αip(SiKJP K) αim(SipJP K)

most general SdJP K SKJP K , SpJP K , SmJP K ,

αK(SdJP K) αp(SKJP K) αm(SpJP K)

Fig. 2. The hierarchy of maximal semantics

SHJP K , αm(αp(αK(αsd(αgd(SdJP K)))) minimal Herbrand-model se-
mantics (logical consequences)
of Maarten van Emden and
Robert Kowalski [1]

ScJP K , αm(αp(αK(αsd(αid(SdJP K)))) c-semantics (correct answer sub-
stitutions) of Keith Clark [44,45]

SsJP K , αm(αp(αK(αsd(SdJP K)))) s-semantics (computed answer
substitutions) of Giorgio Levi
[46]

SspJP K , αp(αK(αsd(SdJP K))) correct call patterns of Maur-
izio Gabbrielli and Roberto Gia-
cobazzi [43]

SpJP K , αp(αK(SdJP K)) call patterns of Maurizio Gab-
brielli, Giorgio Levi and Maria
Chiara Meo [47]

SiKJP K , αK(αid(SdJP K)) maximal SLD-trees of Robert
Kowalski [39,28]

Fig. 3. Examples of classical semantics in the hierarchy

where αds , αm ◦ αp ◦ αK ◦ αsd is

αds(〈[` p(v)], ε〉 `−→t θ
`′−→t 〈[a2], ϑ〉) = {ϑ(p(v))} θ ∈Θ∗

αds(Θ) =
⋃
{αds(θ) | θ ∈ Θ}

The ordering of the program clauses is lost as well as the finite failures and
infinite behaviors.

Example 13 For both Prolog programs of Ex. 11, we have
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SsJP K , {p(a), p(x), q(a), q(x)} SsJP ′K , {p(x), q(x)}
2

11.4.2 The c-semantics

The c-semantics ScJP K provides correct answers [44,45]

ScJP K , αdc(SdJP K)

where αdc , αm ◦ αp ◦ αK ◦ αsd ◦ αid is

αdc(〈[` p(v)], ε〉 `−→t θ
`′−→t 〈[a2], ϑ〉) = {σ(ϑ(p(v))) | σ ∈ S} θ ∈Θ∗

αdc(Θ) =
⋃
{αdc(θ) | θ ∈ Θ}

Example 14 For both Prolog programs of Ex. 11, we have

ScJP K , ScJP ′K , {p(a), p(x), q(a), q(x)}
2

11.4.3 The H-semantics

The H-semantics SHJP K provides the least Herbrand model of the Prolog
program P [1]

SHJP K , αdH(SdJP K)

where αdH , αm ◦ αp ◦ αK ◦ αsd ◦ αgd is

αdH(〈[` p(v)], ε〉 `−→t θ
`′−→t 〈[a2], ϑ〉) = {σ(ϑ(p(v))) | σ ∈ S} θ ∈Θ∗

αdH(Θ) =
⋃
{αdH(θ) | θ ∈ Θ}

Example 15 For both Prolog programs of Ex. 13, we have

SHJP K , {p(a), q(a)}
2
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12 Fixpoint Bottom-Up Semantics

We now show that the bottom-up most general maximal derivation semantics
can be expressed un fixpoint form. Because this property is preserved by ab-
straction, all semantics in the hierarchy of bottom-up semantics can also be
expressed in fixpoint form, a property which, by further abstractions, can be
exploited in static program analysis.

12.1 Inlaying

For the recursive inlay of a derivation into another one, we need the operation

〈$, $′, ς〉 ⇑d 〈[` A], σ0〉
`0−→ 〈[a2]$1, σ1〉 . . . 〈[a2]$n, σn〉

`n−−→ 〈[a2], σn+1〉

, ς(〈$, σ0〉
`0−→ 〈$′$1, σ1〉 . . . 〈$′$n, σn〉

`n−−→ 〈$′, σn+1〉)

