
Hiding Information in Completeness Holes
New perspectives in code obfuscation and watermarking

Roberto Giacobazzi
Dipartimento di Informatica

Università degli Studi di Verona
Strada Le Grazie 15, 37134 Verona, Italy

E-mail: roberto.giacobazzi@univr.it

Abstract

In this paper we show how abstract interpretation,
and more specifically completeness, provides an adequate
model for reasoning about code obfuscation and water-
marking. The idea is that making a program obscure, or
equivalently hiding information in it, corresponds to force
an interpreter (the attacker) to become incomplete in its at-
tempts to extract information about the program. Here ab-
stract interpretation provides the model of the attacker (ma-
licious host) and abstract interpretation transformers pro-
vide driving methods for understanding and designing new
obfuscation and watermarking strategies: Obfuscation cor-
responds to make the malicious host incomplete and water-
marking corresponds to hide secrets where incomplete at-
tackers cannot extract them unless some secret key is given.

1. Introduction

Protection via obscurity is gaining more and more atten-
tion as a practical method for DRM and IPP in software
design. Malicious host attacks exploit sensitive information
leakage e.g., by source code analysis, knowledge extraction
by static and dynamic analysis, program decomposition for
code reuse, source code disassembly and decompilation for
reverse engineering, and integrity corruption for code hak-
ing [36]. Negative results on the impossibility of perfect
and universal obscurity, such as [4], did not dishearten re-
searchers in developing methods and algorithms for hiding
sensitive information in programs. As well as Rice’s theo-
rem represented the greatest challenge for the development

of automatic program analysis and verification tools, the im-
possibility of obfuscation against malicious host attacks is a
major challenge for developing concrete techniques which
are sufficiently robust that an attacker is in trouble for a
sufficient amount of time in trying to defeat them. Code
obfuscation, software watermarking and steganography are
successful examples of these tools, gaining an increasing
importance in the quality of critical software products [11].

Hiding information means both hiding as making it im-
perceptible and obscuring as making it incomprehensible
[43]. In programming, perception and comprehension of
code’s structure and behaviour are deep semantic concepts,
which depend on the relative degree of abstraction of the
observer, which corresponds precisely to program seman-
tics. In this paper we show that abstract interpretation
can be used as an adequate model for developing a unify-
ing theory of information hiding in software, by modeling
observers (i.e., malicious host attackers) O as suitable ab-
stract interpreters. An observation can be any static or dy-
namic interpretation of programs intended to extract proper-
ties from its semantics and abstract interpretation [14] pro-
vides the best framework to understand semantics at dif-
ferent levels of abstraction. The long standing experience
in digital media protection by obscurity is inspiring here.
It is known that practical steganography is an issue where
compression methods are inefficient: “Where efficient com-
pression is available, information hiding becomes vacu-
ous.” [3]. This means that the gain provided by compres-
sion can be used for hiding information. This, in contrast to
cryptography, strongly relies upon the understanding of the
supporting media: if we have a source which is completely
understandable, i.e., it can be perfectly compressed, then
steganography becomes trivial. In programming languages,

a complete understanding of semantics means that no loss
of precision is introduced by approximating data and con-
trol components while analysing computations. Complete
abstractions [15, 34] model precisely the complete under-
standing of program semantics by an approximate observer,
which corresponds to the possibility of replacing, with no
loss of precision, concrete computations with abstract ones
—some sort of perfect semantic compressibility around a
given property. This includes, for instance, both static and
dynamic, via monitoring, approaches to information disclo-
sure and reverse engineering [18]. The lack of complete-
ness of the observer is therefore the corresponding of its
poor understanding of program semantics, and provides the
key aspect for understanding and designing a new family
of methods and tools for software steganography and ob-
fuscation. Consider the simple statement, C : x = a ∗ b,
multiplying a and b, and storing the result in x. An auto-
mated program sign analysis replacing concrete computa-
tions with approximated ones (i.e., the rule of signs) is able
to catch, with no loss of precision, the intended sign be-
haviour of C because the sign abstraction O = {+, 0,−},
is complete for integer multiplication. If we replace C with
O(C): x = 0; if b ≤ 0 then {a = −a; b = −b};
while b 6= 0 {x = a + x; b = b − 1} we obfuscate the
observer O because the rule of signs is incomplete for in-
teger addition. Intervals, i.e., a far more concrete observer,
are required in order to automatically understand the sign
computed in O(C). We show how this idea can be ex-
tended to arbitrary obfuscation methods and exploited for
code steganography, providing the basis for a unifying the-
ory for these technologies in terms of abstract interpretation.
By some examples and ideas, we show how obfuscation can
be viewed as a program transformation making abstractions
incomplete and at the same time we show how watermark
extraction can be viewed as a complete abstract interpreta-
tion against a secret program property, extending abstract
watermarking [19] to any watermarking method. Both ob-
fuscation and watermarking can be specified as transform-
ers to achieve completeness/incompleteness in abstract in-
terpretation [29], provided that the transformed code does
not interfere with the expected input/output behaviour of
programs. This latter correctness criteria can be again speci-
fied as a completeness problem by considering abstract non-
interference [27] as the method for controlling information
leakage in obfuscation and steganography. Our approach is
language independent and can be applied to most known ob-
fuscation and watermarking methods, providing a common
ground for their understanding and comparison.

2. Basic mathematical notation

If S and T are sets, then ℘(S) denotes the powerset of
S and S × T denotes the Cartesian product of S and T , If
f : S−→T , Y ⊆ S, and X ⊆ T then f(Y) def= {f(y) | y ∈
Y } and f−1(X) def=

{
x
∣∣ f(x) ∈ X

}
. We will often de-

note f({x}) as f(x) and use lambda notation for func-
tions. f◦g

def= λx. f(g(x)). 〈C,≤〉 denotes a poset C
with ordering relation ≤, while 〈C,≤,∨,∧,>,⊥〉 denotes
a complete lattice C, with ordering ≤, lub ∨, glb ∧, top
and bottom element > and ⊥ respectively. id def= λx. x

and T def= λx. >. The point-wise ordered set of mono-
tone functions, denoted C1

m−→C2, is a complete lattice
〈C1

m−→C2,v,t,u,T, λx. ⊥〉. f : C1−→C2 is (com-
pletely) additive if f preserves lub’s of all subsets of
C1 (emptyset included). Continuity, denoted c−→ , holds
when f preserved lubs’s of chains. Co-additivity and co-
continuity are dually defined. Weaker notions of additiv-
ity have been studied in the context of abstract domain
transformers. f : C1−→C2 is join-uniform [32] if for all
Y ⊆ C1, (∃x̄ ∈ Y. ∀y ∈ Y. f(y) = f(x̄)) ⇒ (∃x̄ ∈
Y. f(

∨
Y) = f(x̄)). Meet-uniformity is defined dually.

3. Abstract domains

Abstract interpretation is a general theory for deriving
sound approximations of the semantics of discrete dynamic
systems, e.g., programming languages [14]. We consider
Galois connection-based abstract interpretation [15]. α :
C m−→A and γ : A m−→C form an adjunction or a Galois
connection (GC), denoted 〈C,α, γ,A〉, if ∀x ∈ C,∀y ∈ A:
α(x) ≤A y ⇔ x ≤C γ(y). α (resp. γ) is the left- (right-)
adjoint to γ (α) and it is an additive (co-additive) function.
Additive and co-additive functions f admit respectively
right and left adjoint: f+ def= λx.

∨{
y
∣∣ f(y) ≤ x

}
and

f−
def= λx.

