Abstract Interpretation of Resolution-Based
Semantics

Patrick Cousot

Ecole Normale Supérieure, 45 rue d’Ulm, 75230 Paris cedex 05 (France) &
Courant Institute of Math. Sciences, New York University, New York, NY 10012

Radhia Cousot

CNRS & Ecole Normale Supérieure, 45 rue d’Ulm, 75230 Paris cedex 05 (France)

Roberto Giacobazzi

Universitd degli Studi di Verona, Dipartimento di Informatica, Cd Vignal 2 Strada
Le Grazie 15, 37134 Verona (Italy)

Abstract

We extend the abstract interpretation point of view on context-free grammars by
Cousot and Cousot to resolution-based logic programs and proof systems. Starting
from a transition-based small-step operational semantics of PROLOG programs (akin
to the Warren Machine), we consider maximal finite derivations for the transition
system from most general goals. This semantics is abstracted by instantiation to
terms and furthermore to ground terms, following the so called ¢ and s semantics
approach. Orthogonally, these sets of derivations can be abstracted to SLD-trees,
call patterns and models, as well as interpreters providing effective implementa-
tions (such as PROLOG). These semantics can be presented in bottom-up fixpoint
form. This abstract interpretation-based construction leads to classical bottom-up
semantics (such as the s-semantics of computed answers, the c-semantics of correct
answers of Keith Clark, and the minimal-model semantics of logical consequences
of Maarten van Emden and Robert Kowalski). The approach is general and can be
applied to infinite and top-down semantics in a straightforward way.

Key words: Abstract interpretation, Bottom-up semantics, Herbrand semantics,
Logic programming, s-semantics.

Email addresses: Patrick.Cousot@ens.fr, pcousot@cs.nyu.edu (Patrick
Cousot), Radhia.Cousot@ens.fr (Radhia Cousot),

roberto.giacobazzi@univr.it (Roberto Giacobazzi).
© Elsevier Science, Amsterdam, The Netherlands, 2008.

Preprint submitted to Elsevier 17 July 2009

1 Introduction

The semantics of logic programs is characterised by a variety of forms and
methods, ranging from the more traditional operational and denotational se-
mantics towards the more logic-based ones related with the view of the in-
terpreter as a theorem prover. Examples of this variety include the semantics
of predicate logic as a programming language in [1,2], the operational and
denotational semantics of PROLOG [3-7], the logical models of PROLOG con-
trol features [8-10], the (fixpoint) observational models in [11-19], and the so
called or-compositional models in [20-25], the last culminating in the so called
s-semantics approach to logic program semantics [26], which is comprehensive
of different observational semantics.

The essence in the study of comparative semantics in logic programming is
the attempt to capture the difference between the various aspects of logic as a
programming language, ranging from its view in theorem proving to its use in
concrete programming. Theorem proving corresponds to restricting programs
as theories of definite Horn clauses. In this context both a model-theoretic se-
mantics (unique Herbrand representative model) and a proof-procedure (e.g.
SLD resolution) are given [1,27]. Programming instead considers resolution
strategies and backtracking control mechanisms such as cut as essential parts
of the art of logic programming [28,29]. For these latter aspects, the model-
theoretic semantics is not adequate. This wide range of possible interpretation
for a logic program has led researchers to develop a number of different se-
mantics capturing specific aspects of logic as a programming language, from
operational (resolution-based) semantics to denotational, model-theoretic, etc.
Several attempts have been made in order to construct a comprehensive hierar-
chy of semantics [18], some of them using abstract interpretation for specifying
semantics at different levels of abstraction [30-33].

In this paper we develop a hierarchy of semantics for resolution-based lan-
guages by incremental abstractions of a maximal trace semantics. The trace
semantics is constructed by generalising transitional semantics of context-free
grammars akin push-down automata to resolution-based derivations of Horn-
like clauses. The result is a hierarchy of top-down and bottom-up semantics of
logic programs including as abstract interpretations most of the well-known
semantics: the partial correctness semantics, the success semantics, the ground
(Herbrand) models, the SLD-semantics, the breadth-first semantics and the
cut semantics. All semantics are derived as abstract interpretations, where
consecutive abstractions specify a PROLOG interpreter modelling the different
observable properties of the program.

2 Mathematical Notations

We let B £ {true, false} be the Boolean truth values (A is conjunction, etc),
7,n,... € XU be the set of natural numbers A\, u € ® be the class of ordinals
both with infimum 0 and natural ordering <, (x;, i € A) be the indexed family
of elements z; indexed by i € A which is a sequence when (A, <) is totally
ordered with infimum (e.g. A is Q0 or ®). The concatenation of sequences is
denoted by juxtaposition and ((z;;, j € Ao), i € Ay) is (x4, (i,) € A1 X Ay)
where A; x A, is totally ordered lexicographically.