where the application of the substitution expression to the trace is defined as

ς(〈$0, σ0〉
`0−→ 〈$1, σ1〉 . . . 〈$n, σn〉

`n−−→ 〈$n+1, σn+1〉)
, ~ε

if σ0 ↑ ς = ∅

, 〈$0, ς
′
0〉

`0−→ 〈$1, ς
′
1〉 . . . 〈$k−1, ς

′
k−1〉

`k−1−−−→ 〈$k, ςk〉

if ς ′0 = σ0 ↑ ς 6= ∅ ∧ . . . ∧ ς ′k = σk ↑ ς 6= ∅ ∧ σ′k+1 ↑ ς = ∅
, 〈$0, ς

′
0〉

`0−→ 〈$1, ς
′
1〉 . . . 〈$n, ς

′
n〉

`n−−→ 〈$n+1, ς
′
n+1〉

if ς ′0 = σ0 ↑ ς 6= ∅ ∧ . . . ∧ ς ′n+1 = σn+1 ↑ ς 6= ∅

with standardization apart, and

〈$, $′, ς〉 ⇑d Θ , {〈$, $′, ς〉 ⇑d θ | θ A Θ} . (8)

Example 16 A trace for the goal n(x) with x = 0 as defined by the logic
program of Ex. 1 is:

θ0 , 〈[` n(x′)], ε〉
L0:n(0)←/{x′←0}
−−−−−−−−−−→pt 〈[a2][0:n(x′)← �], {x′ ← 0}〉

0:n(0)← M
−−−−−→pt

〈[a2], {x′ ← 0}〉
A trace θ1 for the goal n(x) with x = s(0) as defined by the Prolog program
of Ex. 1 is obtained by inlay of θ0:
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θ1 , 〈[` n(x)], ε〉
L1:n(s(x′))←n(x′)/{x←s(x′)}
−−−−−−−−−−−−−−−−−−→pt 〈[a2][1:n(s(x′)) ← �n(x′)],

[a2][1:n(s(x′)) ← n(x′)�], {x← s(x′)}〉 ⇑d θ0
1:n(s(x′))←n(x′) M
−−−−−−−−−−−→pt 〈[a2],

{x← s(x′), x′ ← 0}〉
where
〈[a2][1:n(s(x′))← �n(x′)], [a2][1:n(s(x′))← n(x′)�], {x← s(x′)}〉 ⇑d θ0

= 〈[a2][1:n(s(x′))← �n(x′)], {x← s(x′)}〉
L0:n(0)←/{x′←0}
−−−−−−−−−−−→pt

〈[a2][1:n(s(x′))← n(x′)�][0:n(0)← �], {x← s(x′), x′ ← 0}〉
0:n(0)← M
−−−−−−→pt

〈[a2][1:n(s(x′))← n(x′)�], {x← s(x′), x′ ← 0}〉
2

12.2 Fixpoint Bottom-Up Most General Maximal Derivation Semantics

Let us define the bottom-up set of traces transformer F̂dJP K ∈ ℘(Θ) 7→ ℘(Θ)
for a Prolog program P ∈ P as

F̂dJP K , λΘ . ⋃
i:A←BAP, p∈p, v∈v, ϑ∈mgu(p(v),A)

〈[` p(v)], ε〉
Li:A←B/ϑ
−−−−−−−→ F̂�d[i:A← �B]ϑΘ (9)

where the clause transformer F̂�d[i:A ← B�B′] ∈ S 7→ ℘(Θ) 7→ ℘(Θ) is
defined as

F̂�d[i:A← B�BB′] , λϑ . λΘ . (10)

{(〈[a2][i:A← B�BB′], [a2][i:A← BB�B′], ϑ〉 ⇑d η
`−→ 〈$, ϑ′〉) ; θ |

η
`−→ 〈$, ϑ′〉 ∈ Θ.B′∧σ ∈ mgu(B,B′)∧θ ∈ F̂�d[i:A← BB�B′] (ϑ ↑ σ ↑ ϑ′ 3 ) Θ}

F̂�d[i:A← B�] , λϑ . λΘ . {〈[a2][i:A← B�], ϑ〉
i:A←B M
−−−−−−→ 〈[a2], ϑ〉} . (11)

Lemma 17 For all programs P , F̂dJP K and for all definite clause states [i:A
← B�B′] and subsitutions ϑ, F̂�d[i:A ← B�B′]ϑ, are complete join mor-
phisms. e