∧{
y
∣∣ x ≤ f(y)

}
respectively. Remember

that (f+)− = (f−)+ = f (see [5]). If ∀a ∈ A: α(γ(a)) =
a, then 〈C,α, γ,A〉 is a Galois insertion (GI). In GC-based
abstract interpretation the concrete and abstract domains, C
and A, are complete lattices [14]. An upper (lower) closure
ρ : C m−→C in uco(C) (lco(C)) is any idempotent and ex-
tensive: ∀x ∈ C. x ≤ ρ(x) (reductive: ∀x ∈ C. x ≥ ρ(x))
operator. Closure operators are uniquely determined by the
set of their fix-points ρ(C). X ⊆ C is the set of fix-
points of ρ ∈ uco(C) iff X is a Moore-family of C, i.e.,
X = M(X) def= {∧S | S ⊆ X}, ∧∅ = > ∈ M(X), iff X
is isomorphic to an abstract domain A in a GI 〈C,α, γ,A〉,
i.e., A ∼= ρ(C) with ι : ρ(C)−→A and ι−1 : A−→ρ(C)

being an isomorphism, and 〈C, ι◦ρ, ι−1, A〉 is the GI, i.e.,
ρ = γ◦α. Dual properties can be derived for lower closures.
uco(C) is therefore isomorphic to the so called lattice of ab-
stract interpretations of C [15]. If C is a complete lattice
then uco(C) and lco(C) ordered point-wise are also com-
plete lattices. For upper closures 〈uco(C),v,t,u,T, id〉
where for every ρ, η ∈ uco(C), {ρi}i∈I ⊆ uco(C) and
x ∈ C: ρ v η iff η(C) ⊆ ρ(C); (ui∈Iρi)(x) = ∧i∈Iρi(x);
and (ti∈Iρi)(x) = x ⇔ ∀i ∈ I. ρi(x) = x. Dual prop-
erties can be derived for 〈lco(C),v,t,u, id, λx. ⊥〉. In
the following we will find particularly convenient to iden-
tify closure operators (and therefore abstract domains) with
their sets of fix-points. Let ρ ∈ uco(C), its disjunctive com-
pletion is

b
(ρ) = t{η ∈ uco(C)|η v ρ and η is additive}.

ρ is disjunctive iff ρ(C) is a complete sublattice of C iffb
(ρ) = ρ (cf. [15]). If π is a partition (viz. an equiva-

lence relation), then [·]π is the corresponding equivalence
class. A closure η ∈ uco(℘(C)) induces a partition on
C:
{

[x]η
∣∣ x ∈ C }

, where [x]η
def=
{
y
∣∣ η(x) = η(y)

}
.

The most concrete closure that induces the same partition
of values as η is Π(η) def=

b({
[x]η

∣∣ x ∈ C })
. η is parti-

tioning if η = Π(η) [45]. Reduced product and power are
the best known operations to compose abstract domains in
order to exploit respectively the attribute independent and
relational properties of programs [15]. The reduced product
of a family of domains {ρi}i∈I ⊆ uco(C) is ui∈Iρi. The
reduced relative power in [33] is a generalization over arbi-
trary quantales of Cousot’s original reduced power [15]. Let
〈C,≤,1〉 be a semi-quantale [48], i.e. an algebraic struc-
ture where 〈C,≤〉 is a complete lattice and 1: C×C−→C

is an associative, commutative, and additive binary opera-
tion. Given a pair of Galois connections between a concrete
domain C and two domains A1 and A2: 〈C,α1, γ1, A1〉
and 〈C,α2, γ2, A2〉, we define the (relative) reduced power
of A1 and A2, as the set A1

1−→D2 ⊆ A1
m−→A2 of all

the monotone functions defined as λx. α2(c 1 γ1(x))
with c ∈ C. We have that 〈C,α, γ,A1

1−→A2〉 with
α

def= λc. λx. α2(c 1 γ1(x)).

4. The programming language

We consider a simple C-like non-deterministic imper-
ative language, where programs in P are commands over
standard expressions e, evaluated in the set of values V:

c ::= nil | x = e | c ; c | c � c | return(e) |
if e {c} {c} | while e {c}

Var(P) will denote the set of variables of P . The oper-
ational semantics is standard [51] and naturally induces a

transition relation on the set of states Σ, denoted , speci-
fying the relation between a state and its possible successors
in a transition system 〈Σ, 〉. For the sake of simplicity
we consider only finite (terminating) computations in Σ∗.
The empty sequence is denoted ε. The length of σ ∈ Σ∗

is denoted |σ| ∈ N and its i-th element is denoted σi. A
non-empty finite trace σ ∈ Σ∗ is a finite sequence of con-
secutive states such that for all i < |σ|: σi σi+1. The
maximal finite trace semantics [16] of a transition system
associated with a program P is denoted LP M, where LP Mn =
{σ ∈ Σ∗||σ| = n, ∀i ∈ [1, n) . σi−1 σi} and, if T ⊆ Σ
is the set of final/blocking states, then LP M =

⋃
n>0{σ ∈

LP Mn|σn−1 ∈ T}. If σ ∈ LP M, then σa and σ` = σ0 denote,
respectively, the final and initial state of σ. The semantics
LP M has been obtained in [16] as a fix-point of the mono-
tone operator FP : ℘(Σ∗) m−→℘(Σ∗) defined on traces as
FP (X) def= Σ ∪X _ LP M2, where _ is sequence concate-
nation. In this case: LP M = lfp⊆∅FP

def=
⋃
n∈N F

n
P (∅) [16].

The (angelic) denotational semantics associates (forward)
input/output functions with programs, by ignoring non-
termination. This semantics is derived in [13] by abstract
interpretation from the maximal trace semantics with ab-
straction D(X) def= λs ∈ Σ. {σa|σ ∈ X ∧ s = σ`}, such
that 〈〈℘(Σ∗),⊆〉,D,D+, 〈Σ−→℘(Σ),v〉〉 is a GI. It
is well known that a function [[P]] can be associated
with each P ∈ P, inductively on its syntax, such
that [[P]] def= D(LP M). The weakest liberal precondi-
tion semantics is instead defined as wlpJP K def= W(LP M)
where W(X) def= λs ∈ Σ. {σ`|σ ∈ X ∧ s = σa}, such
that 〈℘(Σ∞),⊆〉,W,W+, 〈〈Σ−→℘(Σ),v〉〉 is a GI. Note
that, when lifted to sets of states, [[·]] and wlpJ·K are adjoint
functions, i.e., [[P]]+ = wlpJP K.

5. Soundness

There are two equivalent ways to express the soundness
of an abstraction [15]. Let f : C m−→C, 〈C,α, γ,A〉 be a
GI, and f] : A m−→A. Then 〈C,α, γ,A〉 and f] provide a
sound abstraction of f if α◦f ≤ f]◦α, or equivalently (by
adjunction) if f◦γ ≤ γ◦f]. The best correct approximation
of f is f bca def= α◦f◦γ (or equivalently γ◦α◦f◦γ◦α). It is
known that f] is sound iff f bca v f] and this implies that
α(lfp(f)) ≤ lfp(f bca) ≤ lfp(f]) [15]. In the following, if
[[P]] is specified as fixpoint of (a combination of) predicate-
transformers FP : C c−→C, and ρ ∈ uco(C), we denote
by [[P]]ρ the (fixpoint) semantics associated with F bcaP =
ρ◦FP ◦ρ. [[P]]ρ is the best correct abstract interpretation of
P in ρ. In this case ρ([[P]]) ≤ [[P]]ρ.