3 Languages

Let </ be an alphabet, that is a finite set of letters. A sentence o € o/* over
the alphabet </ of length |o| = n > 0 is a possibly empty finite sequence
0109 ...0, of letters o1,09,...,0, € &. For n = 0, the empty sentence is
denoted € of length |¢] = 0. A language ¥ over the alphabet o7 is a set
of sentences ¥ € p(a7*). We represent concatenation by juxtaposition. It is
extended to languages as ¥’ 2 {00’ | ¢ € ¥ Ao’ € ¥'}. Given a set &
= {[,|i€ AyuU{], | i € A} of matching parentheses and an alphabet 7,
the Dyck language Dy, C (P U)" over & and & is the set of well-
parenthesized sentences over & U 7. In any sentence 0 € Dy s the number
of opening parentheses [, for ¢ € A is equal to the number of matching closing
parentheses |, while in any prefix of o there are no fewer opening parentheses
than closing parentheses. A pure Dyck language has &/ = @. The parenthesized
language over & and o is Py oy £ {[0], |1 € ANo €Dy \ {e}}.

4 Syntax of Logic Programs

We let [be a set of function symbols f € [, f/n € F/n be the subset of
function symbols of arity n > 0 (unless otherwise stated [/0 # &), v be
a set of variable symbols v € v (such that f Nv = &), ¥ € V be possibly
empty sequences of variable symbols ¢ = vy, ..., v,, n > 0 (€ being the empty
sequence of variables), t be the set of terms T, U, ... € t built on [and v, p
be a set of predicate symbols p € p (such that pNv = & and pN T = &),
p/n € p/n be the subset of predicate symbols of arity n > 0, A be a set of
atoms A, B € A built on p and t, B € B be possibly empty sequences of
atoms B = B;...B,, n > 0 (e being the empty sequence of atoms), C' € C
£ A x B be definite clauses of the form C' = A « B where the head A € A
is an atom and the body B € B is a sequence of atoms (B is empty for unit
clauses), P € P* = [0,n][— C be the set of all PROLOG programs which are

non-empty sequences of clauses P = P,...P,_; of length |[P| =n > 1, P £

Uns1 P" be the set of all PROLOG programs, L £ ¢(C) \ {@} be the set o

A

=

logic programs P € 1L which are nonempty (unordered) sets of clauses, G
{p(v) | p € pAv € v} be the set of most general atomic goals. There is
an obvious abstraction of a PROLOG program P € P™ into a logic program
a“(P) 2 {P,..., P} € L which forgets about the ordering of clauses.
Example 1 The following PROLOG program defines natural numbers (0 €
f/0,s € f/1,n € p/l and = € v).

We let vars(e) be the set of variables of the syntactic expression e € e. If & €
o(e) is a set of syntactic expressions then ground(&) = {e € & | vars(e) = @}
is the subset of ground expressions. The subset of ground expressions in e is
written € = {e € e | vars(e) = @}. For example is the set of all ground
terms, A is the set of all ground atoms, etc.

5 Substitutions

A substitution 9,0 € S is a map ¥ € v — t whose domain dom(9) = {v € v |
Y(v) # v} is finite. The result of applying a substitution ¢ to a term 7" is the
instance of T denoted ¥(T). We let inst(T) = {9(T) | ¥ € S} be the set of
instances of term 7' € t and inst(.7) = U{I(T) | Y € SAT € .7} be the set of
instances of a set .7 € p(t) of terms. The empty substitution € has dom(e) =
@. The range of substitution ¥ is rng(d) = U{vars(d(v)) | v € dom(9)}. The
restriction of a substitution ¥ to the variables vars(e) of a syntactic expression
e is J.. The composition ¥ o o is Av « ¥(o(v)). A substitution ¥ is idempotent
whenever ¥ o = 9 or equivalently dom(9)Nrng(d) = &. We let S° be the set
of idempotent substitutions. A renaming p is a (non-idempotent) substitution
which has an inverse p~! such that p=' o p = po p~! = e. The preorder < on
substitutions is ¥ < o (o “is more general than” 1) if and only if there exists
o’ such that ¥ = ¢’ o 0. The corresponding equivalence relation is ¢ ~ ¢ if
and only if ¥ < ¢ and ¥ < 9. [J]~ & {¢ € S| ¥ ~ ¥} is the equivalence class
of 9 €S. .7/ 2 {[¥]~ |V € 7} is the set of equivalence classes of .7 € p(S).
S° /. is the set of idempotent substitutions considered up to renaming. (S°/.,
=) is a complete lattice [34]. It is a complete Heyting algebra when closed by
instantiation.

Similarly for terms T and T, T <X T" (T" “is more general than” T or T “is an
instance of 7 T") if and only if there exists a substitution ¢ such that 9(7") = T

or equivalently inst(T) C inst(T"). The corresponding equivalence relation is
term renaming that is T ~ T" if and only if T <X T" and T" <X T. ﬂg/g is the
set of equivalence classes [T]~, T € .7 augmented with infimum 0.

6 Unification

A substitution 9 is a unifier of a set of terms .7 € p(t) if and only if VT, 7" €
T+ 9(T) = Y(T") in which case 7 is said to be unifiable. A unifiable set
of terms .7 has an idempotent most general unifier o which is unique up to
renaming and we write mgu(.7) = {o}. By convention, we let mgu(7) £ @
when .7 is not unifiable. This notion of unification with respect to a set of
terms is equivalent to unification with respect to a set of equations £ € E
of the form T' = U with T,U € t where & = {T; = U; | i € A} is unifiable
if there exists a substitution ¥ such that ¥i € A : 9(7;) ~ 9(U;) in which
case there exists a most general idempotent unifier mgu(€) of €, which is
unique up to renaming. The set of equations corresponding to a substitution
Vis £(9) 2 {v=9(v) | v € dom(V)}. The parallel composition of idempotent
substitutions 1 € S°/u x S°L — S°L is U T 0 £ mgu(£(9) U £(0)) [34],
which corresponds to the least upper bound (lub) of classes of idempotent
substitutions.

