
HIDING INFORMATION IN COMPLETENESSHOLES

NEW PERSPECTIVES IN CODE OBFUSCATION AND WATERMARKING

Roberto Giacobazzi

Dipartimento di Informatica

Universit̀a di Verona

Italy

SEFM’08, Cape Town November 2008

SEFM’08 – Cape Town – p.1/37

THE PROBLEM: PROTECTION
!

In SW much of the know-how is located in the product itself!

!
According to Business Software Alliance (BSA):

! the worldwide weighted average piracy rate is 35%, the median
piracy rate is 62%, meaning half of the countries have a piracy rate
of 62% or higher of the market, which grows to 75% in one-third of
the countries

! In 2007, every 2.00USD worth of software purchased legitimately,
1.00USD worth was obtained illegally!!

!
knowledge extraction by static and dynamic analysis

!
program decomposition for code reuse

!
source code disassembly and decompilation for reverse engineering

!
integrity corruption for code hacking

SEFM’08 – Cape Town – p.2/37

THE PROBLEM: PROTECTION

We need adequate strategies for

Intellectual Property Protection (IPP)

and

Digital Right Management (DRM)

!
Make difficult source code analysis

!
Make difficult program decomposition, disassembly and decompiation

!
Steganography (watermarking and fingerprinting) against theft

!
Tamper proofing against integrity corruption

SEFM’08 – Cape Town – p.3/37

THE PROBLEM: ATTACK

Malware represents malicious software.

Malware detector is a program D that determines whether another program P

is infected with a malware M .

D(P ,M) =

{
True if P is infected with M

False otherwise

SEFM’08 – Cape Town – p.4/37

THE PROBLEM: ATTACK

Malware represents malicious software.

Malware detector is a program D that determines whether another program P

is infected with a malware M .

D(P ,M) =

{
True if P is infected with M

False otherwise

An ideal malware detector detects all and only the programs infected with M ,
i.e., it is sound and complete.

!
Sound = no false positives (no false alarms)

!
Complete = no false negatives (no missed alarms)

SEFM’08 – Cape Town – p.4/37

MALWARE TRENDS

There is more malware every year.

445

10992

New Malware

2002 2003 2004 2005

SEFM’08 – Cape Town – p.5/37

MALWARE TRENDS

There is more malware every year.

445

10992

141 101

New Malware

New Malware Families

2002 2003 2004 2005

But the number of malware families has almost no variation.

Beagle family has 197 variants (as on Jan. 2007).
Warezov family has 218 variants (as on Jan. 2007).

SEFM’08 – Cape Town – p.5/37

SW PROTECTION VS. SW ATTACKS

malicious host

SWhost attack malicious SW

hostSW attack

SEFM’08 – Cape Town – p.6/37

SW PROTECTION VS. SW ATTACKS

viruses

SWhost attack malicious SW

hostSW attack malicious host

worms

SEFM’08 – Cape Town – p.6/37

SW PROTECTION VS. SW ATTACKS

integrity

SWhost attack malicious SW

hostSW attack malicious host

worms
viruses

IP

SEFM’08 – Cape Town – p.6/37

SW PROTECTION VS. SW ATTACKS

malicious host

SWhost attack malicious SW

misuse detection

hostSW attack

SEFM’08 – Cape Town – p.6/37

SW PROTECTION VS. SW ATTACKS

malicious host

SWhost attack

code obfuscation

malicious SW

misuse detection
(syntactic)

hostSW attack

SEFM’08 – Cape Town – p.6/37

SW PROTECTION VS. SW ATTACKS

reverse engineering

SWhost attack

code obfuscation

malicious SW

misuse detection
(syntactic)

hostSW attack malicious host

SEFM’08 – Cape Town – p.6/37

SW PROTECTION VS. SW ATTACKS

(behaviour)

SWhost attack

code obfuscation

malicious SW

misuse detection
(syntactic)

hostSW attack

code obfuscation

malicious host

reverse engineering

SEFM’08 – Cape Town – p.6/37

SW PROTECTION VS. SW ATTACKS

(behaviour)

SWhost attack

code obfuscation

malicious SW

misuse detection

deobfuscation
(syntactic)

hostSW attack

code obfuscation

malicious host

reverse engineering

deobfuscation

SEFM’08 – Cape Town – p.6/37

PROTECTION BY OBSCURITY: CODE OBFUSCATION

τ : P → P is a code obfuscation if it is an obfuscating compiler:

!
it is potent: τ(P) is more complex (ideally unintelligible) than P ;

!
it preserves the observational behaviour of programs Jτ(P)K = JPK
[C. Collberg et al. ’97, ’98].

Input

Output

τ

P → τJPK

Input

Output
SEFM’08 – Cape Town – p.7/37

PROTECTION BY OBSCURITY: CODE OBFUSCATION

τ : P → P is a code obfuscation if it is an obfuscating compiler:

!
it is potent: τ(P) is more complex (ideally unintelligible) than P ;

!
it preserves the observational behaviour of programs Jτ(P)K = JPK
[C. Collberg et al. ’97, ’98].

The limit. Obfuscating programs is (im)possible:

Even under restrictive hypothesis a general purpose obfuscator
generating perfectly unintelligible code (virtual black-box) does not exist!

[Barak et al. ’01].