6. Completeness

While the above definitions of soundness are equivalent,
they are not equivalent when equality is required, i.e., when
we consider completeness [15, 34, 30]. Even if both imply
that γ◦α([[P]]) = [[P]]γ◦α, α◦f = f]◦α means that no loss
of precision is accumulated by approximating the input ar-
guments of a given semantic function while f◦γ = γ◦f]

means that no loss of precision is accumulated by approx-
imating the result of computations on abstract objects. We
will follow [30] where the first is called backward (B) and
the second is called forward (F) completeness. The key
point in this construction is that there exists an either B

or F-complete abstract function f] in an abstract domain
ρ ∈ uco(C) iff the best correct approximation ρ◦f◦ρ of
f is respectively either B or F complete [34], respectively
ρ◦f = ρ◦f◦ρ or f◦ρ = ρ◦f◦ρ. This means that both F and
B completeness are properties of the underlying abstract
domain and of the concrete function f . Therefore, by defi-
nition, completeness can be achieved either by transforming
abstract domains or by transforming functions, which are in
our case semantics.

6.1 Domain completeness

The problem of making abstract domains B-complete
has been solved in [34]. These results have been ex-
tended to F-completeness in [30]. Let f : C c−→C and
ρ, η ∈ uco(C). 〈ρ, η〉 is a pair of B(F)-complete abstrac-
tions for f if ρ◦f = ρ◦f◦η (f◦η = ρ◦f◦η). In the following
we denote by F(C, f) def=

{
〈ρ, η〉

∣∣ f◦η = ρ◦f◦η
}

and
B(C, f) def=

{
〈ρ, η〉

∣∣ ρ◦f = ρ◦f◦η
}

. A pair of domain
transformers can be associated with any completeness prob-
lem. We follow [26, 31] by defining a domain refinement
and simplification as any function τ : uco(C) m−→uco(C)
such that X ⊆ τ(X) and τ(X) ⊆ X respectively. In [34]
and [30], a constructive characterization of the most abstract
refinement, called complete shell, and of the most concrete
simplification, called complete core, of any domain, mak-
ing it F or B complete, for a given continuous function f , is
given as a solution of a simple domain equation. Consider
the following basic operators on closures:

RF
f

def= λX.M(f(X))
RB
f

def= λX.M(
⋃
y∈X max(f−1(↓y)))

CF
f

def= λX.
{
y ∈ C

∣∣ f(y) ⊆ X
}

CB
f

def= λX.
{
y ∈ C

∣∣ max(f−1(↓y)) ⊆ X
}

Let ` ∈ {F,B}. In [34] the authors proved that the
only interesting cases, as far as the refinement and sim-
plification towards `-completeness are concerned, are re-
spectively the most concrete β w ρ such that 〈β, η〉
is `-complete and the most abstract β v η such that
〈ρ, β〉 is `-complete. The `-complete shell of η is
R
`,ρ
f (η) def= η uR`f (ρ) and the `-complete core of ρ is

C
`,η
f (ρ) def= ρ t C`f (η). Note that, when f is additive

max
{
x
∣∣ f(x) ≤ y

}
=
∨{

x
∣∣ f(x) ≤ y

}
= f+, and

therefore B(C, f) = F(C, f+) (cf. [30]). Clearly, when
we consider f : C c−→C and the constraint η =
ρ, the above construction requires a fixpoint iteration
on abstract domains: R`f (ρ) = gfp(λX. ρ uR`f (X)) and
C`f (ρ) = lfp(λX. ρ t C`f (X)) are called respectively the
absolute `-complete shell and core of ρ for f . Note that
R`f ∈ lco(uco(C)) and C`f ∈ uco(uco(C)) (see [34]). It
is worth noting that `-complete cores and shells are adjoint
abstract domain transformers, i.e., for any ρ, η ∈ uco(C):
C`f (η) v ρ ⇔ η v R`f (ρ), which, by definition, implies
that C

`,η
f (ρ) v ρ ⇔ η v R

`,ρ
f (η).

6.2 Semantic completeness

Because in general B(C, f) = F(C, f+), then we have
B(C, [[P]]) = F(C,wlpJP K). Being F-completeness usu-
ally simpler to handle (cf. [30]), in the following of this sec-
tion we consider F-completeness only. The problem of min-
imally transforming semantics in order to achieve (F-) com-
pleteness has been firstly addressed and solved in [29]. The
authors proved that the set {f : C m−→C | ρ◦f ◦η = f ◦η}
is an upper closure operator of 〈C m−→C,v〉, and it is a
lower closure iff ρ is additive. This means that there exist
the closest complete approximations from above and from
below of any given (possibly incomplete) semantics. For
any f ∈ C m−→C and η, ρ ∈ uco(C) define:

F↑η,ρ
def= λf.λx.

{
ρ ◦ f(x) if x ∈ η(C)
f(x) otherwise

F↓η,ρ
def= λf.λx.

{
ρ+ ◦ f(x) if x ∈ η(C)
f(x) otherwise

If f : C m−→C, then

F↑η,ρ(f) =
d{

h : C−→C
∣∣ f v h, ρ ◦ h ◦ η = h ◦ η

}
F↓η,ρ(f) =

⊔{
h : C−→C

∣∣ f w h, ρ ◦ h ◦ η = h ◦ η
}

moreover, F↑η,ρ(f) and F↓η,ρ(f) are both F-complete and if
ρ ∈ uco(C) is additive then (F↑η,ρ)+ = F↓η,ρ.

+

+
+

-
-

-

F
↑

F
↓

O
↓

O
↑

Minimal complete
transformation

from above

Minimal complete
transformation

from below

Maximal incomplete
transformation

from below

Maximal incomplete
transformation

from above

Figure 1. Basic semantic transformers.

One of the major achievements in [29] is the construc-
tion of a symmetric family of semantics transformers which
induce maximal incompleteness. These are the adjoint op-
erations associated with F↓ and F↑, see Figure 1:

O↑η,ρ(f) def=
⊔{

g : C−→C
∣∣ F↓η,ρ(g) = F↓η,ρ(f)

}
O↓η,ρ(f) def=

d{
g : C−→C

∣∣ F↑η,ρ(g) = F↑η,ρ(f)
}

O↑η,ρ(f) ∈ uco(C−→C) iff ρ is additive and ρ+ is join-
uniform and O↓η,ρ(f) ∈ lco(C−→C) iff ρ is meet-uniform,
where:

O↑η,ρ(f)(x) =
{

(ρ+)+(f(x)) if x ∈ η
f(x) otherwise

O↓η,ρ(f)(x) =
{
ρ−(f(x)) if x ∈ η
f(x) otherwise

All transformed semantics can be made monotone without
afflicting minimality and completeness, see [29] for details.
In this case, when they exist, (O↑↓η,ρ)+ = F↑↓η,ρ.

7. Obscuring code

Software obfuscation provides protection against
reverse-engineering, the goal of which is to understand
programs. Lexical, data and control-flow obfuscation
are typical examples of obfuscation strategies devoted to
confuse the understanding of respectively lexical, data and
control-flow of a given program.

An obfuscating transformation, according to Collberg et
al., is a program transformation O : P−→P such that 1)
O is a potent transformation, i.e., O(P) is more obscure
or complex that P and 2) P and O(P) have the same ob-
servational behavior [7, 10, 11]. Potency is related with
resiliency. O is a resilient transformation if P is hardly
obtainable from O(P) by automatic transformation (i.e.,
by deobfuscation). While observational equivalence can
be precisely encoded in programming language semantics,

the notion of potency and resilience of an obfuscation are
relatively unexplored notions, where qualitative and quan-
titative methods have been introduced, without a general
agreement on how potency and resilience can be formally
expressed.