7 Labelled Transition Systems

A labelled transition system is a quadruple (&, £, —, .#) where & is a non-
empty set of states n, £ is a non-empty set of labels {, — € p(& x £ x &)
is the transition relation and & C & is the set of initial states 1. We write

n - for (n, £, n) € — and n #— for V' € & (n, £,) & —.

8 Traces and maximal derivations
8.1 Finite Traces

A finite trace § € O[n + 1] of length |#| = n+ 1, n > 0, has the form 6 =

Mo ~5 My Tt Lo, N, Whence it is a pair § = (0, 0) where § € [0,n] — &
is a nonempty finite sequence of states 8, = n;,i =0,...,nand 0 € [0,n—1] —
£ is a finite sequence of labels 8; = ¢;, j = 0,...,n — 1 (which is the empty
sequence € when |0] = 1).

A finite trace § € ©* is nonempty, finite, of any length so @ £ U,.c;1 oo O[]

The concatenation 6 = @' of traces 6 and ¢’ through label /¢ is extended to
sets. We also need the junction of sets of traces ©,0' € p(@®), as follows

;0205 n 50 0L neony L0 ecoan=n}. (1)
8.2 Mazimal Derivations

A derivation of the labelled transition system S = (&, £, —, .#) is a trace
.
0= b, M .. Mp1 —— N ... generated by the transition system S, that

isVi e [0, |8|[n; £—1> Mit1-

By abuse of notation, a state n is assimilated to the derivation § € O]1]

such that 8, = n and 6 = ¢, while a transition 7 LN 1’ is assimilated to the
derivation 0 € ®[2] such that 6, =17, g = ¢ and 6, = 7.

A prefiz derivation of S = (&, £, —, &) is a derivation of S starting with an
initial state ny € #. A suffiz derivation of S is a derivation of S which is finite
of length n = || and ending with an final state Vn € & : V¢ € £ : —(n, R n).
A mazimal derivation of the labelled transition system S is both a prefix and
a suffix derivation of S.

9 Terminal Labelled Transition System of Prolog Programs
9.1 Labels and Parentheses

We let £ £ 0 U be the set of labels { € £ where 0 £ {(i:C/o| i €
QA C € C A o €S} is the set of opening parentheses while € 2 {1:C) | C €
C A i€ Q} is the set of closing parentheses. A matching pair of parentheses
(i:C/o...i:C)) delimits a derivation for the labelled clause i:C' instantiated
by substitution o.

9.2 Stacks

In the following we use the grammar LALR-based notation in [35] for sets of
clauses. We let stacks w € . & #* for a program P € P be non-empty

sequences of control states k € # = C U.# which are either a clause state in
C £ {[i:A « B.B'] | i:A «— B B’ € P} specifying the control state of the
derivation (B has been derived while B’ is still to be derived) or a marker .#
= {[F A],[H0] | A € A} where [A] is the initial stack marker while [40] is
the final empty stack marker for the beginning (resp. the end) of a derivation
for the initial question A € A. The height of a stack w is its length |w]|.

9.3 States

We let statesn € & 2 . xS be pairs) =(w, V) of a stack @ and a substitution
9. The stack w specifies a return point, i.e., the corresponding clauses, after
a procedure call for a clause while the substitution ¢ is returned by the call.

9.4 PROLOG Labelled Transition System

Given a PROLOG program P € [P, we define a concrete labelled transition
system St[P] £ (&, £, —*, #) (akin to the Warren machine [36,37]). The
set of initial states is & = {([- 4], ¥) | A € AAND € S} where ([~ A], 9)
specifies the goal ¥(A) (most often ¥ is chosen as the empty substitution).
Leti: A «+— B & P means that i: A «— B is a clause of the PROLOG program P
renamed /standardized apart using fresh variables [38]. The labelled transition

relation Lt, e L is

(i:4—B/o
—_——

([F 4], 9) C([HO)i: A" .B], ¥)
if i:A'— Be&P,oecmgu((A),A),Vecol? (2)

(wli:A e B.BB), 0) OBt A BB.BI3:B — B)

if i:A«— BBB',j:B' <« B"& P, o€ mgu(¥(B),B), Y €c 19 (3)

i:AHBD
_

(w[i: A« B.], v) ¢ {w,) it i:A—BeP. (4)

Examples of transitions L5t are given in Ex. 2 below.

The intuition of (2) is that the goal ¥(A) is unified with the head A" of the
renamed apart clause i: A’ + B of the PROLOG program by the most general
substitution ¢ and so it remains to prove o T ¥(B) so [i: A" «+ .B] is pushed
on the stack and o T ¢ is recorded in the state. In particular for the empty

1A conjunction of goals can be handled by adding a clause to the program.

substitution ([- A], ¢) M’_)

prove o(B).

t([HOJ[i: A" « .Bj], o) and it remains to

If and when the proof succeeds, the final marker [40] on the stack will indicate
that the proof is finished while the substitution ¥ in the final state ([-0], ¥")
will be the answer substitution.