The challenge. Design obfuscators that work against specific attacks

Extensional properties of programs are undecidable [Rice ’53].
....so formal methods and static analysis are born!

SEFM’08 – Cape Town – p.7/37

AN EXAMPLE

(Pseudo-)Code:
mov eax, [edx+0Ch]
push ebx
push [eax]
call ReleaseLock

SEFM’08 – Cape Town – p.8/37

AN EXAMPLE

(Pseudo-)Code:
mov eax, [edx+0Ch]
push ebx
push [eax]
call ReleaseLock

Obfuscated code (junk):
mov eax, [edx+0Ch]
inc eax
push ebx
dec eax
push [eax]
call ReleaseLock

SEFM’08 – Cape Town – p.8/37

AN EXAMPLE

(Pseudo-)Code:
mov eax, [edx+0Ch]
push ebx
push [eax]
call ReleaseLock

Obfuscated code (junk + reordering):
mov eax, [edx+0Ch]
jmp +3
push ebx
dec eax
jmp +4
inc eax
jmp -3
call ReleaseLock
jmp +2
push [eax]
jmp -2

SEFM’08 – Cape Town – p.8/37

STATE OF THE ART

[Collberg et al. ’97, ’98]

!
opaque predicate insertion

!
code flattening,

!
variable splitting,

!
bogus code insertion,

!
spurious aliases

Potency measure by standard metrics:

code size, number of predicates, number of methods in OO code,
height of inheritance, and variable dependence length

SEFM’08 – Cape Town – p.9/37

STATE OF THE ART

[Wang et al. ’00]

!
spurious aliases

Potency measure by complexity of static analysis

!
1-level aliasing is easy P [Banning ’79]

!
≥ 2-level aliasing is hard NP [Horowitz ’97]

!
with dynamic memory allocation is undecidable!!

understanding control-flow = solve a ≥ 2-level aliasing problem

SEFM’08 – Cape Town – p.9/37

STATE OF THE ART

[Cloackware ’00]

!
code flattening

Potency is related with the PSPACE complexity of reachability in dispatchers

M1

Mn

M2

M3

M4

SEFM’08 – Cape Town – p.9/37

STATE OF THE ART

[Cloackware ’00]

!
code flattening

Potency is related with the PSPACE complexity of reachability in dispatchers

Dispatcher

M1 MnM2 M3 M4
.........

SEFM’08 – Cape Town – p.9/37

STATE OF THE ART

[Drape et al ’05 and ’07]

!
data obfuscation

!
slicing obfuscation: enlarging slices by adding dependencies

Potency is related with data-refinement

!
If D is a data-type, D is a refinement of D if 〈D, α, γ,D〉 is a GI

!
Correctness: JPK = α◦Jτ(P)K◦γ

!
...i.e.: P and γ; τ(P); α are observationally equivalent!

Obfuscation corresponds precisely to concretise (in the sense of abstract
interpretation) a data-type

SEFM’08 – Cape Town – p.9/37

THE PROBLEM: HIDING AND UNVEILING IN SW

!
Understanding programs corresponds to understand their semantics

! The attacker is an interpreter (static or dynamic)

!
Potency is related with the degree of precision of the interpreter

! τ(P) is an obfuscation of P if the interpretation of τ(P) fails (is less
precise) than the same interpretation of P : JPK ≤ Jτ(P)K

! In this case τ defeats J·K!!

!
We need a theory of interpreters at different levels of abstraction

We need Abstract Interpretation

SEFM’08 – Cape Town – p.10/37

THE PROBLEM: HIDING AND UNVEILING IN SW

D
eo

bf
us

ca
tio

n

Input

Output

Reverse
Engineering

user
malicious

SW

δ

α

SEFM’08 – Cape Town – p.10/37

WHY ABSTRACT INTERPRETATION?

!
The attacker

! Reverse engineering needs (static or dynamic) analysis
! Watermark extraction or violation need (static or dynamic) analysis

!
The defender

! Can exploit attack flaws to embed information
! Can exploit attack limitations (complexity, accuracy, time, space etc)

for obscuring information

Abstract Interpretation (1977) is the most general model for the (static or
dynamic) approximation of semantics of discrete dynamic systems

!
Including: Static program analysis, type checking and type inference,
model checking and predicate abstraction, trajectory evaluation, testing,
proof systems, etc.

SEFM’08 – Cape Town – p.11/37

ABSTRACT INTERPRETATION

Design approximate semantics of programs [Cousot & Cousot ’77, ’79].

α

γ

⊤ ⊤

α(c)γ(α(c))

c

⊥

C

⊥

A

Galois Connection: 〈C , α, γ,A〉, A and C are complete lattices.