Collberg et al., [10] define potency as the relative com-
plexity O(P) with respect to P according to some known
metrics such as code size, number of predicates, number of
methods in OO programs, height of inheritance, and vari-
able dependence length. Successful code obfuscation rely-
ing on these notions of potency include control-flow obfus-
cation by opaque predicate insertion, code flattening, vari-
able splitting, bogus code insertion, and spurious aliases
insertion. Wang et al. [50] relate potency with complex-
ity of static program analysis, notably variable aliasing.
The authors compile the problem of understanding control-
flow into a general aliasing problem, which is NP-hard.
Cloacked programs extend this approach by specifying code
transformations (basically flattening + obfuscated dispatch-
ers) such that the understanding of the obfuscated control-
flow corresponds to the solution of a known (hard) combi-
natorial problem. Here potency is related with the PSPACE
complexity of reachability in dispatchers [6]. In data-type
obfuscation, potency is related with data-refinement [25].
An obfuscated program can be seen as a program with
refined data-types, provided that a GI is established be-
tween source data-types and obfuscated ones. If D is a
data-type, D is a refinement of D if 〈D, α, γ,D〉 is a GI.
Correctness of the obfuscation is here proved by proving
[[P]] = α◦[[O(P)]]◦γ, i.e., by proving that the source pro-
gram is the bca of the obfuscated one with respect to the
data-type refinement abstraction. Here obfuscation corre-
sponds precisely to concretise (in the sense of abstract in-
terpretation) a data-type. Potency is not directly addressed
in this framework, even if it can be related with the distance
between the concrete and abstract data-types, as shown
in [22]. This framework has been successfully applied
for complicating code understanding by program slicing
[37], where α and γ are programs which enlarge slices by
adding dependencies and correctness is proved by requiring
that P and γ; O(P);α are observationally equivalent, i.e.,
[[P]] = α◦[[O(P)]]◦γ. Dalla Preda et al. [22, 21, 23] specify
potency as the ability of O(P) of masking some abstrac-
tions in the lattice of abstract interpretations. Here masking
an abstraction means that there exists a program property
ρ ∈ uco(Σ∗) such that ρ([[P]]) 6= ρ([[O(P)]]). The com-
parison, in the lattice of abstract interpretations, between
masked abstractions and the most concrete abstract domain

preserved by O specifies its potency. Interestingly, in this
framework, any program transformation can be interpreted
as a program obfuscation with respect to some given prop-
erty. Data and control-flow obfuscation by opaque predicate
insertion have been specified in this framework. In partic-
ular, in [21], the authors proved that complete abstractions
are essential to break opaque predicates in control-flow de-
obfuscation.

We follow [22], and refine that notion of potency with
respect to the notion of interpretation. Understanding pro-
grams corresponds to understand their semantics. This is
strictly connected with interpretation. Malicious host un-
derstand code by analysing (either dynamically or stati-
cally) the code. This corresponds precisely to perform
an abstract interpretation, including the dynamic and static
cases as instances with respectively non-decidable and de-
cidable abstractions. In this case, O(P) is an obfuscation of
P if the abstract interpretation of O(P) fails (is less precise)
than the same abstract interpretation of P . Failing precision
means failing completeness, therefore:

obfuscating programs is making abstract interpreters
incomplete

The larger is the set of incomplete interpreters the stronger
is the obfuscation. Let ρ ∈ uco(Σ∗) be a property of the
execution traces of programs in P, and let O : P−→P be
a program transformation, i.e., [[P]] = [[O(P)]]. Assume
that ρ is B-complete for [[P]], i.e., ρ([[P]]) = [[P]]ρ. Then O

obfuscates P for ρ if

[[P]]ρ < [[O(P)]]ρ

This is equivalent to say that ρ([[O(P)]]) < [[O(P)]]ρ, i.e., ρ
is B-incomplete for [[O(P)]]. The following examples will
clarify this idea and show how the basic abstract domain
and semantics transformers for completeness can be used in
this context.

Consider variable splitting used in slicing obfuscation
[37]. Here obfuscation is performed by data-type refine-
ment: variables v ∈ Var(P) are split into pairs of vari-
ables 〈v1, v2〉, such that v1 = f1(v), v2 = f2(v) and
v = g(v1, v2). For instance, if V = ℘(Z):

f1(v) = v ÷ 10
f2(v) = v mod 10

g(v1, v2) = 10 · v1 + v2

Consider the following simple program P

P :
[

v = 0;
while v < N {v + +}

and the corresponding obfuscated code O(P)

O(P) :

v1 = 0;
v2 = 0;
while 10 · v1 + v2 < N {

v1 = v1 + (v2 + 1)÷ 10
v2 = (v2 + 1) mod 10
};

c : v = 10 · v1 + v2

In this case, O(P) obfuscates interval analysis. Consider
the abstract domain ι ∈ uco(℘([−m,m])) of limited inter-
vals, where m ∈ Z is the maximal integer. In this case
ι(x) = [min(x),max(x)]. Interval analysis is defined in
[14], with standard bca abstract interpretations for arith-
metic operations on intervals: �, ⊕, 	. In this case the
abstract collecting semantics for P is [[P]]ι = λv. [0, N],
while [[O(P)]]ι = λ〈v1, v2〉. 〈[0, N−v210], [0, 9]〉 from which

[[O(P); c]]ι = λv. 10� [0, N	[0,9]
10]⊕ [0, 9]

= λv. [0, N]⊕ [0, 9]
= λv. [0, N + 9]

It is clear that the obfuscation here makes the interval ab-
stract interpretation incomplete. This example shows that
code obfuscation defeats abstract interpretation by weaken-
ing the generated invariants. Weak enough generated in-
variants make difficult the understanding of code, because
strong invariants provide sufficient information to under-
stand code behaviour. The role of weakened invariants by
the malicious host analysis is essential in code obfuscation
and models from this point of view the potency for the cor-
responding code transformation. The weaker is the gener-
ated invariant the more obscure is the code.

An element in the flat lattice of arrays is a ∈ array[Z]
where a : Da−→Z is an array with domain Da ⊆ N. Con-
sider the following program computing the Fibonacci’s se-
quence with V = ℘(Z) × array[Z] representing pairs of
values for the integer variable i and integer arrays a, b, c.

P :

a[0] = 0;
a[1] = 1;
i = 2;
while i ≤ N {

a[i] = a[i− 1] + a[i− 2];
i+ +
}

and its obfuscation O(P) by array splitting [25], which is a

generalisation to arrays of variable splitting

b[0] = 0;
c[0] = 1;
i = 2;
while i ≤ N {

if i mod 2 == 0
{b[i÷ 2] = c[(i− 1)÷ 2] + b[(i− 2)÷ 2]}
{c[i÷ 2] = b[i÷ 2] + c[(i− 2)÷ 2]};
i+ +
}

The potency of O(P) is obtained by weakening the invari-
ant Inv = 2 ≤ i ≤ N∧∀j ∈ [2, i]. a[j] = a[j−1]+a[j−2]
holding in the while statement of P . This invariant can
be automatically generated by an abstract interpreter which
performs relational static analysis on the abstract domain
ιι

1−→η, where η, ιι ∈ uco(℘(V)), such that 1= ∩, ιι(X) ={
〈ι(S),>〉

∣∣ 〈S, a〉 ∈ X }
is the attribute independent ex-

tension of interval analysis to V, and η = α+◦α where

α(X) =

Fib if ∀〈S, x〉 ∈ X. S ⊆ Dx∧
(S = {0} ∧ x[0] = 0)∨
(S = {0, 1} ∧ x[0] = 0 ∧ x[1] = 1)∨
(∀j ∈ S. x[j] = x[j − 1] + x[j − 2])