The intuition of (3) is that the subgoal J(B) is unified with the head B’ of
the renamed apart clause j: B’ < B” of the PROLOG program by the most
general substitution o and so it remains first to prove o T 9(B”) so [j: B' +
.B”| is pushed on the stack and o T 9 is recorded in the state, and second to
prove B’ as indicated by the control state [i: A « BB.B’] on the stack and
finally to terminate the proof as indicated by the bottom w of the stack.

The intuition of (4) is that the proof of B is finished and so the proof goes on
as indicated by the bottom w of the stack.

The final states are either

o answer substitution states in &*5 £ {([H0],) | ¥ € S} for successful traces,
or

e finite failure states in & £ {(w[i: A « B.BB'], V) |Vj:B « B" & P :
mgu(9(B), B') = @} for failing traces.

10 Most General Maximal Terminal Derivation Semantics of Logic
Programs

10.1 Mazimal Derivations of Logic Programs

The maximal derivations of a PROLOG program P € P are traces for the
transition system S[P] £ (&, £, —*,), as defined in Sec. 8.2.

Example 2 A maximal derivation for the ground goal n(s(s(0))) (the encod-
ing of the natural number 2) as defined by the PROLOG program of Ex. 1
is:

([F n(s(s(0)))], e) {initial state§
(1:n(s(x))n(x)/{z—s(0)} , by (2)5
((HO][1:n(s(z)) < @(2)], {z < s(0)})
(1:n(s(z"))—n(a") /{a'—0} by (3)5

((HB)[1:n(s(z)) < n(2).][1:n(s(2')) — ()], {z — s(0),2" — 0})
(O:n(0)—/e

(by (3)§
((HO][1:n(s(z)) < n(z).[1:n(s(z)) < n(z').][0:n(0) «],
{z < 5(0),2" < 0})
020D by ()3
((HO][1:n(s(z)) < n(z)J[1:n(s(2’)) < n(2’).], {z < s(0),2" — 0})
Lin(s(@)—n(a)) , Iby (4)
((HO][1:n(s(2)) < n(z), {z < s(0),2" — 0})
1in(s(a)n(@)) . Iby (4)
(0], {z < s(0),2" < 0}) o

Example 3 A maximal derivation for the most general non-ground goal n(x)
as defined by the PROLOG program of Ex. 1 is (among many others):

([F n(x)], €) {initial state§
(1:n(s(@’))n(z") {z—s(z")} by (25
((HO][1:n(s(2)) « ()], {z « s(2")})
(1:n(s(@))n(a") /{a'—s(=")} by (3)§
((HO][1:n(s(2")) < n(2).][1:n(s(2”)) < (")),
{z — s(2'), 2" < s(2")})
(0:n(0)—/{z"—0} by (3)5
((HO)[1:n(s(2")) < n(2")J[1:n(s(z")) < n(2").][0:n(0) «],
{z «— s(2), 2’ — s(a"),2” < 0})
SN by (5

([HO][1:n(s(2))) « n(2').[1:n(z") « n(z").],
{z « s(2), 2’ — s(a"),2” « 0})
’ (by (4)§

([HO)[1:n(s(z)) —n(2").], {z — s(@), 2’ — s(z"),z" — 0})
1:n(s(x’))<—n(x’)D ¢

1:in(s(a”))—n(z"))

{by (4)§

([H0], {z « s(a’),2’ « s(a”),2" « 0}) o

The selection of the traces in a set © € p(@) of traces for an atom A € &7 is
denoted ©.A and defined as

(]i:A/HB/O' (]i:AU—B/U

0.A = {n 01n 0eONA~ANANne&ENGe O} (5)

and similarly the traces starting with a given state n € E are denoted ©.n
defined as

o2y ABle gy LEABl oy (©)

10.2 Transitional Most General Mazimal Derivation Semantics

The most general mazimal derivation semantics SY[P] € (@) of a PROLOG
program P € P is the set of all possible maximal derivations for the con-
crete labelled transition system S*[P] of this program P (defined by (2)—(4))
starting from most general goals {p(v) | p € pAv € v}.

SUIPT 2 {no Sy ey = €@+ 1] | 0= 0A (7)
no = (Fp@)],e) A\pepAvevAYie[0,n—1]:n L i A
Ve Vlel —(n, St n)}.

By def. (2)—(4) of —*, a final state 7y such that Vn € . : ¥l € £ : =(n; L
n) is an answer substitution state ny € &*° (of the form n; = ([HO], ¥) where
¥ is the computed answer) or is a finite failure state n; € &*.

Example 4 The trace for n(z) for the PROLOG program of Ex. 1 given in
the Ex. 3 is a most general maximal derivation while the trace for n(s(s(0)))
given in the Ex. 2 is not. O

Semantic derivations are well-parenthesized so that the structure of computa-
tions can be described by trees. Let us define the parenthesis abstraction oP
as follows

P (ww') £ of(w')aP(w), for stacks

a?((i:A« BJo) = (i:A « B, for labels

aP(i:A« B)) £ i:A « B)
a?({w, 9)) £ of(w), for states

aP(no L e Lot Nn) 2 aP(ly)aP(ly) ... aP(0,_1)aP(n,) for traces.

