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Abstract. In this paper we propose a software watermarking technique based on
the fact that different semantic instances might be abstracted in the same syntac-
tic object. Our idea is to hide the watermark in a particular semantic instance and
to distribute the corresponding syntactic construct. The extraction process uses
a secret key in order to recover the information loss and reconstruct the water-
mark. In particular, we focus on loops and we base the embedding and extraction
algorithm on the semantic understanding of loop-unrolling.

1 Introduction

Nowadays software piracy, i.e., the illegal reuse of proprietary code, is a key concern
for software developers. Code obfuscation, whose aim is to obstruct code decipher-
ment, represents a preventive tool against software piracy: attackers cannot steal what
they do not understand [[7I8]]. Once an attacker goes beyond this defense, software wa-
termarking allows the owner of the violated code to prove the ownership of the pirated
copies [5l6/T4T5]]. Software watermarking is a technique for embedding a signature,
i.e., an identifier reliably representing the owner, in a program. This allows software de-
velopers to prove their ownership by extracting their signature from the pirated copies.
A good watermark has to be resilient to distortive attacks and not easy to remove [6].
Most of the existing watermarking techniques target a program feature which can as-
sume many configurations, but hide the watermark in just one of them. Consider, for ex-
ample, the watermarking technique that modifies the register allocation: although
there are many allocations that suit the program data flow, only one is designated to be
the signature and thereby used in the marked program. The same idea applies in [14],
where a distinctive permutation of basic blocks is selected among the many possible
ones. Both [[14]] and [17]] are static techniques, because they affect only the layout of
programs. Notice that a statically watermarked program exhibits only the watermark
configuration and rules out all the other ones: this may help, rather than hinder, attack-
ers, not to mention the ease of subverting layout while preserving functionality.
Dynamic watermarking techniques exploit configurations that programs assume at
runtime, thus allowing many candidate configurations to coexist in the same program.
For instance, the path-based technique targets the runtime branching behavior of
programs: a program executes different paths on different inputs, but only the spe-
cial input provides the path that outlines the signature. Likewise, the threading tech-
nique [16] yields multi-thread programs in which different configurations arise from
how race conditions between threads are resolved; once again, a special input provides
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Fig. 1. Watermarking loops with loop-based watermarks

the configuration associated to the signature. Such dynamic techniques are not trivial to
thwart: both branching and threading behaviors are tied to functionality, hence their dis-
tortion may result in a distortion of functionality. The coexistence of watermarked and
unwatermarked configurations within the same program also characterizes the abstract
watermarking technique [13]]. Here a configuration is a parametric abstract domain say-
ing whether a watermark variable w, which is assigned twice and computed through
the Horner scheme, is constant or not. Observe that the main point is not the use of the
Horner scheme but the fact that w is constant only in the domain parametrized by a key,
while other domains consider w to have stochastic behavior [[13]].