Any otherwise

isolates Fibonacci’s sequences with in-bound indexes. Rel-
evant objects in ιι

1−→η can either be I−→Fib, represent-
ing Fibonacci’s sequences until max(I) or I−→Any, rep-
resenting any array with domain including I (no overflow).
The abstract interpretation of P in ιι

1−→η is based on the
bca of the basic composition ⊕ for Fibonacci’s sequences:

[n,m]−→Fib def= [n,m− 1]−→Fib⊕ [n,m− 2]−→Fib

In this case we have:

[[P]]ιι
1−→η= a ∈ [0, N]−→Fib ∧ i ∈ [2, N + 1]

[[O(P)]]ιι
1−→η= b, c ∈ [0, N ÷ 2]−→Any ∧ i ∈ [2, N + 1]

The obfuscation here breaks the coherence of the invari-
ant property detected by η, by splitting the original array
into two arrays which are not Fibonacci’s sequences. The
original invariant Inv can only be reconstructed by refining
the analysis with relational information between the new
arrays (b and c). The complete shell RB

[[O(P)]](ιι
1−→η) is

indeed able to isolate arrays having odd-(even-)positioned
Fibonacci’s numbers. Understanding this refinements cor-
responds precisely to deobfuscate O(P).

In view of this approach to code obfuscation and of the
transformations developed in [29], it is possible to maxi-
mally obfuscate a given semantics by inducing maximal in-
completeness in code instructions. The idea is to defeat a
given abstraction by transforming code instructions in or-
der to make them maximally incomplete for that abstra-
tion. Let us introduce this idea by an example. It is easy
to prove that the limited-interval abstract domain is a meet-
uniform closure: if Y ⊆ ℘([−m,m]) and for any x, y ∈ Y :
ι(x) = ι(y), then for any x, y ∈ Y. min(x) = min(y) ∧
max(x) = max(y). Therefore there exists z ∈ Y such that
ι(
⋂
Y) = ι(z). In this case, ι− = λx. {min(x),max(x)} ∈

lco(℘([−m,m])). This observation may drive us towards
the systematic design of obfuscated code against interval
analysis. Consider the following simple program.

P :

 x = x ∗ x;
c : if 10 ≤ x ≤ 100 {y = 5} {y = 5000};

return(y)

The forward limited interval analysis of P with x = [5, 8]
returns: [[P]]ι(x ∈ [5, 8]) = x ∈ [25, 64] ∧ y ∈ [5]. Note
that wlpJcKι(y ≤ 100) = x ∈ [10, 100] moreover we have
wlpJx = x ∗ xKι(x ∈ [10, 100]) = x ∈ [4, 10]. Therefore,
in order to make interval analysis B-incomplete before pro-
gram point c, we can define a command c′ such that

wlpJc′Kι(x ∈ [10, 100]) =
O↓ι,ι(λX. wlpJx = x ∗ xKι(X))(x ∈ [10, 100])

In this case, ι−(wlpJx = x∗xKι(x ∈ [10, 100])) = {4, 10}.
The following command:

c′ : if x == 4 ∨ x == 10 {x = 16} {x = x ∗ 200}

satisfies this condition. Clearly we have to cope with inter-
mediate values in such a way that the variable y is set to
5 for all x ∈ [4, 10], keeping in this way the behavioural
equivalence. This is achieved by implementing the ι− clo-
sure. Also this implementation has to exploit incomplete-
ness in such a way that its output interval may activate
both branches of c′. The following command, obfuscated
with simple equivalent instruction sequences, implements
ι− with these features for all relevant inputs x ∈ [4, 10]:

if 4 ≤ x ≤ 10
{x = x− (x− 4) � x = x− (x− 10)}
{nil}

The resulting obfuscated code is:

O(P) :

if 4 ≤ x ≤ 10
{x = x− (x− 4) � x = x− (x− 10)}
{nil};

if x == 4 ∨ x == 10 {x = 16} {x = x ∗ 200};
if 10 ≤ x ≤ 100 {y = 5} {y = 5000};
return(y)

In this case the maximal incomplete transformation of c re-
quires the analogous transformation of all instructions from
which c depends, i.e., the backward slice of c in P . The
limited interval analysis of O(P) starting with x = 7 is:
[[O(P)]]ι(x ∈ [5, 8]) = x ∈ [16, 1400] ∧ y ∈ [5, 5000]. The
key point here is the ability of command c′ to make incom-
plete the evaluation of the test in c, causing the loss of preci-
sion in the analysis of variable y. This obfuscation schema
can be used for generating obfuscated code by systematic
transformations of semantics, in particular when dealing
with opaque predicates and control-flow obfuscation. In
this case, the maximal incomplete transformers may help
providing obscure opaque predicates. Breaking them re-
quires more complex refined abstract domains and analysis.
In the case of the example above, the refined analysis needs
either to discover constant expressions (e.g., x − (x − 4)
and x − (x − 4)) or to perform some form of disjunctive
completion in interval analysis, the latter being extremely
expensive (

b
(ι) = id).

8. Hiding information

Among the different methods for hiding secrets in pro-
grams, software watermarking is one of the most com-
mon. We consider a steganographic approach to software
watermarking, i.e., program transformations where the in-
tended (typically copyright) signature is hidden from exter-
nal observers. We follow [19] by defining the stegomarker
M : S−→P as the encoding of the signature s ∈ S into a
program M(s) ∈ P, called the stegomark. The stegolayer
L : P× P−→P is used to compose the stegomark with the
source (cover) program. The (watermarked) stegoprogram
is S : P × S−→P such that S(P, s) = L(P,M(s)). The
standard taxonomy of software watermarking in [8, 9, 41]
distinguish between static watermarking, where signatures
are encoded as properties of the code text, and dynamic wa-
tremarking, where the signature is encoded in the state com-
puted by the stegoprogram under suitable inputs. Abstract
watermarking, introduced in [19], is different: the signature
is encoded as a stegomark in the cover program and can be
extracted by suitable static program analysis.

We believe that static and dynamic watermarking are in-
stances of abstract watermarking, under suitable choices for
M and L. In particular, they are instances of a common pat-
tern which corresponds precisely to the program transfor-
mations making semantics complete [29]. Let P ∈ P and
α,Ñ, η ∈ uco(Σ∗) be program properties such that α v Ñ.
If LM(s)Mα ∈ Ñ then L is a stegolayer for P and M(s) if

LL(P,M(s))Mα def= λx.

{
LM(s)Mα(x) if x ∈ η
LP Mα(x) otherwise

Static software watermarking corresponds to η = id, i.e.,
∀x. LS(s, P)Mα(x) = LM(s)Mα(x) ∈ Ñ, and α decid-
able. This means that the interpretation of the stegopro-
gram always reveals the watermark, independently from the
input. In dynamic watermarking instead η 6= id, mean-
ing that only suitable inputs may reveal the watermark. In
this case, the inputs revealing the watermark are all the
inputs satisfying η. In this context, the syntactic stego-
marker M(·) can be associated with a semantic stegomarker
ML·M : S−→uco(Σ∗). It is immediate to recognise a F-
completeness transformation here: A stegoprogram reveals
the watermark Ñ under input η if its abstract semantics is F-
complete for Ñ and η. The abstract semantics L·Mα performs
watermark extraction which is, as in [19], implemented as
abstract interpretation. Therefore S(s, P) is a stegopro-
gram if:

LS(s, P)Mα = F↑↓η,MLsM(LP Mα)

Note that if 〈Ñ, η〉 ∈ F(℘(Σ∗), LS(s, P)Mα) it may well
happen that 〈Ñ, η〉 6∈ F(℘(Σ∗), LS(s, P)M) [34, 29]. This
means that the knowledge of the stegomarker may not be
sufficient in order to extract the watermark. This makes the
extraction completely dependent on the suitable choice of
the abstract semantics L·Mα. In this sense, code obfuscation
can be used in order to design appropriate stegolayers mak-
ing 〈Ñ, η〉 incomplete for the standard interpreter L·M. This is
a further weakening with respect to abstract watermarking
[19], where Ñ = α and the secrecy relies upon the difficulty
to guess Ñ out of any blind static or dynamic analysis of the
stegoprogram.