〈uco(C),⊑〉 set of all possible abstract domains,

A1 ⊑ A2 if A1 is more concrete than A2

SEFM’08 – Cape Town – p.12/37

ABSTRACT INTERPRETATION

[Cousot & Cousot ’79]

!
A program P

!
A domain of computation for P : C typically a complete lattice

!
Semantic specification (interpreter): JPK : C −→ C

!
(Approximate) observable properties: ρ ∈ uco(C)

!
DERIVE A SOUND APPROXIMATE SPECIFICATIONJPK♯

ρ(JPK(x)) ≤ JPK♯(x)

!
THE LIMIT CASE: COMPLETENESS

ρ(JPK(x)) = JPK♯(x) iff ρ(JPK(x)) = ρ(JPK(ρ(x)))

SEFM’08 – Cape Town – p.13/37

COMPLETENESS IN ABSTRACT INTERPRETATION

!
BACKWARD SOUNDNESS: NO INFORMATION IS LOST BY APPROXIMATING

THE INPUT/OUTPUT

!
ρ◦f ≤ ρ◦f ◦ρ

ρ

f(x)
f

ρ(f(x))

ρ(f(ρ(x)))

f ♯(ρ(x))
Abstract

SEFM’08 – Cape Town – p.14/37

COMPLETENESS IN ABSTRACT INTERPRETATION

!
BACKWARD COMPLETENESS: NO LOSS OF PRECISION IS ACCUMULATED BY

APPROXIMATING THE INPUT

!
ρ◦f = ρ◦f ◦ρ

ρ

f(x)
f

ρ(f(x)) ρ(f(ρ(x)))

f ♯(ρ(x))

=

Abstract

SEFM’08 – Cape Town – p.14/37

COMPLETENESS IN ABSTRACT INTERPRETATION

!
FORWARD COMPLETENESS: NO INFORMATION IS LOST BY APPROXIMATING

THE OUTPUT

!
f ◦ρ ≤ ρ◦f ◦ρ

ρ

f(x)
f

ρ(f(ρ(x)))

f ♯(ρ(x))
Abstract

ρ

f(ρ(x))f

SEFM’08 – Cape Town – p.14/37

COMPLETENESS IN ABSTRACT INTERPRETATION

!
FORWARD COMPLETENESS: NO INFORMATION IS LOST BY APPROXIMATING

THE OUTPUT

!
f ◦ρ = ρ◦f ◦ρ

ρ

f(x)
f

ρ(f(ρ(x)))

f ♯(ρ(x))
Abstract

ρ

f(ρ(x))f =

SEFM’08 – Cape Town – p.14/37

AN EXAMPLE

A SIMPLE EXAMPLE IN INTERVAL ANALYSIS

Z

[0,+∞]

[0, 10]

[0, 2]

[0, 0]

[−∞, 0]

!
A simple domain of intervals

SEFM’08 – Cape Town – p.15/37

AN EXAMPLE

A SIMPLE EXAMPLE IN INTERVAL ANALYSIS

Z

[0,+∞]

[0, 10]

[0, 2]

[0, 0]

[−∞, 0]

!
A simple domain of intervals

!
sq(X) =

{
x2

˛

˛

˛

x ∈ X
}

!
{Z, [0, +∞], [0, 10]} is Forward but
not Backward complete

SEFM’08 – Cape Town – p.15/37

AN EXAMPLE

A SIMPLE EXAMPLE IN INTERVAL ANALYSIS

Z

[0,+∞]

[0, 10]

[0, 2]

[0, 0]

[−∞, 0]

!
A simple domain of intervals

!
sq(X) =

{
x2

˛

˛

˛

x ∈ X
}

!
{Z, [0, +∞], [0, 10]} is Forward but
not Backward complete

!
{Z, [0, 2], [0, 0]} is Backward but not
Forward complete

SEFM’08 – Cape Town – p.15/37

OBSCURITY BY INCOMPLETENESS

Failing precision means failing completeness!

Obfuscating programs is making abstract interpreters incomplete

!
Let ρ ∈ uco(Σ) with Σ semantic objects (data, traces etc)

!
A program transformation τ : P → P: JPK = Jτ(P)K.

!
ρ B-complete for J·K: ρ(JPK) = JPKρ

τ obfuscates P if

JPKρ
< Jτ(P)Kρ ⇐⇒ ρ(Jτ(P)K) < Jτ(P)Kρ

SEFM’08 – Cape Town – p.16/37

OBSCURITY BY INCOMPLETENESS

Failing precision means failing completeness!

Obfuscating programs is making abstract interpreters incomplete
C : x = a ∗ b

Sign is an abstraction of ℘(Z):

0− 0+

℘(Z)

0

. . . 1 . . .

. . .

.

0+0−

0

∅

℘(Z)

{−1, −3, −4} {2, 3, 5}

∅

SEFM’08 – Cape Town – p.16/37

OBSCURITY BY INCOMPLETENESS

Failing precision means failing completeness!

Obfuscating programs is making abstract interpreters incomplete
C : x = a ∗ b

Sign is an abstraction of ℘(Z):

0− 0+

℘(Z)

0

. . . 1 . . .

. . .

.

0+0−

0

∅

℘(Z)

{−1, −3, −4} {2, 3, 5}

∅

SEFM’08 – Cape Town – p.16/37

OBSCURITY BY INCOMPLETENESS

Failing precision means failing completeness!

Obfuscating programs is making abstract interpreters incomplete

x = 0;

C : x = a ∗ b −→ τ(C) : if b ≤ 0 then {a =−a;b =−b};

while b 6= 0 {x = a+ x;b = b− 1}

!
Sign is complete for C

! JC KSign = λa,b. Sign(a ∗ b)

!
Sign is incomplete for τ(C)

! Jτ(C)KSign = λa,b.