The idea. Contrary to [[13], loops are the basic block of the dynamic watermarking
technique we propose in this paper. A loop is a programming construct in which a piece
of code, called the loop body, is executed repeatedly, thus giving rise to sequences of
iterations. In the proposed technique, any subsequence of such sequences is a candidate
watermarking configuration. The aim is to embed, in one of the subsequences, a loop-
based watermark, i.e., a watermark that is itself computed iteratively. This is done by
enriching the loop body with additional code that yields the signature only within the
watermarking subsequence — otherwise it does not produce significant results. Consider
for example the program s := 0; for i := n to 50 do s := s + i od, which performs 50
iterations if n = 1. Let the Beast Software Corporation have signature 666, computed
in 2 iterations by W := 53; fori := 17to 18 do W := W + 42 od. To watermark
the former program, Beast moves both W := 53 and W := W + i? in the body of
the original loop, thus obtaining program s := 0; for i := n to 50 do P; od, in which
P, & [W:=5-83; s:=s+i; W :=W +i2]. Expression s — 83 evaluates precisely to
53 only whenn = 1 and 7 = 17: these are the key values for detecting the watermarking
subsequence, which spans two iterations out of 50 (those at 7 = 17 and 7 = 18). At
extraction time such a subsequence is made syntactically independent from the native
loop: s := 0; fori := nto16 do P; od; P;; P;+1; for: := 19to 100 do P; od.
What is useless for the computation of the signature is then sliced away [19]: s := 0;
fori:=nto16dos:=s+iod; W :=s—83; W:=W+i% W:=W+(i+1)2 Here,
whenn = 1, W outputs 666. The tool we have used to make the subsequence crop out is
loop-unrolling 2], a loop transformation that writes out iterations into sequential code,
thereby making loop behavior at each iteration syntactically analyzable. As we show in
Fig.[1 loop-unrolling is the core of both the embedding and extraction algorithms.
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In a native loop L performing N iterations on input I, we can embed a loop-based
watermark W requiring Ny < N iterations of a code fragment My, called stegomark.
By design, Myy has to get the correct initialization only when it is evaluated in a specific
native iteration A, called promoter. We designate A by unrolling L entirely. We estab-
lish the dependence that binds My, to A through program slicing [19]]. Then we fold L
and we insert Myy in its body, thus obtaining Ly . For an attacker now unrolling Lyy is
not of help in determining A anymore, because My appears in every iteration. More-
over, if Ly is contained in program Py, any loop L’ in Py, that includes a fragment
of code M’ matching the structure of My, may potentially carry a watermark as well
(although L' # Lyy is highly unlikely to yield a reliable signature). Thus, to retrieve
the signature, for each L’ we have to: (i) perform a partial unrolling which exposes, if
possible, only the subsequence of Ny iterations starting from A; (ii) slice Py using as
criterion the code of M’ included in the last iteration of the subsequence; (iii) run the
slice on input I and collect the result in the set .S of candidate signatures. Finally we
have only to identify the signature among the elements of S. Observe that the proposed
scheme allows the embedding of any kind of loop-based watermarks. In the specific wa-
termarking technique we describe in Sec.[3] the iterative construction of the signature
is provided by the evaluation of a polynomial through the Horner scheme as in [13]].
We specify programs and their semantics following the syntax and semantics of the
simple imperative language described in [12]]. Syntactic program transformations, like
loop-unrolling and code insertion, are related to their semantic counterpart following
the abstract interpretation-based framework of Cousot and Cousot [12].

2 Preliminaries

Notation. Let p(X) denote the powerset of a set X, namely the set of all subsets
of X: p(X) 2 {Y | Y C X}. A poset is a set X endowed with a partial ordering
<x, denoted (X, <x). Let L x denote, when it exists, the minimum of poset X, i.e.,
Vr € X. Lx <x x. Anelement a is an upper bound of X if Vx € X. x <x a. The
minimum of the set of upper bounds of X', when it exists, is called the least upper bound
(lub) of X and it is denoted as \/ X . A function f : X — Y from poset X to poset Y’
is surjective whenVy € Y. 3z € X. f(x) = y. Itis L x-strict when f(Lx) = Ly. It
is monotonicifVr,2' € X. x <x 2’ = f(z) <y f(a').Itis additive if it preserves
the lub of every S C X, ie., f(Vx S) = Vy f(S), where f(S) £ {f(z) | z € S}.
Let f : X — X be an additive function. A fixpoint of f is an element = € X such that
f(x) = x. The least fixpoint Ifp=* f is the minimum among the fixpoints of f in X.

Abstract Interpretation. In abstract interpretation, any description of program behav-
ior is obtained as an approximation (abstraction) of the most detailed (concrete) pro-
gram specification available, which is usually a formal semantics [10/11]]. Both concrete
semantics and abstract behavior are computed on posets: hence there are a concrete
poset (C,<c) and an abstract poset (A, <), whose orderings qualitatively model
relative precision between elements. When an abstraction map o : C — A and a con-
cretization map v : A — C interrelate the two domains by forming an adjunction,
ie,Vee C,ae A alc) <a a < ¢ <¢ v(a), we have a Galois connection, de-

noted C' <—, A. In particular, if « is surjective, we have a Galois insertion, denoted
«
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Program Syntax Program Semantics Program Abstractions
Integersn € Z A)p 2 n act(L: A —1L';) £ 4
Variables Y € X Y)p & p(Y) lab(L: A —L';) 2L