Credibility, data-rate, and resilience [9] rely upon the
choice of the properties α and Ñ. High credibility cor-
responds to α,Ñ ∈ uco(Σ∗) such that LP Mα 6∈ Ñ (i.e.,
Ñ(LP Mα) ≈ > minimises false positives). Resilience is
high when Ñ, and therefore α, are both hard to guess and
they are preserved by most common program transforma-
tions. Stealthy instead depends upon the implementation
of the stegolayer, which has to produce output code which
is as similar as possible to P . Note that, being F↓ and

F↑ idempotent transformations, they provide also a code
tamper-detection method similar to the one used for images
in mathematical morphology [35]. In this case, because
F↑↓η,MLsM(LS(s, P)Mα) = LS(s, P)Mα, then any malicious
host attack (e.g., distortive) transformation t : P−→P such

that F↑↓η,MLsM(Lt(S(s, P))Mα) 6= Lt(S(s, P))Mα will reveal
the attack.

It is easy to encode within this schema most well-known
watermarking methods. We sketch some of these encoding
for popular watermarking methods. Abstract watermarking
[18] is immediate. Block reordering: this static watermark-
ing corresponds to the following choices: η = id (static);
given a signature (number) s and an encoding of numbers
in graphs as sequences of basic blocks E : N−→G then
MLsM is the atomic closure {Gs,Σ∗} ∈ uco(Σ∗) where
Gs =

{
σ ∈ Σ∗

∣∣ E(s) = CFG(σ)
}

and LP Mα extracts
the CFG of P , which is an (incomplete) abstract interpre-
tation of the trace semantics LP M provided that states in-
clude code instructions with labels. The abstraction α for-
gets about memory locations and computed values and just
keeps track of the sequence of program instructions isolat-
ing basic blocks (consecutive instructions) as graph nodes
and determining possible jumps between blocks as graph
edges [47]. A dynamic version of block reordering can be
implemented by choosing η 6= id. In this case S(s, P)
has to include a block reordering algorithm, which is acti-
vated when x ∈ η, as in metamorphic malware [20]. The
same abstractions can be used for encoding Venkatesan et
al. CFG-based watermarking [49]. Constraint-based water-
marking: we consider the graph-coloring static (non-blind)
watermarking solution in [44], applied to register allocation.
In this case program states include register allocation map-
pings R : Var(P)−→R, where R is a given (fixed) finite
set of registers. Elements in Σ are 〈c,R,H〉, where H ∈ H
is a heap and c is the current instruction. R is statically
computed by a pre-processing phase. In this case η = id,
and α = β+◦β where β : ℘(Σ∗) m−→℘(Var(P)× Var(P)):

β(X) def=
{
〈v1, v2〉

∣∣∣∣ R(v1) = R(v2)
〈c0,R,H0〉 ∗ 〈cn,R,Hn〉 ∈ X

}
α is decidable and it extracts the interference graph associ-
ated with a given register allocation, as an abstract interpre-
tation of the trace semantics. Graph-based watermarking:
the dynamic graph-based watermarking encodes the water-
mark in a suitable data-structure which is allocated in mem-
ory [12, 42]. In this case, programs states are as above, in-
cluding the sequence of input values i ∈ V∗ which still have
to be consumed: 〈c,R,H, i〉, η = {I,Σ∗} where i ∈ V∗ is

a given input sequence, Ñ = {E(s),Σ∗} where E(s) is the
encoding of s as a graph Gs ∈ G. α observes the graphs
encoded in memory, by looking at graphs in reverse allo-
cation order. In this case α = δ+◦δ where H : H−→G
extracts the set of all graphs allocated in memory with root
allocated as last, and δ : ℘(Σ∗) m−→G is such that:

δ(X) def=

 G

∣∣∣∣∣∣
σ ∈ X, |σ| = n+ 1, σn = 〈c,R,Hn, ε〉
G ∈ H(Hn), root(G) ∈ Hn

∀j ∈ [0, n− 1]. root(G) 6∈ Hj

Threading watermarking [40] would need a different com-
putational model, including multithreading and concur-
rency. In this case the extractors should correspond to a
complete abstract interpretation modelling execution paths,
which encode the watermark.

9. Finding completeness holes

Obscuring code and hiding information are different as-
pects of the same issue, which is making an interpreter in-
complete, either by transforming the source code by ob-
fuscation or by designing suitable code (the stegoprogram)
whose interpretation is incomplete unless some key prop-
erties (the secret watermark extractor) are known. In both
cases, a basic program transformation is defined: O for ob-
fuscation and M for specifying the stegomark. The trans-
formed program is then integrated with other (non affected)
code by a suitable program integration method, which is
the stegolayer L in software watermarking and it is stan-
dard sequential composition in most code obfuscation. We
generalise this situation by considering a generic (binary as-
sociative) program integration method I : P×P−→P [46].
The obfuscation of code parts and the stegomarks have to
preserve the observable semantics of the original program
when the transformed code is integrated by I with a cover
program. As observed above, e.g., in the last example of
Section 7, the code transformation may affect the seman-
tics of internal variables (x) provided that the observable
behaviour (y) is not affected by this transformation. This
can be precisely captured by abstract non-interfernce [27].
Abstract non-interference (ANI) [27] is a natural weaken-
ing of non-interference by abstract interpretation. Consider
a partition of values/states Σ = V = VL × VH in public
L and private H values. We consider a pair of external ob-
servations η, ρ ∈ uco(VL) (the attacker) and φ ∈ uco(VH)
(the secret) which specifies which property of the private
data cannot flow to the output observation. Recall that
a program P satisfies (blocked) ANI, (η)P (φ []ρ), if

∀h1, h2 ∈ VH ,∀l1, l2 ∈ VL [27]:

η(l1) = η(l2) =⇒
ρ([[P]]φ,η(φ(h1), η(l1))L) = ρ([[P]]φ,η(φ(h2), η(l2))L)

This notion says that, whenever the attacker is able to ob-
serve the input property η and the ρ property of the output,
then no information flow concerning the property φ of the
secret input interferes with the output observation ρ. In or-
der to model secrecy in code transformations we consider a
higher-order version of ANI, called HOANI, which shares
with ANI all relevant properties [27, 28]. Here programs
in P are partitioned in cover programs P ⊆ P and secret
programs Q ⊆ P. The cover (unaffected) program plays
the role of the public input, the private input is the secret
code whose properties have to be kept secret by the program
integration method I. The pair 〈η, ρ〉 specifies here the
cover/output observable, which is in our case the attacker.
Let ρ, η, φ ∈ uco(℘(Σ)) and ρρ ∈ uco(℘(Σ) m−→℘(Σ))
such that ρρ def= λf. ρ◦f◦ρ [17]. Let P1, P2 ∈ P be (public)
cover programs and Q1, Q2 ∈ Q be (secret) programs, e.g.,
holding a watermark or breaking an invariant at some given
program point for obfuscation. Then (η)I(φ []ρ) holds in
(denotational-based) HOANI if for any of these programs:

[[P1]]η = [[P2]]η =⇒
ρρ([[I]]φ,η([[Q1]]φ, [[P1]]η) = ρρ([[I]]φ,η([[Q2]]φ, [[P2]]η)

In code obfuscation, Q = {O(P), P}, P ⊆ P and
we want that (ρ)I(φ []ρ) holds for any φ such that
[[O(P)]]φ 6= [[P]]φ. In software watermarking instead, Q ={

M(s)
∣∣ s ∈ S

}
, P ⊆ P, and we want that (ρ)I(Ñ []ρ)

holds for the largest possible set of ρ such that ρ 6= α. In
this case the systematic derivation of the strongest harmless
attackers ρ̄ such that (ρ̄)I(Ñ []ρ̄) [27] may provide a useful
measure of the secrecy of the stegomark.