Example 5 The parenthesis abstraction of the following prefix of the max-
imal derivation given in Ex. 3 for the PROLOG program of Ex. 1 and the
non-ground goal n(x)

([Fn(@)],)

(1:in(s@))—n@)/{o—s(=)} |

((HO][L:n(s(2)) < m(a")], {7« s(z)})
(1:n(s(@"))n(e") /{z'—s(=")} ,

((HO][L:n(s(2’)) < n(2).][1:n(s(2")) «— n(z")], {x « s(2), 2" — s(z")})
(1:n(s(z)) < n(2') (1:n(s(z”)) « n(2") 1:n(s(z”)) < n(2"))
1:n(s(2))) « n(:l:/)l) .

Lemma 6 For any prefix derivation 6 of a program P, o?(0) € Dg & is a

pure Dyck language. O
PROOF Let

O

0 = ([Al &) 25 (w1, 91) .. (@n1, Dpot) 2= (0,) € SU[P] .

The proof is by induction on the length of 6 so that we assume, by induc-
tion hypothesis, that o (([F A],) Lo, (w1, V1) ... (Wp_9, Un_2) Loz, (W1,

¥y_1)) is well-parenthesized.

By definition of S¢[P], we have that @, _; # [40] so that w,_; has the form
wWp1 = [F Al or w,_1 = w[i:A — B.B|.

— In case 1, @,_, = [F A], we have n = 1 by definition of -5 and so

qi:AU—B/U

(@1, V1) == (0,) = ([~ A], &) (HOJ[i: A" — .B], o)

by (2) where i: A’ « B & P and ¢ € mgu(A, A’). By definition of S¢[P], we
have

11

o(0) = o (- A1, &) P (Ll A B, o))

=(i:A' « B/oi:A' «— BJo|
which is well-parenthesized.

— In case 2, w, 1 = w[i: A — B.BB|,
<wn—17 ﬁn—l) en_ﬁl) <wna 197L> =

(wlii A — B.BB, g) 32

(w|i:A«— BB.B'|[j: B+ .B"], ¥')
by (3) where i: A« BBB',j:B'— B" & P, 0 € mgu(J(B),B’), ¥ € 0 1 9.
So o?(0) = aP(by)...(j:B «— B"/o)a’([j: B «— .B"])a*([i:A «— BB.B’|
JoaP(w) = aP(ly)...(j:B'«— B"/o [j: B’ <~ .B"]) [i:A «— BB.B']) o?(w)
which is well-parenthesized if and only if a?({)...[i:A «— BB.B']) of(w)

is well-parenthesized, which is the case if and only if o®(([- 4], €) L, (oo,

Y1) ... (wn_1, Un_1)) is well-parenthesized, which is true by induction hypoth-
esis.

— In case 3, w,—; = w[i: A «— B.],

b1 i:A«—BD
s

(Wn_1, UIn_1) —— (@, ¥,) = (w[i:A — B.], V) " {w, V)

by (4) where i: A «— B & P. In this case, we have

af(0) = aP(ly)...aP(b,_1) i: A — B) of(w)
=aP(ly)...aP(l,—1) &P (w[i: A — B.)]
(I A, &) <> (@1, 9) .. (@1, V)

I
)

which is a pure Dyck language by induction hypothesis. n

In particular, Lem. 6 implies that a maximal succesfull derivation 6 = 7, b,

Mo Mot tno, Moy, NMn € &5 of P is well-parenthesized in that o?(f) =

aP(ly)aP(ly)...aP (1) € Dy o is a pure Dyck language.

11 The Hierarchy of Abstractions

We define abstractions of sets of most general derivations to get classical se-
mantics of PROLOG and logic programs.

12

11.1 The Partial Correctness Abstractions

The derivations in the most general maximal derivations semantics S4[P] have
finite success and finite failure derivations. The partial correctness abstractions
forget about finite failures.

11.1.1 Success Abstraction

The success abstraction eliminates finite failures

a¥(©) 2 {05 ([HO), 0) | v eSA0 S ([HO), ¥) € O}
Note that the instantiation of a failure (i.e., a failing derivation) is still a
failure so no potential success behavior is eliminated but the instantiation of a

potential finite success behavior might be a finite failure so not all instantiated
finite failures might have been eliminated yet (see e.g. Sec. 11.2.1).

11.1.2 The Partial Correctness Abstraction Hierarchy

Defining the partial correctness semantics S[P] = o4(S¢[P]), we get the
first dimension in our hierarchy of semantics:

Sd[P] success

SI[P] most general

11.2 The Derivation Instantiation Abstractions

The most general maximal derivation semantics S¢[P] for most general goals
[Fp()], p € p, v € v can be abstracted by instantiating the derivations by
non-ground or ground substitutions.

11.2.1 The Derivation Non-Ground Instantiation Abstraction

The derivation instantiation abstraction maps derivations for most general
goals to derivations for instantiations of these goals.

13

o (@, 9))o £ ((w, ¥, b) where b= (¢ €91 0)

' (m (eacpii, o, 0)o = m LR (i, L 0)o fbAY eV o
£m if bV €910

Oéld(nl ﬂ)t Mo i) 6)0’ L ™ ﬂ)t aid(n/Q i} 0)0 if b
= it =b

o 2 i apo £ 2BV iy 0y v et
£ it €910

a4(0) & {0 |0 c O NG S}

The initial substitution is propagated along traces unless some instantiation
fails along the trace, in which case the trace is truncated, now finishing in a
finite failure.