Proof Additivity directly follows from (9) for F̂dJP K. For F̂�d[i:A ← B�B′]
ϑ, this is obvious in case (11) and follows by induction for case (10). �

3 Note that the composition ↑ of substitutions is associative and commutative.
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Lemma 18 If all traces in T ⊆ Θ are derivations of the transition system
StJP K then all traces in F̂�d[i:A ← B�B′]ϑT are generated by the transition
system StJP K, start in state 〈[a2][i:A ← B�B′], ϑ〉 and end in a final state
in E AS ∪ E FF. e

Proof The proof is by induction on the length of B′.

Base case: if B′ = ε then the trace is 〈$[i:A ← B�], ϑ〉
i:A←B M
−−−−−−→t 〈$, ϑ〉

where i:A← B A P , which, by (4), is a correct trace generated by StJP K.

Inductive case: if B′ = BB′′ then (10) applies. By hypothesis, all traces in
T ⊆ Θ are derivations of the transition system StJP K hence so are those in
the subset T.B. All these traces have the form

θ = 〈[` B], ε〉
Lk:B′←B/σ
−−−−−−−−→ 〈[a2][k:B ← B�], ϑ1〉

`1−→

〈[a2]$2, ϑ2〉
`2−→ . . .

`n−2−−−→ 〈[a2]$n−1, ϑn−1〉
`n−1−−−→ ηn

where

ηn = 〈[a2], ϑn〉 if the computation succeeds
= 〈[a2]$n, ϑn〉 6−→ for finite failure.

Because trace inlaying preserves finite failure, the only possible cases which can
continue the computation are inlaying of successfull traces. The case of traces
ending in E FF is therefore straightforward. Consequently, we only consider the
traces in the subset T.B ending in a state in E AS.

In this case, we have

〈[a2][i:A← B�BB′], [a2][i:A← BB�B′], ϑ〉 ⇑d θ = θ′

where
θ′ = 〈[a2][i:A← B�BB′], ϑ′〉

Lk:B′←B/σ
−−−−−−−−→ 〈[a2][i:A← BB�B′][k:B ← B�

], ϑ′1〉
`1−→ 〈[a2][i:A ← BB�B′]$2, ϑ

′
2〉

`2−→ . . .
`n−2−−−→ 〈[a2][i:A ← BB�B′]

$n−1, ϑ
′
n−1〉

`n−1−−−→ 〈[a2][i:A← BB�B′], ϑ′n〉 with ϑ′ ∈ ϑ ↑ mgu(B,B).

θ′ is a valid derivation in StJP K because it can be concatenated with the
derivations in

F̂�d[i:A← B�BB′]ϑ′nΘ where ϑ′n = ϑn ↑ ϑ

which, by the induction hypothesis, are valid derivations in StJP K, starting
with the state 〈[a2][i:A← BB�B′], ϑ′n〉 which performs a correct junction. �

Corollary 19 If all traces in T are derivations of the transition system StJP K
then so are all traces in F̂dJP KT . e
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Proof By (9), all traces in F̂dJP KT have the form

〈[` p(v)], ε〉
Li:A←B/ϑ
−−−−−−−→ θ

where θ ∈ F̂�d[i:A ← �B]ϑΘ. By Lem. 18, θ is generated by the transition
system StJP K and starts in state 〈[a2][i:A← �B], ϑ〉.

If all steps succeed, θ ends in state 〈[a2][i:A ← B�], ϑ′〉 while if instead
θ ∈ F̂�d[i:A← �B]ϑΘ was not successful then θ ends in failure state 〈[a2]$,

ϑ′′〉. In both cases, by (2), 〈[` p(v)], ε〉
Li:A←B/ϑ
−−−−−−−→t 〈[a2][i:A← �B], ϑ〉 is a

valid transition for StJP K with i:A← B A P , ϑ ∈ mgu(p(v), A), proving that

〈[` p(v)], ε〉
Li:A←B/ϑ
−−−−−−−→ θ is a valid trace generated by the transition system

StJP K. �

The maximal ground derivation semantics of a Prolog program P can be
expressed in fixpoint form for transformer F̂dJP K as follows.