{
0 if a = 0 ∨ b = 0

℘(Z) otherwise

SEFM’08 – Cape Town – p.16/37

GENERALISING DATA-REFINEMENT I

We consider variable splitting
v ∈ Var(P) is split into 〈v1, v2〉 such that
v1 = f1(v), v2 = f2(v) and v = g(v1, v2)

f1(v) = v ÷ 10

f2(v) = v mod 10

g(v1, v2) = 10 · v1 + v2

And the interval analysis: ι(x) = [min(x), max(x)]

P :

"

v = 0;

while v < N {v + +} JPKι = λv . [0,N]

SEFM’08 – Cape Town – p.17/37

GENERALISING DATA-REFINEMENT I

We consider variable splitting
v ∈ Var(P) is split into 〈v1, v2〉 such that
v1 = f1(v), v2 = f2(v) and v = g(v1, v2)

f1(v) = v ÷ 10

f2(v) = v mod 10

g(v1, v2) = 10 · v1 + v2

And the interval analysis: ι(x) = [min(x), max(x)]

τ(P) :

2

6

6

6

6

6

6

6

6

4

v1 = 0;

v2 = 0;

while 10 · v1 + v2 < N {

v1 = v1 + (v2 + 1) ÷ 10

v2 = (v2 + 1) mod 10

};

c : v = 10 · v1 + v2

Jτ(P); cKι =

λv . 10 ⊙ [0,
N⊖[0,9]

10
] ⊕ [0, 9] =

λv . [0,N] ⊕ [0, 9] =

λv . [0,N+9]

SEFM’08 – Cape Town – p.17/37

GENERALISING DATA-REFINEMENT II

We consider array splitting for weakening the invariant of Fibonacci’s
Inv = 2 ≤ i ≤ N ∧ ∀j ∈ [2, i]. a[j] = a[j − 1] + a[j − 2]

The invariant Inv can be generated by relational interval-Fib analysis

!
η = α+

◦α where

!
α(X) =






Fib if ∀〈S , x〉 ∈ X . S ⊆ Dx ∧ (S = {0} ∧ x [0] = 0)∨

(S = {0, 1} ∧ x [0] = 0 ∧ x [1] = 1)∨

(∀j ∈ S . x [j] = x [j − 1] + x [j − 2])

Any otherwise

!
I −→Fib represents Fibonacci’s sequences until max(I)

!
I −→Any represents any array with domain including I (no overlow)

!
[n,m]−→Fib = [n,m − 1]−→Fib ⊕ [n,m − 2]−→Fib

SEFM’08 – Cape Town – p.18/37

GENERALISING DATA-REFINEMENT II

We consider array splitting for weakening the invariant of Fibonacci’s
Inv = 2 ≤ i ≤ N ∧ ∀j ∈ [2, i]. a[j] = a[j − 1] + a[j − 2]

P :

2

6

6

6

6

6

6

6

6

6

6

4

a[0] = 0;

a[1] = 1;

i = 2;

while i ≤ N {

a[i] = a[i − 1] + a[i − 2];

i + +

}

JPKιι−→η
= a ∈ [0,N]−→Fib ∧ i ∈ [2,N + 1]

SEFM’08 – Cape Town – p.18/37

GENERALISING DATA-REFINEMENT II

We consider array splitting for weakening the invariant of Fibonacci’s
Inv = 2 ≤ i ≤ N ∧ ∀j ∈ [2, i]. a[j] = a[j − 1] + a[j − 2]

τ(P) :

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

b[0] = 0;

c[0] = 1;

i = 2;

while i ≤ N {

if i mod 2 == 0

{b[i ÷ 2] = c[(i − 1) ÷ 2] + b[(i − 2) ÷ 2]}

{c[i ÷ 2] = b[(i) ÷ 2] + c[(i − 2) ÷ 2]};

i + +

}

Jτ(P)Kιι−→η
= b, c ∈ [0,N ÷ 2]−→Any ∧ i ∈ [2,N + 1]

SEFM’08 – Cape Town – p.18/37

GENERALISING DATA-REFINEMENT II

We consider array splitting for weakening the invariant of Fibonacci’s
Inv = 2 ≤ i ≤ N ∧ ∀j ∈ [2, i]. a[j] = a[j − 1] + a[j − 2]

How can we attack τ(P) and get Inv back?

SEFM’08 – Cape Town – p.18/37

THE GEOMETRY OF ATTACKERS

X

Concrete

Abstract

R(X)

lco – REFINEMENT

SEFM’08 – Cape Town – p.19/37

THE GEOMETRY OF ATTACKERS

X

Concrete

Abstract

S(X)

uco– SIMPLIFICATION

SEFM’08 – Cape Town – p.19/37

SHELL/CORE

Let P be completeness

A

P holds: Shell of A
P doesn’t hold

SEFM’08 – Cape Town – p.20/37

SHELL/CORE

Let P be completeness

A

P holds: Core of A
P doesn’t hold

A

P holds: Shell of A
P doesn’t hold

SEFM’08 – Cape Town – p.20/37

DOMAIN COMPLETENESS: SHELL/CORE

x

f

⊤ ⊤

⊥ ⊥

ρ
η

BACKWARD COMPLETENESS: η◦f ◦ρ = η◦f

SEFM’08 – Cape Town – p.21/37

DOMAIN COMPLETENESS: SHELL/CORE

x

f

⊤ ⊤

⊥ ⊥

ρ
η

BACKWARD IN -COMPLETENESS: η◦f ◦ρ ≥ η◦f

SEFM’08 – Cape Town – p.21/37

DOMAIN COMPLETENESS: SHELL/CORE

x

f

⊤ ⊤

⊥ ⊥

ρ
η

Making BACKWARD COMPLETE: Refining input domains [GRS’00]