Example 7 The PROLOG program

0 n(0) «—
1 n(s(z)) < n(z)
2 p(a) «

has the following most general derivation

([Fn(2)],)

(1:n(s(@)n(a’)/{z—s(=)}

((HO])[1:n(s(2')) < m(z")], {2 < s(z')})
(L:n(s(@)n(a")/{z'—s@")} |

((HO][1:n(s(2)) < n(2).][1:n(s(2")) < n(z")],
{r = s(@), 2" —s(z")})

(1:n(0)—/{z"—0} ,

14

((HO][1:n(s(2")) < n(2).][1:n(s(2")) < n(z").][1:0(0) —],
{z «— s(2'),2’ « s(2"),2” « 0})

1 :n(O)<—D

_

((HO][1:n(s(2)) < n(2).][1:n(s(2")) < n(z")],

t

{z — s(2'), 2" — s(z"),2" < 0})
1:n(s(a:"))<—n(:c”)D ¢

((HO][1:n(s(2')) < n(a’)], {z « s(2),2" « s(2”),2" « 0})
Lin(s(a)n())

(0], {z « s(2'), 2" — s(2"),2" — 0})

The instance for the substitution {x « s(a)} leads to the following finite
failure

([Fn(s(a))], {z —s(a)})

(] 1:n(s(a))n(a’)/{z—s(2')2’ —a} ¢

((HO][1:n(s(2)) — wn(2)], {z = s(a),2" —a})
since {2/ «— a} 1 {2/ — s(2")} = 2. 0

More generally, the instantiation of a finite success or finite failure can lead
to an earlier finite failure.

11.2.2 The Deriwation Ground Instantiation Abstraction

The derivation ground instantiation abstraction maps derivations for non-
ground goals to derivations for ground instantiations of these goals. The initial
ground substitution o € S is propagated along traces unless the instantiation
fails in which case the trace is ignored.

a®4(0) £ {d¥(0)o |0 cONTES)

Since program clauses are replaced by their ground instantiations, it is no

longer necessary to keep track of substitutions?.

2 In the following we use the above definition of ground derivations with (use-
less) substitutions so as not to have to consider the particular case where these
substitutions are dropped. So non-ground and ground derivations can be handled
uniformely.

15

o' (@, ¥))o £ (w, b) where b= (0 €91 0)
let (ww), b) = a’® ()0 in

o (([Fp(v)], e))o £ [o(p(v))]

o84 (w, (II:A—<_B/1(}>t 500 L o Mt a8 (), L 0o ifbAY €dlo
£ o if -bvd €970

a8 (w, ﬂt 5 0)0 £ o VAT o, L 0o ifb
I if —b

0¥ EA B) oo 2w 2B e g ity cdlo
2w ity €910

a®4(0) 2 {a® (@) |hcO AT ES)

11.2.8 The Derivation Instantiation Abstraction Hierarchy

By instantiating most general maximal derivation semantics, we get a second
dimension in our hierarchy of semantics relative to the degree of instantiation
of the initial goal.

Sed[P] ground

Sd[P] instantiated /non-ground

SY[P] most general

Of course, this can be combined with partial correctness abstractions. For
example Herbrand models abstract away from finite failures and are relative
to ground derivations only.

16

11.3 The Computational Information Abstractions

A third dimension abstracts away from the detailed information gathered by
derivations on the computations. The abstraction below gets rid of informa-
tion on computation, independently of partial correctness and instantiation
abstractions, so it is a third dimension in the hierarchy of abstractions. Not
all possible computational information abstractions have been considered here,
our aim is to provide a small representative panel only.

11.3.1 The SLD-abstraction

The SLD-abstraction records the set of derivations for a goal in the form of a
SLD-tree (as in [39,28] but keeping in addition the answer substitution). We
encode trees in parenthesized form through a prefix traversal

(A]La[B][4[E][};e[F]01;
T ¢ o[C[I;

[D]1f (]I
Bl
/\ f

d e

so that the syntax of SLD-trees £ € Zis (n > 1)

£ = [i1: Ay =By /01 &5 iip : Aye—B, /9, &] SLD derivation
| ll failure
| ll success

The contradiction in the refutation contains the answer substitution o. A

forest is an indexed family (&;, i € A) of SLD-trees &;, i € A. They naturally
arise in a PROLOG interpreter when considering a sequence of goals (instead
of a set of goals).

The SLD-abstraction collects the nodes of the SLD-tree from the states of
traces.