Theorem 20 SdJP K = lfp
⊆ F̂dJP K . e

Proof By continuity of F̂dJP K and [48], lfp
⊆ F̂dJP K = Θω where Θ0 , ∅,

Θn+1 , F̂dJP K(Θn) and Θω ,
⋃
n≥0 Θn. We prove the two inclusions separately.

All traces in Θ0 = ∅ as well as, by Cor. 19, those in Θω are derivations
of the transition system StJP K, so we have lfp

⊆ F̂dJP K ⊆ SdJP K.

Let θ ∈ SdJP K be a derivation of the transition system. Because all deriva-
tions are of the form

θ = 〈[` p(v)], ε〉 `1−→ 〈$1, ϑ1〉
`2−→ . . .

`n−−→ 〈$n, ϑn〉

we prove that θ ∈ lfp
⊆ F̂dJP K by proving that there exists i ∈ N such that

θ ∈ Θi+1. We prove that

θ′ = 〈[a2][i:A← �B], ϑ〉 `2−→ . . .
`n−−→ 〈$n, ϑn〉 ∈ F̂�d[i:A← �B]ϑΘi

for some i ∈ N and so, by (9), θ = 〈[` p(v)], ε〉
Li:A←B/ϑ
−−−−−−−→ θ′ ∈ F̂dJP K(Θi) =

Θi+1.

If B = ε is empty then θ′ is reduced to

θ′ = 〈[a2][i:A← �], ϑ〉
i:A← M
−−−−−→ 〈[a2], ϑ〉

which, by Lem. 17, belongs to F̂�d[i:A← �]ϑΘi for all i > 0.

31



If B is not empty, then the proof is by recurrence on the maximal height

h = max{|$1|, . . . , |$n|} > 2

of stacks in θ.

For h = 2, B has to be empty ε which boils down to the previous case.

If h > 2, we consider B = B′B′′ and we solve the more general problem

〈[a2][i:A← B′�B′′], ϑk〉
`k+1−−−→ . . .

`n−−→ 〈$n, ϑn〉 ∈ F̂�d[i:A← B′�B′′]ϑk Θi

for some i ∈ N. The result will follow by considering B′ = ε empty and
B = B′′.

If |B′′| = 0 so B′′ = ε then

〈[a2][i:A← B′�], ϑk〉
i:A←B′ M
−−−−−−→ 〈[a2], ϑk〉 ∈ F̂�d[i:A← B′�]ϑk Θi

for all i > 0.

Otherwise |B′′| > 0 so B′′ = BB′′′ and B = p(T ) for some predicate symbol
p ∈ p and term T ∈ t. Then we have

〈[a2][i:A←B′�BB′′′], ϑk〉
L`:Ã←B̃/σ
−−−−−−→ 〈[a2][i:A←B′B�B′′′][`:Ã← �B̃], ϑk+1〉

`k+2−−−→ . . .
`n−−→ 〈$n, ϑn〉

where σ = mgu(ϑk(B), Ã) and ϑk+1 = ϑk ↑ σ.

By Lem. 6, αp(θ) ∈ DP,∅ so θ is well-parenthesized, i.e. either 〈$n, ϑn〉 is a
failure state including [`:Ã ← �B̃] in the stack or we must have m < n such
that

〈$m, ϑm〉 = 〈$[`:Ã← �B̃], ϑm〉
`:Ã←B̃ M
−−−−−−→ 〈$, ϑm〉

with $ = $m+1 and ϑm = ϑm+1. Observe that in θ′:

The height of the stack is increased by 1 in (3) and decreased by 1 in (4).