SEFM’08 – Cape Town – p.21/37

DOMAIN COMPLETENESS: SHELL/CORE

x

f

⊤ ⊤

⊥ ⊥

ρ
η

Making BACKWARD COMPLETE: Simplifying output domains [GRS’00]

SEFM’08 – Cape Town – p.21/37

DOMAIN COMPLETENESS: SHELL/CORE

⊤ ⊤

⊥ ⊥

ρ

η

FORWARD COMPLETENESS: η◦f ◦ρ = f ◦ρ

SEFM’08 – Cape Town – p.21/37

DOMAIN COMPLETENESS: SHELL/CORE

⊤ ⊤

⊥ ⊥

ρ

η

FORWARD IN-COMPLETENESS: η◦f ◦ρ ≥ f ◦ρ

SEFM’08 – Cape Town – p.21/37

DOMAIN COMPLETENESS: SHELL/CORE

x

f

⊤ ⊤

⊥ ⊥

ρ

η

Making FORWARD COMPLETE: Refining output domains [GQ’01]

SEFM’08 – Cape Town – p.21/37

DOMAIN COMPLETENESS: SHELL/CORE

x

f

⊤ ⊤

⊥ ⊥

ρ

η

Making FORWARD COMPLETE: Simplifying input domains [GQ’01]

SEFM’08 – Cape Town – p.21/37

BACKWARD VS FORWARD

!
A domain is backward complete wrt f iff it is forward complete wrt

f + = λX .
S

{
Y

˛

˛

˛

f (Y) ⊆ X
}

;

!
A (not trivial) partition is backward stable wrt f iff it is forward stable wrt

f −1 = λX .
{

y
˛

˛

˛

f (y) ∈ X
}

;

!
If f is injective, a (not trivial) partition is forward stable wrt f iff it is
backward stable wrt f −1;

SEFM’08 – Cape Town – p.22/37

BACKWARD VS FORWARD

!
A domain is backward complete wrt f iff it is forward complete wrt

f + = λX .
S

{
Y

˛

˛

˛

f (Y) ⊆ X
}

;

!
A (not trivial) partition is backward stable wrt f iff it is forward stable wrt

f −1 = λX .
{

y
˛

˛

˛

f (y) ∈ X
}

;

!
If f is injective, a (not trivial) partition is forward stable wrt f iff it is
backward stable wrt f −1;

A backward problem can always be transformed in a forward one,
but the viceversa is not always possible!

SEFM’08 – Cape Town – p.22/37

GENERALISING DATA-REFINEMENT III

τ(P) :

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

b[0] = 0;

c[0] = 1;

i = 2;

while i ≤ N {

if i mod 2 == 0

{b[i ÷ 2] = c[(i − 1) ÷ 2] + b[(i − 2) ÷ 2]}

{c[i ÷ 2] = b[(i) ÷ 2] + c[(i − 2) ÷ 2]};

i + +

}

The complete shell S = RB
Jτ(P)K(ιι−→η) includes odd and even Fibonacci’s

sequences:

!
Jτ(P)KS= b ∈ [0,N ÷ 2]−→ eFib ∧ c ∈ [0,N ÷ 2]−→oFib ∧ i ∈ [2,N + 1]

!
Inv = 2 ≤ i ≤ N ∧ ∀j ∈ [2, i]. a[j] = a[j − 1] + a[j − 2]

SEFM’08 – Cape Town – p.23/37

CAN WE MAKE SW OBSCURE

BY TRANSFORMING SEMANTICS?

SEFM’08 – Cape Town – p.24/37

PROGRAM TRANSFORMATION

[Cousot & Cousot POPL’02]

semanticst[SJPK] ⊑ SJτJPKK

programP

Subject Syntactic

transformationτ
programτJPK

Transformed

p S p S

Semantic
Transformed

transformationt
program program

semanticsSJPK
Subject

Syntactic transformation: τ = p◦t◦S

SEFM’08 – Cape Town – p.25/37

THE GEOMETRY OF SEMANTICS TRANSFORMERS

MAKING SEMANTICS COMPLETE(FROM ABOVE AND BELOW):

F
↑
η,ρ(f) =

d
{h : C −→C | f ⊑ h, ρ ◦ h ◦ η = h ◦ η}

F
↓
η,ρ(f) =

F

{h : C −→C | f ⊒ h, ρ ◦ h ◦ η = h ◦ η}

F
↑
η,ρ(f) and F

↓
η,ρ(f) are (Forward) complete

MAKING SEMANTICS MAXIMALLY IN -COMPLETE (FROM ABOVE AND BELOW):

O
↑
η,ρ(f) =

F

{g : C −→C | F
↓
η,ρ(g) = F

↓
η,ρ(f)}

O
↓
η,ρ(f) =

d
{g : C −→C | F

↑
η,ρ(g) = F

↑
η,ρ(f)}

O
↑
η,ρ(f) and O

↓
η,ρ(f) are generally in-complete

SEFM’08 – Cape Town – p.26/37

THE GEOMETRY OF SEMANTICS TRANSFORMERS

+

+

+

-

-

-

F
↑

F
↓

O
↓

O
↑

Minimal complete

transformation

from above

Minimal complete

transformation

from below

Maximal incomplete

transformation

from below

Maximal incomplete

transformation

from above

(F↑)+ = F
↓ and (F↑)− = O

↓

SEFM’08 – Cape Town – p.26/37

THE GEOMETRY OF SEMANTICS TRANSFORMERS

x
f

⊤ ⊤

⊥ ⊥

ρ

η

f'

Making FORWARD COMPLETENESS: Transforming the semantics upwards

F
↑
η,ρ = λf .λx .