(4],) = | < 9(A4)/9
(@,) & | (" (=, 1)), V)

17

o’f collects pending subgoals in inverse order on the stack.

o' ((w[i:A — B.BB'], 9)) £ 9(BB')a'" ((w,)
o (([Hal, 9))

(1>

€

The SLD-trees are built from traces by grouping their common prefixes in the
order of the PROLOG program clauses.

a¥(©) 2 {a"()[i1: 60" (O1);. . 5in : L (O0)] N € E N <. <ip A

=) OuAvke[Ln]: 6, = (9] %0 g c o) £ 2} U
k=1
i:CD

X ({0 |n —=* 6 c O} U{[V][] |3 : (o), v) € O}
Example 8 An SLD-derivation tree for the PROLOG program of Ex. 1 is
n(s(s(z)))/e

1:n(s(z1)) « n(zy)

{z1 = s(z)}
|n(s(21))/{a1 — s(2)} |

1:n(s(z2)) « n(z2)
{22 — 2,2 — 29}

‘n(xg)/{xl — s(x),x9 — x,x — xg}‘

0:1n(0) «— 1:n(s(x3)) < n(x3)
{zy — 0} {zy — s(z3)}
{29 2,0 + T, n(z3)/{r) « s(z),zy < z,
Ty« 0} T — T9,x9 — s(x3)}
0:n(0) « 1:n(s(z4)) — n(zs)

{z3 < 0} {z3 « s(24)}

{z1 — s(x), 29 — x,2 — X9,
Ty — s(x3),x3 — 0}

aX can be easily extended to ground derivations as was done in Sect. 11.2

for traces.

18

11.5.2 The PROLOG abstraction

The PROLOG abstraction abstracts a forest (§;, i € A) of SLD-trees &;, i € A
into the set of execution traces corresponding to a depth-first traversal of these
SLD-trees &; (as in the PROLOG interpreter [40]). SLD-trees may have infinite
branches so the execution sequence, defined by transfinite recursion, may be
transfinite (and is truncated to w by PROLOG interpreters, which is a further
abstraction).

o (&, i € A) = (af(&), i € A)

(= BJo|[iv: A — Bi/0h&;..5in s Ay — B, /0, 6]) £
il : Ay — By /91a%(€)) .. i 2 A, — B, /0,0%(&)
af((—B/o|ll) = ¢
(@ 2o

11.3.3 The cut abstraction

Many PROLOG implementations have a cut to trigger backtracking. Programs
can have cuts (denoted !) on the right-handside of clauses. We assume cuts are
kept “as is” in clauses by the transitional and maximal derivation semantics
and by the SLD tree abstraction.

The cut abstraction o™ abstracts a forest (§;, i € A) of SLD-trees &;, i € A
into a (transfinite) execution sequence corresponding to a depth-first traversal
of these SLD-trees ¢ with cut (as in the PROLOG interpreter [41]). If the
program has no cut, o™ boils down to a®.

(&, i € A)) £ (a™(&), i € A)

We use o' for non-deterministic traversal of the SLD-trees with backtracking.
In nondeterministic mode, the SLD-tree is traversed in depth-first order, top-
down, left to right.

o (Bl 2 ¢
o"(FD) 2 0

19

a!n([ir: Ay — Bi/%h&;. . 5in 0 Ap — By /9, &)
2 (2 BJo]ir: A — Bi/11a"(&)...in : Ay — Bu/U,a"(&,) if ! ¢ B

We go into deterministic traversal mode the first time a clause with a cut is
encountered in nondeterministic traversal mode. We use a'® for deterministic
traversal of the SLD-trees with backtracking cut after the first success.

o"(— BB/ /o] i1 : Ay By/0h&y;. s+ Ay — By /0, 6]
£ let <7T, *) = a!d(top, [[Zl . Al — 31/19151; ceey

m T

The deterministic depth-first traversal of the SLD-tree with a'? goes top-down,
left to right until the first success. The deterministic traversal abstraction o'
returns failure if resolution failed and success when it succeeded so as to keep
track of failures until the first success.

The deterministic traversal abstraction o'® has a marker parameter ¢ = top
or below to distinguish the level of the first encountered clause with a cut.
The level marker ¢ = top is used in deterministic mode when the first cut
is encountered. The level marker ¢ is then set to below when traversing the
SLD-trees at lower levels.

a(¢,|— B/ol[]) £ (e, failure)
oz!d(ﬁ, [£ (o, success)
aM(t[— BJo| [iv: Ay — By/01&1;. .5+ Ay — B /9 &0])

L let (m, f;),i=1,...,n) & (a"“(below, &), i =1,...,n) in

if /n\(fZ = failure) then
i=1

(i1 : Ay — By /Uy iy 2 Ay — B JU, T, failure)

else
< i1 : Ay« By/Umy .. iy A — B Oy, success)
k—1
where \ (f; = failure) A (fi = success)
i=1

20

We go on in deterministic mode at lower levels where cuts are ignored. We also
go on in deterministic mode at top level before the last cut. Indeed all cuts
but the last one in the righthand side of a clause are useless hence ignored.

if ((=top = ! € B) then

Oé!d(& Hzl : Al — Bl/ﬁlgl; s ;in : An — Bn/ﬂn énﬂ)
£ Oz!d(f, [i1 : Ay — B1/%i&;. . 50 0 Ay — By /9, &)

We go back in nondeterministic traversal mode after the last cut in the top
level clause.

if ! ¢ B then

o(top,|— 1 B/o|[i : Ay — By/0i&1;. . ;in : Ay — B /U &)
£ (a"(— B/o|[ir: Ay — Bi/th&s; .. iin : Ay — B /0, &),)

Therefore the SLD-tree is traversed in depth-first order, top-down, left to right
in nondeterministic mode with backtracks until a clause containing a cut is
encountered. The SLD-tree traversal goes on with that clause in determin-
istic mode without backtrack and goes back to nondeterministic mode only
after the last cut of the first clause with a cut encountered in the SLD-tree
nondeterministic traversal.