In case of success, θ′ is well-parenthesized and so the stack has the same
height on matching parentheses. Moreover the transition never changes the
bottom of the stack. Because

〈[a2][i:A←B′�BB′′′]︸ ︷︷ ︸
$k

, ϑk〉
L`:Ã←B̃/σ
−−−−−→ 〈[a2][i:A←B′B�B′′′][`:Ã← �B̃]︸ ︷︷ ︸

$k+1

, ϑk+1〉
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and symmetrically

〈[a2][i:A←B′B�B′′′][`:Ã←B̃�]︸ ︷︷ ︸
$m

, ϑm〉
`:Ã←B̃ M
−−−−→ 〈[a2][i:A←B′B�B′′′]︸ ︷︷ ︸

$m+1

, ϑm+1〉

we can write the trace from k to m+ 1 as

〈[a2][i:A← B′�BB′′′], [a2][i:A← B′B�B′′′], ϑk〉 ⇑d θ′′

where

θ′′ , 〈[` p(v)], ε〉
L`:Ã←B̃/σ
−−−−−−→〈[a2][`:Ã← �B̃], σ′〉 `k+1−−→ . . .

`m−→〈[a2][`:Ã←B̃�], ϑ′m〉

where p is the predicate symbol of Ã and σ′ = mgu(p(v), Ã). Note that by (4)
we have

〈[a2][`:Ã← B̃�], ϑ′m〉
`:Ã←B̃ M
−−−−−−→t 〈[a2], ϑ′m〉

where i:Ã ← B̃ A P and ϑ′m+1 = ϑ′m. Since the maximal length of stacks in
θ′′ is strictly less that in θ′, there exists, by induction hypothesis, a Θq such
that θ′′ ∈ Θq.p(v). Therefore, by monotonicity

〈[a2][i:A← B′�BB′′′], [a2][i:A← B′B�B′′′], ϑk〉 ⇑d θ′′ ∈ Θt.p(v)

for all t > q.

Let us define

θ′′′ , 〈[a2][i:A← B′B�B′′′], ϑm+1〉
`m+2−−−→ . . .

`n−−→ 〈$n, ϑn〉 .

Because |B′′′| < |B′′|, there exists, by induction, some j > 0 such that

θ′′′ ∈ F̂�d[i:A← B′B�B′′′]ϑm+1 Θj

By the increasing fixpoint computation of the chain {T i}i>0 and F̂�d mono-
tonicity, we have

θ′′′ ∈ F̂�d[i:A← B′B�B′′′]ϑm+1 Θt for all t > j.

By letting t = max{j, q}, the theorem follows. �

Example 21 For the Prolog program P of Ex. 1, the fixpoint equation
(9) is Θ = F̂dJP K(Θ) of the form

Θ = {〈[` n(x0)], ε〉
L0:n(0)←/{x0←0}
−−−−−−−−−−−−−→ F̂�d[0:n(0)← �] {x0 ← 0}Θ} ∪

{〈[` n(x1)], ε〉
L1:n(s(x2))←n(x2)/{x1←s(x2)}
−−−−−−−−−−−−−−−−−−−−−→ F̂�d[1:n(s(x2)) ← �n(x2)]

{x1 ← s(x2)}Θ}
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= {〈[` n(x0)], ε〉
L0:n(0)←/{x0←0}
−−−−−−−−−−−−−→ F̂�d[0:n(0)← �] {x0 ← 0}Θ} ∪

{〈[` n(x1)], ε〉
L1:n(s(x2))←n(x2)/{x1←s(x2)}
−−−−−−−−−−−−−−−−−−−−−→ {(〈[a2][1:n(s(x2)) ← �n(x2)],

[a2][1:n(s(x2)) ← n(x2)�], {x1 ← s(x2)}〉 ⇑d η
`−→ 〈$, ϑ′〉) ; θ | η `−→ 〈$,

ϑ′〉 ∈ Θ.B′ ∧ σ ∈ mgu(n(x2), B′) ∧ θ ∈ F̂�d[1:n(s(x2)) ← n(x2)�] ({x1 ←
s(x2)} ↑ σ ↑ ϑ′) Θ}}

= {〈[` n(x0)], ε〉
L0:n(0)←/{x0←0}
−−−−−−−−−−−−−→ 〈[a2][0:n(0) ← �], {x0 ← 0}〉

0:n(0)← M
−−−−−−−→

〈[a2], {x0 ← 0}〉} ∪

{〈[` n(x1)], ε〉
L1:n(s(x2))←n(x2)/{x1←s(x2)}
−−−−−−−−−−−−−−−−−−−−−→ {(〈[a2][1:n(s(x2)) ← �n(x2)],