{
ρ ◦ f (x) if x ∈ η(C)

f (x) otherwise

SEFM’08 – Cape Town – p.26/37

THE GEOMETRY OF SEMANTICS TRANSFORMERS

x
f

⊤ ⊤

⊥ ⊥

ρ

η f'

ρ+f(x)

=
∨

{ρ(y) | ρ(y) ≤ f(x)}

Making FORWARD COMPLETENESS: Transforming the semantics downwards

F
↓
η,ρ = λf .λx .

{
ρ+ ◦ f (x) if x ∈ η(C)

f (x) otherwise

SEFM’08 – Cape Town – p.26/37

THE GEOMETRY OF SEMANTICS TRANSFORMERS

x
f

⊤ ⊤

⊥ ⊥

ρ

η

f'

ρ++
f(x)

=
∨

{y | ρ+(y) = ρf(x)}

Making FORWARD IN-COMPLETENESS: Transforming the semantics upwards

O
↑
η,ρ(f)(x) =

{
(ρ+)+(f (x)) =

W

{
y

˛

˛

˛

ρ+(y) = ρ+(f (x))
}

if x ∈ η

f (x) otherwise

SEFM’08 – Cape Town – p.26/37

THE GEOMETRY OF SEMANTICS TRANSFORMERS

x
f

⊤ ⊤

⊥ ⊥

ρ

η

f'

ρ−f(x)

Making FORWARD IN-COMPLETENESS: Transforming the semantics downwards

O
↓
η,ρ(f)(x) =

{
ρ−(f (x)) =

V

{
y

˛

˛

˛

ρ(y) = ρ(f (x))
}

if x ∈ η

f (x) otherwise

SEFM’08 – Cape Town – p.26/37

OBFUSCATION AS INCOMPLETENESS

We transform semantics in order to induce maximal incompleteness

P :

2

6

4

x = x ∗ x ;

c : if 10 ≤ x ≤ 100 {y = 5} {y = 5000};

return(y)

!
JPKι(x ∈ [5, 8]) = x ∈ [25, 64] ∧ y ∈ [5]

!
wlpJcKι(y ≤ 100) = x ∈ [10, 100] and
wlpJx = x ∗ xKι(x ∈ [10, 100]) = x ∈ [4, 10].

!
Find c ′ such that

wlpJc ′Kι(x ∈ [10, 100]) =

O
↓
ι,ι(λX . wlpJx = x ∗ xKι(X))(x ∈ [10, 100]) =

ι−(wlpJx = x ∗ xKι(x ∈ [10, 100])) = {4, 10}

SEFM’08 – Cape Town – p.27/37

OBFUSCATION AS INCOMPLETENESS

We transform semantics in order to induce maximal incompleteness

P :

2

6

4

x = x ∗ x ;

c : if 10 ≤ x ≤ 100 {y = 5} {y = 5000};

return(y)

!
c ′ : if x == 4 ∨ x == 10 {x = 16} {x = x ∗ 200}

!
In order to ensure behaviour equivalence we derive

if 4 ≤ x ≤ 10

{x = x − (x − 4) � x = x − (x − 10)}

{nil}

SEFM’08 – Cape Town – p.27/37

OBFUSCATION AS INCOMPLETENESS

We transform semantics in order to induce maximal incompleteness

P :

2

6

4

x = x ∗ x ;

c : if 10 ≤ x ≤ 100 {y = 5} {y = 5000};

return(y)

!
The resulting obfuscated code is:

τ(P) :

2

6

6

6

6

6

6

6

6

4

if 4 ≤ x ≤ 10

{x = x − (x − 4) � x = x − (x − 10)}

{nil};
if x == 4 ∨ x == 10 {x = 16} {x = x ∗ 200};

if 10 ≤ x ≤ 100 {y = 5} {y = 5000};

return(y)

For x = 7 we have
Jτ(P)Kι(x ∈ [5, 8]) = x ∈ [16, 1400] ∧ y ∈ [5, 5000]

SEFM’08 – Cape Town – p.27/37

OBFUSCATION AS INCOMPLETENESS

We transform semantics in order to induce maximal incompleteness

P :

2

6

4

x = x ∗ x ;

c : if 10 ≤ x ≤ 100 {y = 5} {y = 5000};

return(y)

!
The resulting obfuscated code is:

τ(P) :

2

6

6

6

6

6

6

6

6

6

6

4

if 4 ≤ [5, 8] ≤ 10

{x = [5, 8] − ([5, 8] − 4) � x = x − (x − 10)}

{nil};
{x ∈ [1, 7]}

if x == 4 ∨ x == 10 {x = 16} {x = x ∗ 200};

if 10 ≤ x ≤ 100 {y = 5} {y = 5000};

return(y)