Example 9 The cut semantics of the following program

0: p(x,y) — q(x) ! £(y)
1: q(a) <
2: q(b) «
3: r(c) «
4: r(d) «

contains exactly the two following executions

o | —p(z,y)/e| 0:p(z',y) «— q(@') ! r(¥)/{z — 2',2" — z,y — ¥,y — y}

‘% q(@)/{x — 22" —x,y — v,y <—y}‘1:q(a) — Hrx—a 2/ —zy—

Y,y —y,x — a}‘<— r(y){x — 22/ —z,y — ',y —y, 2 — a}‘B:r(c) —
e — o' 2" — 2y — ¢,y —y o —a} {ov —2 0 —z,y—y.y —
y, o' — a,y «— c}

o =P y)/eo:p(ay) — q@) ' x(y)/{z — 2'.a" — @y — ¢y — y}
‘% q(2)/{x — 2,2 —x,y — v,y <—y}‘1:q(a) — Hr—a 2/ —zy—

Y,y —y,x — a}‘<— r(y){x — 22/ —z,y —y,y —y, o — a}‘4:r(d) —

21

/{I<—$,,JJ’ <—x,y<—y’,y’ <—y,x' - a} {x<—$/,l’, %x,y<—y’,y’ «—
y, ' —a,y —d} o

11.3.4 Lazy backtracking

Some implementations of PROLOG like the Ciao Prolog System [42] have lazy
backtracking meaning that the system will backtrack only as necessary to
obtain one solution (at the top level) and will not look for more solutions. This
lazy backtracking abstraction of abstracts a forest (&, i € A) of SLD-trees &,
i € A into a (transfinite) execution sequence corresponding to a depth-first
traversal of these SLD-trees & until the first success at the top-level

(&, i€ AY) 2 (let (m, -) = a"(top, &) inm, i € A) .

Example 10 The lazy backtracking semantics of the program of Ex. 9 con-
tains only the first of the two executions. O

11.3.5 The BF-semantics
The breadth-first abstraction explores the forest (§;, i € A) by traversal of
each tree &, i € A in the forest level by level.

aP((&, i € A)) & (0" (&), 1 € A)aP((a® (&), i € A))

(where concatenation of sequences is denoted by juxtaposition). The explo-
ration of the roots

a® (= BJo][ir: Ay — B1/0nés;. . 3in : Ap — By /0n &) £
‘= BJoJAy — By /i, ...; Ay — B/
o™ (= B/o|[)) £ ¢
a® (o]) £ o

is followed by the breadth-first exploration of the sons of each tree &;, 7 € A
OéBS([[Zl : Al — Bl/ﬁngl; s ;in : An — Bn/ﬁn gn]D é 51 .. gn

11.3.6 The call-patterns abstraction

The call-patterns abstraction collects the goal, call-patterns and the answer
substitution for each derivation, including those leading to finite failures [43].

22

aP((&, i€ A)) 2 (J{aP(&) | ie A} SLD derivation forest
aP((— Afo|[i1: Ay — By/V1 &5 in 0 Ay — Bo/Un6a]) £ SLD tree
o= Afo|[i1: Ay — By /1 &i;. 5 it An e B/, &) (0(A))
o/p([i1: A« By/91 &5 5in s Ay By /0, A =
{{o(A), o(B)} U J a"(&)(A)

i=1

o/p(hHa & @ failure
o/p(A" & {{o(4"), [HO])} success.

Combining with the o abstraction, this can also be understood as the fol-
lowing abstraction of the derivation semantics

a?(©) = (J{a”(0) |0 € O}
aP(([- A, 9) Lastomp 0) = {(9(A4), 9(A))} Ua®(0)9(A)

(]J :B'—B" /o

o’({w[i: A — B.BB], ¥) LO)AT L {(9(A), 9(B))} UP(0)A

P ((wliA — BY, 0) 247 e
o?(wli:A — B.BB'], 9

)
o ({[H8],)

>

)

A

VA failure
VA" £ {(9(A), [HO))} success.

P (9)A

(1>

The above abstraction defines success/correct call patterns since finite failure
are disregarded. An alternative is to consider failure call patterns by redefin-
ing

°((wli: A« B.BB'], 9))A' & (9(A), []) failure

where [-!] marks failure.

Example 11 For the following PROLOG programs, we have

23

0:p(a) —

1:p(x) — 0:p(z) —

2:q(z) < p(z) 1:q(z) < p(z)

SPIP] £ {{p(a), p(a)), (p(a), [HO]) SP[P'] = {(p(x), p(x)), (p(x), [HO])
(p(z), p(z)), (p(=), [HO]) (a(2), a(@)), (a(z), p(z))
(a(a), q(a)),{(q(a), p(a)) (q(z), [HOD}
(a(a), [HO]).(a(=), q(=))
(a(2), p(2)), (a(z), [HO])}

11.8.7 The Model Abstraction

The model abstraction collects answers in the call patterns
a™(K) £ {Aen| (4, [HO) € K}

Example 12 For Ex. 11, we have

S™[P] = {p(a),p(z),q(a),q(x)} S™[P'] = {p(x),q(x)}

11.3.8 The Computational Information Abstraction Hier