10. Discussion

In this paper we studied completeness in the context of
code obfuscation and watermarking. This is different with
respect to the notion of obfuscated interpretations in [39].
In this latter case the obfuscating transformation is applied
to the interpreter in such a way that the interpretation of a
command c is not fixed. This provides amazing results in
terms of software protection via obscurity. We believe that
also this idea can be fully specified and studied in terms of
completeness of an abstract interpretation. The influence of
data-type refinement approach to code obfuscation [25] in
our approach is clear. While completeness methods provide

driving guidelines for specifying and evaluating obfuscation
and watermarking tools, the data-type refinement, which
can be clearly specified in abstract interpretation form, pro-
vides the basis for proving correctness of the transforma-
tions. We believe that both methods should be included into
any comprehensive theory of information hiding in code.
From this point of view, we believe that HOANI is more
general than data-type refinement based correctness meth-
ods [25], providing both correctness and secrecy in a unique
setting. From a more practical point of view, the use of
logic for information flow [2] may provide useful interfer-
ence information between the variables involved in obfus-
cated/watermarked code and the cover program. As future
work we are interested in extending the calculational de-
sign of program transformations by abstract interpretation
in [18] to the calculational design of obfuscated code, as
in [22], including completeness transformers in the frame-
work. We are also interested in deriving appropriate metrics
for estimating the quality of an obfuscation and watermark-
ing method. The completeness-based approach to informa-
tion hiding may provide here useful metrics, such as the
one in [1, 24] measuring the degree of information leakage,
which is known to be strongly related with the incomplete-
ness of an abstract interpretation [28]. Of particular interest
could be exploiting incompleteness holes derived from the
inaccurate propagation of roundoff errors in floating-point
operations [38]. This can be exploited, provided that in-
accuracy is confined in the sense of ANI, in particular in
advanced numerical software watermarking.

Acknowledgements. This paper has been conceived during
my visit to the École Normale Supérieure, in Paris, in the
summer of 2008. I would like to thank Patrick and Radhia
Cousot for the kind hospitality. I would like also to thank
Mila Dalla Preda, Isabella Mastroeni, and Enrico Visentini
for the valuable discussions we had in the fall of 2007, dis-
cussions from which these ideas originated.

References

[1] A. Aldini and A. Di Pierro. Estimating the maximum infor-
mation leakage. Int. J. Inf. Sec., 7(3):219–242, 2008.

[2] T. Amtoft and A. Banerjee. A logic for information flow
analysis with an application to forward slicing of simple
imperative programs. Science of Computer Programming,
64(1):3–28, 2007.

[3] R. Andesron and F. Petitcolas. On the limits of steganog-
raphy. IEEE J. of Selected Areas in Communications,
16(4):474–481, 1998.

[4] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sa-
hai, S. P. Vadhan, and K. Yang. On the (im)possibility
of obfuscating programs. In CRYPTO ’01: Proceedings
of the 21st Annual International Cryptology Conference on
Advances in Cryptology, pages 1–18, London, UK, 2001.
Springer-Verlag.

[5] T. Blyth and M. Janowitz. Residuation theory. Pergamon
Press, 1972.

[6] S. Chow, Y. Gu, H. Johnson, and V. A. Zakharov. An ap-
proach to the obfuscation of control-flow of sequential com-
puter programs. In ISC ’01: Proceedings of the 4th Interna-
tional Conference on Information Security, pages 144–155,
London, UK, 2001. Springer-Verlag.

[7] C. Collberg and C. D. Thomborson. Breaking abstrcations
and unstructural data structures. In Proc. of the 1994 IEEE
Internat. Conf. on Computer Languages (ICCL ’98), pages
28–37, 1998.

[8] C. Collberg and C. D. Thomborson. Software watermark-
ing: models and dynamic embeddings. In POPL ’99: Pro-
ceedings of the 26th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 311–324, New
York, NY, USA, 1999. ACM.

[9] C. Collberg and C. D. Thomborson. Watermarking, tamper-
proofing, and obduscation-tools for software protection.
IEEE Trans. Software Eng., pages 735–746, 2002.

[10] C. Collberg, C. D. Thomborson, and D. Low. A taxionomy
of obduscating transformations. Technical Report 148, Dept.
of Computer Science, The Univ. of Auckland, 1997.

[11] C. Collberg, C. D. Thomborson, and D. Low. Manifactur-
ing cheap, resilient, and stealthy opaque constructs. In Pro-
ceedings of the 25th ACM SIGPLAN-SIGACT Symposium
on Principles of programming languages (POPL ’98), pages
184–196. ACM Press, 1998.

[12] C. Collberg, C. D. Thomborson, and G. M. Townsend. Dy-
namic graph-based software fingerprinting. ACM Trans.
Program. Lang. Syst., 29(6):35, 2007.

[13] P. Cousot. Constructive design of a hierarchy of semantics of
a transition system by abstract interpretation. Theor. Com-
put. Sci., 277(1-2):47–103, 2002.

[14] P. Cousot and R. Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construc-
tion or approximation of fixpoints. In Proc. of Conf. Record
of the 4th ACM Symp. on Principles of Programming Lan-
guages (POPL ’77), pages 238–252, New York, 1977. ACM
Press.

[15] P. Cousot and R. Cousot. Systematic design of program
analysis frameworks. In Proc. of Conf. Record of the
6th ACM Symp. on Principles of Programming Languages
(POPL ’79), pages 269–282, New York, 1979. ACM Press.

[16] P. Cousot and R. Cousot. Inductive definitions, semantics
and abstract interpretation. In Proc. of Conf. Record of the
19th ACM Symp. on Principles of Programming Languages
(POPL ’92), pages 83–94, New York, 1992. ACM Press.

[17] P. Cousot and R. Cousot. Higher-order abstract interpre-
tation (and application to comportment analysis generaliz-
ing strictness, termination, projection and PER analysis of
functional languages) (Invited Paper). In Proc. of the 1994
IEEE Internat. Conf. on Computer Languages (ICCL ’94),
pages 95–112, Los Alamitos, Calif., 1994. IEEE Comp. Soc.
Press.

[18] P. Cousot and R. Cousot. Systematic design of program
transformation frameworks by abstract interpretation. In
Proc. of Conf. Record of the Twentyninth Annual ACM
SIGPLAN-SIGACT Symp. on Principles of Programming
Languages, pages 178–190, New York, 2002. ACM Press.

[19] P. Cousot and R. Cousot. An abstract interpretation-
based framework for software watermarking. In Con-
ference Record of the Thirtyfirst Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages, pages 173–185, Venice, Italy, 2004. ACM Press,
New York, NY.

[20] M. Dalla Preda, M. Christodorescu, S. Jha, and S. De-
bray. A semantics-based approach to malware detection. In
POPL ’07: Proceedings of the 34th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming lan-
guages, pages 377–388, New York, NY, USA, 2007. ACM
Press.