For x = 7 we have
Jτ(P)Kι(x ∈ [5, 8]) = x ∈ [16, 1400] ∧ y ∈ [5, 5000]

SEFM’08 – Cape Town – p.27/37

OBFUSCATION AS INCOMPLETENESS

We can derive a method for systematically making code obscure:

!
P = M 1; . . . ; Mj ; ΦjMj+1; . . . ; Mn

!
Assume the invariant Φj can be generated with abstract interpretation α

!
Find C such that:

wlpJC Kα
(Φj) = O

↓,↑
α,α(λX . wlpJMj Kι

(X))(Φj)

!
Adjust C in order to keep concrete observational (I/O) behaviour
(C |= Φj)

!
τ(P) = M 1; . . . ; C ; ΦjMj+1; . . . ; Mn

SEFM’08 – Cape Town – p.28/37

HIDING IN OBSCURITY

We generalize Cousot’ Abstract Watermarking [Cousot & Cousot ’04]

!
Stegomarker: M : S−→P encodes the signature s ∈ S into a program

M(s) ∈ P (the stegomark)

!
Stegolayer: L : P × P−→P is used to compose the stegomark with the

source (cover) program.

!
Stegoprogram: S : P × S−→P such that S(P , s) = L(P , M(s))

STATIC WATERMARKING

Watermarks are encoded as syntactic (static) properies of S(P , s)

SEFM’08 – Cape Town – p.29/37

HIDING IN OBSCURITY

We generalize Cousot’ Abstract Watermarking [Cousot & Cousot ’04]

!
Stegomarker: M : S−→P encodes the signature s ∈ S into a program

M(s) ∈ P (the stegomark)

!
Stegolayer: L : P × P−→P is used to compose the stegomark with the

source (cover) program.

!
Stegoprogram: S : P × S−→P such that S(P , s) = L(P , M(s))

DYNAMIC WATERMARKING

Watermarks are encoded as semantic (dynamic) properies of S(P , s)

SEFM’08 – Cape Town – p.29/37

HIDING IN OBSCURITY

We generalize Cousot’ Abstract Watermarking [Cousot & Cousot ’04]

!
Stegomarker: M : S−→P encodes the signature s ∈ S into a program

M(s) ∈ P (the stegomark)

!
Stegolayer: L : P × P−→P is used to compose the stegomark with the

source (cover) program.

!
Stegoprogram: S : P × S−→P such that S(P , s) = L(P , M(s))

ABSTRACT WATERMARKING

Watermarks are encoded as abstract properies of S(P , s)

SEFM’08 – Cape Town – p.29/37

HIDING IN OBSCURITY

Static and dynamic are instances of Abstract Watermarking!

!
P ∈ P (source), α, Ñ, η ∈ uco(Σ) be program properties such that α ⊑ Ñ

!
If {|M(s)|}α ∈ Ñ then L is a stegolayer for P and M(s) if

{|L(P , M(s))|}
α

= λx .

{
{|M(s)|}α(x) if x ∈ η

{|P |}α(x) otherwise

STATIC WATERMARKING

α decidable (static) and η = id

⇓
S(P , s) always reveals the watermark

SEFM’08 – Cape Town – p.30/37

HIDING IN OBSCURITY

Static and dynamic are instances of Abstract Watermarking!

!
P ∈ P (source), α, Ñ, η ∈ uco(Σ) be program properties such that α ⊑ Ñ

!
If {|M(s)|}α ∈ Ñ then L is a stegolayer for P and M(s) if

{|L(P , M(s))|}
α

= λx .

{
{|M(s)|}α(x) if x ∈ η

{|P |}α(x) otherwise

DYNAMIC WATERMARKING

α generic interpreter (dynamic) and η 6= id

⇓
S(P , s) reveals the watermark only on input η

SEFM’08 – Cape Town – p.30/37

HIDING AND COMPLETENESS

A stegoprogram reveals the watermark Ñ under input η if its abstract semantics
is F-complete for Ñ and η

S(s,P) is a stegoprogram if:

{|S(s,P)|}
α

= F
↑↓
η,M{|s|}

({|P |}
α
)

!
{| · |}α performs watermark extraction (an abstract interpretation)

!
Credibility: {|P |}α 6∈ Ñ (i.e., Ñ({|P |}α) ≈ ⊤)

!
Resilience: α is preserved by most program transformations

!
Stealthy: α hard to guess + good stegolayer

SEFM’08 – Cape Town – p.31/37

BLOCK REORDERING

Static watermarking (η = id) with traces in Σ+ as semantic objects

!
E : N−→G encoding of numbers in graphs

!
M{|s |} is the atomic closure {Gs , Σ

+} ∈ uco(Σ+) where

Gs =
{

σ ∈ Σ+
˛

˛

˛

E(s) = CFG(σ)
}

!
{|P |}α extracts the CFG of P , which is an (incomplete) abstract
interpretation of the trace semantics {|P |}

2 · 53 + 0 · 52 + 1 · 51 + 4 · 50 = 259

SEFM’08 – Cape Town – p.32/37

GRAPH-BASED WATERMARKING

Dynamic watermarking (η 6= id) states 〈c, R,H, i〉, where H ∈ H is a heap, c is
the current instruction, i is an input sequence, and R : Var(P)−→R is register

allocation.