[a2][1:n(s(x2))← n(x2)�], {x1 ← s(x2)}〉⇑d η
`−→ 〈$, ϑ′〉) ;〈[a2][1:n(s(x2))

← n(x2)�], ({x1 ← s(x2)} ↑ σ ↑ ϑ′)〉
i:n(s(x2))←n(x2) M
−−−−−−−−−−−−−→ 〈[a2], ({x1 ←

s(x2)} ↑ σ ↑ ϑ′)〉 | η
`−→ 〈$, ϑ′〉 ∈ Θ.B′ ∧ σ ∈ mgu(n(x2), B′)}}

The first iterates of the fixpoint computation for finite traces are as follows:
Θ0 = ∅

Θ1 = {〈[` n(x0)], ε〉
L0:n(0)←
−−−−−−−→ 〈[a2][0:n(0) ← �], {x0 ← 0}〉

0:n(0)← M
−−−−−−−→ 〈[a2],

{x0 ← 0}〉}

Θ2 = {〈[` n(x0)], ε〉
L0:n(0)←
−−−−−−−→ 〈[a2][0:n(0) ← �], {x0 ← 0}〉

0:n(0)← M
−−−−−−−→ 〈[a2],

{x0 ← 0}〉,

〈[` n(x1)], ε〉
L1:n(s(x2))←n(x2)
−−−−−−−−−−−−−→ 〈[a2][1:n(s(x2)) ← �n(x2)], {x1 ←

s(x2)}〉
L0:n(0)←
−−−−−−−→ 〈[a2][1:n(s(x2)) ← n(x2)�][0:n(0) ← �], {x1 ←

s(x2), x2 ← 0}〉
0:n(0)← M
−−−−−−−→ 〈[a2][1:n(s(x2)) ← n(x2)�], {x1 ← s(x2), x2 ←

0}〉
1:n(s(x2))←n(x2) M
−−−−−−−−−−−−−→ 〈[a2], {x1 ← s(x2), x2 ← 0}〉}

Θ3 = {〈[` n(x0)], ε〉
L0:n(0)←
−−−−−−−→ 〈[a2][0:n(0) ← �], {x0 ← 0}〉

0:n(0)← M
−−−−−−−→ 〈[a2],

{x0 ← 0}〉,

〈[` n(x1)], ε〉
L1:n(s(x2))←n(x2)
−−−−−−−−−−−−−→ 〈[a2][1:n(s(x2)) ← �n(x2)], {x1 ←

s(x2)}〉
L0:n(0)←
−−−−−−−→ 〈[a2][1:n(s(x2)) ← n(x2)�][0:n(0) ← �], {x1 ←

s(x2), x2 ← 0}〉
0:n(0)← M
−−−−−−−→ 〈[a2][1:n(s(x2)) ← n(x2)�], {x1 ← s(x2), x2 ←

0}〉
1:n(s(x2))←n(x2) M
−−−−−−−−−−−−−→ 〈[a2], {x1 ← s(x2), x2 ← 0}〉,

〈[` n(x3)], ε〉
L1:n(s(x4))←n(x4)
−−−−−−−−−−−−−→ 〈[a2][:n(s(x4)) ← �n(x4)], {x3 ←

s(x4)}〉
L1:n(s(x5))←n(x5)
−−−−−−−−−−−−−→ 〈[a2][:n(s(x4)) ← n(x4)�][:n(s(x5)) ← �n(x5)],

{x3 ← s(x4), x4 ← s(x5)}〉
L0:n(0)←
−−−−−−−→ 〈[a2][:n(s(x4)) ← n(x4)�][:n(s(x5))

← �n(x5)][:n(0) ← �], {x3 ← s(x4), x4 ← s(x5), x5 ← 0}〉
0:n(0)← M
−−−−−−−→

〈[a2][:n(s(x4)) ← n(x4)�][:n(s(x5)) ← �n(x5)], {x3 ← s(x4), x4 ←

s(x5), x5 ← 0}〉
1:n(s(x5))←n(x5) M
−−−−−−−−−−−−−→ 〈[a2][:n(s(x4)) ← n(x4)�], {x3 ←

s(x4), x4 ← s(x5), x5 ← 0}〉
1:n(s(x4))←n(x4) M
−−−−−−−−−−−−−→ 〈[a2], {x3 ← s(x4), x4 ←

s(x5), x5 ← 0}〉}
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Θ4 = . . . 2