[21] M. Dalla Preda and R. Giacobazzi. Control code obfusca-
tion by abstract interpretation. In SEFM ’05: Proceedings of
the Third IEEE International Conference on Software Engi-
neering and Formal Methods, pages 301–310, Washington,
DC, USA, 2005. IEEE Computer Society.

[22] M. Dalla Preda and R. Giacobazzi. Semantics-based code
obfuscation by abstract interpretation. In Proc. of the 32nd
International Colloquium on Automata, Languages and Pro-
gramming (ICALP ’05), volume 3580 of Lecture Notes
in Computer Science, pages 1325–1336. Springer-Verlag,
2005.

[23] M. Dalla Preda, M. Madou, K. D. Bosschere, and R. Gia-
cobazzi. Opaque predicates detection by abstract interpre-
tation. In Proc. of the 11th Internat. Conf. on Algebraic
Methodology and Software Technology (AMAST ’06), vol-
ume 4019 of Lecture Notes in Computer Science, pages 81–
95, Berlin, 2006. Springer-Verlag.

[24] A. Di Pierro, C. Hankin, and H. Wiklicky. Measuring the
confinement of probabilistic systems. Theor. Comput. Sci.,
340(1):3–56, 2005.

[25] S. Drape. Obfuscation of Abstract Data-Types. PhD thesis,
University of Oxford, 2004.

[26] G. Filé, R. Giacobazzi, and F. Ranzato. A unifying view
of abstract domain design. ACM Comput. Surv., 28(2):333–
336, 1996.

[27] R. Giacobazzi and I. Mastroeni. Abstract non-interference:
Parameterizing non-interference by abstract interpretation.
In Proc. of the 31st Annual ACM SIGPLAN-SIGACT Symp.
on Principles of Programming Languages (POPL ’04),
pages 186–197, New York, 2004. ACM-Press.

[28] R. Giacobazzi and I. Mastroeni. Adjoining declassifica-
tion and attack models by abstract interpretation. In S. Sa-
giv, editor, Proc. of the European Symp. on Programming
(ESOP ’05), volume 3444 of Lecture Notes in Computer Sci-
ence, pages 295–310, Berlin, 2005. Springer-Verlag.

[29] R. Giacobazzi and I. Mastroeni. Transforming abstract inter-
pretations by abstract interpretation. In M. Alpuente, editor,
Proc. of The 15th International Static Analysis Symposium,
SAS’08, volume 5079 of Lecture Notes in Computer Science,
pages 1–17. Springer-Verlag, 2008.

[30] R. Giacobazzi and E. Quintarelli. Incompleteness, coun-
terexamples and refinements in abstract model-checking. In
P. Cousot, editor, Proc. of The 8th Internat. Static Analysis
Symp. (SAS’01), volume 2126 of Lecture Notes in Computer
Science, pages 356–373, Berlin, 2001. Springer-Verlag.

[31] R. Giacobazzi and F. Ranzato. Refining and compressing ab-
stract domains. In P. Degano, R. Gorrieri, and A. Marchetti-
Spaccamela, editors, Proc. of the 24th Internat. Colloq. on
Automata, Languages and Programming (ICALP ’97), vol-
ume 1256 of Lecture Notes in Computer Science, pages 771–
781, Berlin, 1997. Springer-Verlag.

[32] R. Giacobazzi and F. Ranzato. Uniform closures: order-
theoretically reconstructing logic program semantics and
abstract domain refinements. Inform. and Comput.,
145(2):153–190, 1998.

[33] R. Giacobazzi and F. Ranzato. The reduced relative
power operation on abstract domains. Theor. Comput. Sci,
216:159–211, 1999.

[34] R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract
interpretations complete. J. of the ACM., 47(2):361–416,
2000.

[35] M. Kihara, M. Fujiyoshi, Q. T. Wan, and H. Kiya. Image
tamper detection using mathematical morphology. In ICIP
2007: IEEE International Conference on Image Processing,
pages 101–104. IEEE, 2007.

[36] C. Linn and S. Debray. Obfuscation of executable code to
improve resistance to static disassembly. In CCS ’03: Pro-
ceedings of the 10th ACM conference on Computer and com-
munications security, pages 290–299, New York, NY, USA,
2003. ACM.

[37] A. Majumdar, S. J. Drape, and C. D. Thomborson. Slic-
ing obfuscations: design, correctness, and evaluation. In
DRM ’07: Proceedings of the 2007 ACM workshop on Digi-
tal Rights Management, pages 70–81, New York, NY, USA,
2007. ACM.

[38] M. Martel. Semantics of roundoff error propagation in fi-
nite precision calculations. Higher Order Symbol. Comput.,
19(1):7–30, 2006.

[39] A. Monden, A. Monsifrot, and C. D. Thomborson. A
framework for obfuscated interpretation. In ACSW Fron-
tiers ’04: Proceedings of the second workshop on Aus-
tralasian information security, Data Mining and Web Intelli-
gence, and Software Internationalisation, pages 7–16, Dar-

linghurst, Australia, Australia, 2004. Australian Computer
Society, Inc.

[40] J. Nagra and C. D. Thomborson. Threading software water-
marks. In In the proceedings of 6 th International Workshop
on Information Hiding, volume 3200 of Lecture Notes in
Computer Science, pages 208–233. Springer-Verlag, 2004.

[41] J. Nagra, C. D. Thomborson, and C. Collberg. A functional
taxonomy for software watermarking. Aust. Comput. Sci.
Commun., 24(1):177–186, 2002.

[42] J. Palsberg, S. Krishnaswamy, K. Minseok, D. Ma, Q. Shao,
and Y. Zhang. Experience with software watermarking. In
Proceedings of the 16th Annual Computer Security Applica-
tions Conference, ACSAC ’00, pages 308–316. IEEE, 2000.

[43] F. A. P. Petitcolas, R. J. Anderson, and M. G. Kuhn. Infor-
mation hiding – A survey. Proc. of the IEEE, 87(7):1062–
1078, 1999.

[44] G. Qu and M. Potkonjak. Analysis of watermarking tech-
niques for graph coloring problem. In ICCAD ’98: Pro-
ceedings of the 1998 IEEE/ACM international conference on
Computer-aided design, pages 190–193. ACM Press, 1998.

[45] F. Ranzato and F. Tapparo. Strong preservation as complete-
ness in abstract interpretation. In D. Schmidt, editor, Proc.
of the 13th European Symp. on Programming (ESOP ’04),
volume 2986 of Lecture Notes in Computer Science, pages
18–32, Berlin, 2004. Springer-Verlag.

[46] T. Reps. Algebraic properties of program integration. Sci.
Comput. Program., 17:139–215, 1991.

[47] X. Rival and L. Mauborgne. The trace partitioning abstract
domain. ACM Trans. Program. Lang. Syst., 29(5):26, 2007.

[48] K. I. Rosenthal. Quantales and their applications. In Pit-
man Research Notes in Mathematics. Longman Scientific &
Technical, London, 1990.

[49] R. Venkatesan, V. Vazirani, and S. Sinha. A graph theoretic
approach to software watermarking. In Information Hiding,
volume 2137 of Lecture Notes in Computer Science, pages
157–168, 2001.

[50] C. Wang, J. Hill, J. Knight, and J. Davidson. Software
tamper resistance: Obstructing static analysis of programs.
Technical report CS-2000-12, Department of Computer Sci-
ence, University of Virginia, 2000.

[51] G. Winskel. The formal semantics of programming lan-
guages: an introduction. MIT press, Cambridge, Mass.,
1993.