!
E : N−→G encoding of numbers in graphs

!
M{|s |} is the atomic closure {E(s), Σ+} ∈ uco(Σ+)

!
H : H−→G extracts the set of all graphs allocated in memory with root

allocated as last,

!
α = δ+

◦δ where δ : ℘(Σ+)−→G is such that:

δ(X) =





G

˛

˛

˛

˛

˛

˛

˛

σ ∈ X , |σ| = n + 1, σn = 〈c, R,Hn , ε〉

G ∈ H(Hn), root(G) ∈ Hn

∀j ∈ [0, n − 1]. root(G) 6∈ Hj






SEFM’08 – Cape Town – p.33/37

DISCUSSION: THE FUCSIA IDEA

Obfuscation and Steganography by Abstract Interpretation
!

Define a uniform framework for information concealment in programming
languages

! General enough to include most known methods
! Formal enough to provide a (possibly) provable secure environment

for obfuscation and steganography
! Rich enough to provide advanced design and evaluation tools
! Practical enough to become a standard in the obfuscation and

steganographic design and evaluation

!
The goal: develop a theory and practice for code obfuscation and
steganography in order to make these technologies as practical as
analogous ones in other media (e.g., in DRM of audio and video)

! The code is a new media
! Known concepts in digital media (compression, noise etc.) have to

be studied on software

SEFM’08 – Cape Town – p.34/37

FUTURE DIRECTIONS

!
Move from syntactic to semantic-based metrics

! measuring incompleteness
! measuring complexity of complete refinements

!
Obscuring and watermarking require program integration I : P × P−→P

!
Explore (HO)ANI for isolating completeness holes?

! The obfuscated parts and the stegomarks have to preserve the
semantics of the cover program when integrated

! P is partitioned in
» cover programs P ⊆ P

» secret programs Q ⊆ P

SEFM’08 – Cape Town – p.35/37

HOANI FOR SW WATERMARKING?

Private InputPublic Input

Public Output

η

JIK

ρ

φ

(η)I(φ []ρ) : JP1Kη = JP2Kη =⇒
ρρ(JIKφ,η(JQ1Kφ, JP1Kη) = ρρ(JIKφ,η(JQ2Kφ, JP2Kη)

SEFM’08 – Cape Town – p.36/37

HOANI FOR SW WATERMARKING?

Private InputPublic Input

Public Output

η

JIK

ρ

φ

(η)I(φ []ρ) : JP1Kη = JP2Kη =⇒
ρρ(JIKφ,η(JQ1Kφ, JP1Kη) = ρρ(JIKφ,η(JQ2Kφ, JP2Kη)

SEFM’08 – Cape Town – p.36/37

HOANI FOR SW WATERMARKING?

Private InputPublic Input

Public Output

η

JIK

ρ

φ

(η)I(φ []ρ) : JP1Kη = JP2Kη =⇒
ρρ(JIKφ,η(JQ1Kφ, JP1Kη) = ρρ(JIKφ,η(JQ2Kφ, JP2Kη)

SEFM’08 – Cape Town – p.36/37

HOANI FOR SW WATERMARKING?

Private InputPublic Input

Public Output

η

JIK

ρ

φ

(η)I(φ []ρ) : JP1Kη = JP2Kη =⇒
ρρ(JIKφ,η(JQ1Kφ, JP1Kη) = ρρ(JIKφ,η(JQ2Kφ, JP2Kη)

SEFM’08 – Cape Town – p.36/37

HOANI FOR SW WATERMARKING?

Private InputPublic Input

Public Output

η

JIK

ρ

φ

(η)I(φ []ρ) : JP1Kη = JP2Kη =⇒
ρρ(JIKφ,η(JQ1Kφ, JP1Kη) = ρρ(JIKφ,η(JQ2Kφ, JP2Kη)

SEFM’08 – Cape Town – p.36/37

HOANI FOR SW WATERMARKING?

Private InputPublic Input

Public Output

η

JIK

ρ

φ

(η)I(φ []ρ) : JP1Kη = JP2Kη =⇒
ρρ(JIKφ,η(JQ1Kφ, JP1Kη) = ρρ(JIKφ,η(JQ2Kφ, JP2Kη)

SEFM’08 – Cape Town – p.36/37

MANY THANKS!!

SEFM’08 – Cape Town – p.37/37

	The problem: Protection
	The problem: Protection
	The problem: Attack
	Malware Trends
	SW protection vs. SW attacks
	Protection by obscurity: Code Obfuscation
	An Example
	State of the Art
	The problem: hiding and unveiling in SW
	Why Abstract Interpretation?
	Abstract Interpretation
	Abstract Interpretation
	Completeness in Abstract Interpretation
	An example
	Obscurity by incompleteness
	Generalising data-refinement I
	Generalising data-refinement II
	The Geometry of Attackers
	Shell/Core
	Domain Completeness: Shell/Core
	Backward vs Forward
	Generalising data-refinement III
	
	Program Transformation
	The Geometry of Semantics Transformers
	Obfuscation as incompleteness
	Obfuscation as Incompleteness
	Hiding in Obscurity
	Hiding in Obscurity
	Hiding and completeness
	Block Reordering
	Graph-based watermarking
	Discussion: The FUCSIA idea
	Future directions
	HOANI for SW watermarking?
	