12.3 Fixpoint s-semantics

Let us define the bottom-up call-patterns transformer F̂sJP K ∈ ℘(A) 7→ ℘(A)
for a Prolog program P ∈ P as

F̂sJP K , λA . ⋃
i:A←BAP

{ϑ(A) | ϑ ∈ F̂�s[i:A← �B] A {ε}} (12)

where the clause transformer F̂�s[i:A ← B�B′] ∈ ℘(Θ) 7→ ℘(S) 7→ ℘(S) is
defined as

F̂�s[i:A← B�BB′] , λA . λS . {ϑ′ | B′ ∈ A ∧ σ ∈ mgu(B,B′) ∧ ϑ ∈ S ∧

ϑ′ ∈ F̂�s[i:A← BB�B′] A (ϑ ↑ σ)}

(13)

F̂�s[i:A← B�] , λA . λS .S . (14)

Example 22 For the Prolog program P of Ex. 1, the fixpoint equation
(12) of the form A = F̂sdJP K(A ) is

A = {n(0)} ∪ {σ(n(s(x))) | B′ ∈ A ∧ σ ∈ mgu(n(x), B′)}

The iterates of the fixpoint computation for finite traces are as follows

A 0 = ∅

A 1 = {n(0)}
A 2 = {n(0), n(s(0))}
. . .

A k = {n(si(0)) | i = 0, ..., k − 1} induction hypothesis
A k+1 = {n(0)} ∪ {σ(n(s(x))) | B′ ∈ A k ∧ σ ∈ mgu(n(x), B′)}

= {n(0)} ∪ {σ(n(s(x))) | σ ∈ mgu(n(x), n(si(0))) ∧ i = 1, ..., k − 1}
= {n(0)} ∪ {n(s(si(0))) | i = 1, ..., k − 1}
= {n(si(0)) | i = 0, ..., k}

. . .

A ω =
⋃
k≥0

A k = {n(si(0)) | i ≥ 0} limit 2

Lemma 23 αs ◦ F̂dJP K = F̂sJP K ◦ αs where αs , αm ◦ αp ◦ αK ◦ αsd . e
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Proof We must prove that

αs(F̂dJP K(Θ)) = F̂sJP K(αs(Θ))

where by (9) and αs is a complete join morphism, we have

αs(F̂dJP K)Θ =
⋃

i:A←BAP, p∈p, v∈v, ϑ∈mgu(p(v),A)

αs(〈[` p(v)], ε〉
Li:A←B/ϑ
−−−−−−−→ F̂�d[i:A← �B]ϑΘ)

and by (12)

F̂sJP K(αs(Θ)) =
⋃

i:A←BAP

{ϑ(A) | ϑ ∈ F̂�s[i:A← �B] (αs(Θ)) {ε}}

so we have to prove that for all i:A← B A P , we have

αs(〈[` p(v)], σ〉
Li:A←B′B/ϑ
−−−−−−−−−→ F̂�d[i:A← B′�B] (ϑ ↑ σ) Θ)

= {ϑ′(A) | ϑ′ ∈ F̂�s[i:A← B′�B] (αs(Θ)) {σ}} where ϑ ∈ mgu(p(v), A)

We proceed by induction on the length of B

• For the base B = ε, we have

αs(〈[` p(v)], σ〉
Li:A←/(ϑ↑σ)
−−−−−−−−−→ F̂�d[i:A← B′�] (ϑ ↑ σ) Θ)

= Hby def. (11) of F̂�d[i:A← B′�](ϑ ↑ σ)ΘI

αs(〈[` p(v)], σ〉
Li:A←/(ϑ↑σ)
−−−−−−−−−→ {〈[a2][i:A← B′�], (ϑ ↑ σ)〉

i:A← M
−−−−−→ 〈[a2],

(ϑ ↑ σ)〉})
= Hby def. αsI

{(ϑ ↑ σ)(p(v))}
= {σ(A)} Hsince ϑ ∈ mgu(p(v), A)I
= {ϑ′(A) | ϑ′ ∈ {σ}}
= HF̂�s[i:A← B′�]αs(Θ){σ} = {σ} by (14)I
{ϑ′(A) | (ϑ′ ↑ σ) ∈ F̂�s[i:A← B′�]αs(Θ){σ}} .

• For the induction step B = BB′′, we have

αs(〈[` p(v)], σ〉
Li:A←B′BB′′/ϑ
−−−−−−−−−−−→ F̂�d[i:A← B′�BB′′]ϑΘ)

= Hby def (10) of F̂�d[i:A← B′�BB′′]ϑΘI
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αs(〈[` p(v)], σ〉
Li:A←B′BB′′/ϑ
−−−−−−−−−−−→ {(〈[a2][i:A← B′�BB′′], [a2][i:A← B�

B′′], ϑ〉 ⇑d η
`−→ 〈$, ϑ′〉) ; θ | η `−→ 〈$, ϑ′〉 ∈ Θ.B′ ∧ σ ∈ mgu(B,B′) ∧ θ ∈

F̂�d[i:A← B�B′′] (ϑ ↑ σ ↑ ϑ′) Θ}) , X

We have H ∈ X if and only if there exists a σ′ such that H = σ′(p(v)) and

〈[` p(v)], σ〉
Li:A←B′BB′′/ϑ
−−−−−−−−−−−→ (〈[a2][i:A ← B′�BB′′], [a2][i:A ← B�B′′],

ϑ〉 ⇑d η
`−→ 〈$, ϑ′〉) is successful for B′ so that $ = [a2], ϑ′(B) ∈ αs(Θ), and,

by definition of inlaying in Sec. 12.1, σ′ = σ ↑ ϑ ↑ ϑ′.

By induction hypothesis for B′′, αs(〈[` p(v)], σ ↑ ϑ′〉
Li:A←B′BB′′/ϑ
−−−−−−−−−−−→ F̂�d[i:A

← B′B�B′′]ϑΘ) = {ϑ′′(A) | ϑ′′ ∈ F̂�s[i:A ← B′B�B′′] (αs(Θ)) {σ ↑ ϑ′}} and
so σ′ = σ ↑ ϑ ↑ ϑ′ ∈ F̂�s[i:A← B′�BB′′] (αs(Θ)) {σ} proving that

H ∈ {ϑ′′′(A) | ϑ′′′ ∈ F̂�s[i:A← B′�BB′′] (αs(Θ)) {σ}} . �

The fixpoint s-semantics of [46] is an abstract interpretation of the fixpoint
bottom-up most general maximal derivation semantics of Sec. 12.2.

Theorem 24 (G. Levi et al.) SsJP K = lfp
⊆ F̂sJP K . e

Proof By Lem. 23 and [49, Th. 7.1.0.4 (3)]. �

13 Conclusion

We showed how abstract interpretation of the maximal trace semantics of a
simple grammar-based language, akin the semantics of context-free grammars
and pushdown automata [35], can provide a comprehensive view of most well-
known semantics of resolution-based languages such as logic programming and
Prolog. Other semantics can be derived similarly, for instance for modelling
infinite computations by combining inductive and co-inductive semantics [50]
and for modelling different forms of negation [27]. The result is a uniform
specification framework for interpreters of logic programs which can be sys-
tematically designed by consecutive abstractions of a basic abstract machine.
The analogy with the semantics of grammars is, in this context, striking. We
believe that both the semantics of grammars and that of resolution-based lan-
guages can be specified in a uniform way as instances of a unique transition
system semantics involving more expressive grammars inspired by Prolog,
rewriting, etc. Having formalized logic program semantics by abstract inter-
pretation, may provide the way to integrate its correctness proofs with that of
its decidable abstractions, such as those for static analysis. Because abstrac-
tion can be constructed by calculational design [51], as shown in the formal
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proofs, a proof assistant or theorem prover can be used to automatically check
or perform these calculations. This leads to formally verified implementations
and static analyzers.
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