A(
Arith, Exps E € E. ABLOE)p 2 AE)p @ AE)p  1ab(P) 2 U {1ab(0))
E:=n|Y|EQE, B(tt)p = tt suc(L: A—1L';) 21
Bool. Exps B € B, B(t)p & fi suc(P) £ (Jye,p{suc(c)}
B:= E12E2‘B1@B2“‘B|tt|ff B( B) B( ) Var(E)é{YEX‘YiSiI’IE}
Actions A € A, “B)p = ~B(B)p var()f{YeX\YisinB}
A::=B | Y:=E ‘ Y:=7 B(E < Eg)p A( 1) A(Ez)p var(Y — ) Y {Y} U var(E)
Symbols s € S B(B1@B2)p = B(B1)p @ B(B2)p var(Y :=7) £ {v}
A =
cbeb L € L8NS sm)p 2 [ [BE)Y = ttA s = p} var(C) 2 var(act(c))
£ A Ay
ommands € € C. SW=E)p 2 (Y= A®)}  Var(P) 2 U, var(0)
SY:=p={p |32€Z. p =p[Y := 2]}

Programs P € P £ o(C)

Fig. 2. Syntactic and semantic program constructs

v . . .
C <—,, A; it can be proved that we always have a Galois insertion whenever «, ~y are
«

monotonic, ¢ <¢ y(a(c)) and a(y(a)) = a. Given a Galois connection C' <—Z_> A a

concrete function f : C' — C and an abstract function f* : A — A, we say that f%isa
correct approximation of fin Aif a o f <4 f*oa. Welet fA £ a o f o~ denote the
best correct approximation of f on A. When the correctness condition is strengthened
to equality, i.e., when o o f = ff o o, the abstract function f¥ is a complete approxi-
mation of f on A. When « is | o-strict and additive and f* is complete wrt. f and A,
then a(lfpgc f)= Ifp<4 f%, i.e., no loss of information is accumulated in the abstract
computation through f# [119]]. Then a fixpoint transfer can be made from C to A.

Programming Language. We consider the imperative language introduced in [12]] (see
Fig.2). Any command C has the form L.: A — L’ ; , meaning that C is referred to through
label L, performs action A and in turn refers to commands with label L. A can be either
a deterministic (Y := E) or random assignment (Y := ?), or a boolean test evaluation.
A label or entrypoint L £ ims consists of an index i € N, a memory value m € N
and a symbol s from an alphabet S: whenever i, m > 0, we have that C is the m-
th copy of a native command C at entrypoint OOs and C is also member of the i-th
unrolled loop (see Sect. ). A program P is a possibly infinite set of commands[] whose
execution starts at entrypoints in £(P) C lab(P). Program variables in P take their
values in an environment p € &(P), which is a mapping from var(P) = dom [p] to
Z U {0}, where U & 7 is the undefined value. When the domain of p is not relevant,
we can write p € €. As shown in Fig.Zl we use functions A(E) : &(P) — Z U {U}
and B(B) : €(P) — {tt,ff,U} to evaluate arithmetic (E) or boolean (B) expressions
of P; evaluation propagates U from subexpressions to superexpressions. We also use
function S(4) : €(P) — p(E(P)), which evaluates action A by returning the set of
environments A generates when executed. A state s = (p, C) pairs an environment p €
¢(P) with a command C € P. The set of states resulting from the execution of C in p is
S((p,C)) & {{p', )| " € PAp' € S(act(C))pAsuc(C) = lab(C’)}; relation S models

! Here we follow [12]] and consider programs as possibly infinite sequences of commands.



178 M. Dalla Preda, R. Giacobazzi, and E. Visentini

the transition between states. From the set £(P) C lab(P) of the initial entrypoints of
P, we can define the set J(P) £ {(p,C) | p € €(P) AC € P Alab(C) € £(P)} of
the initial states of P. Trace semantics S(P) 2 IfpS F(P) is the least fixpoint of an
operator F(P)T £ J(P) U {oss' | os € T A s’ € S(s)}. Each finite partial trace
o € S(P) C D records a finite partial execution of P. We let © be the set of the finite
partial traces of all programs and o; be the (j + 1)-th state of 0. A set 7 € (D)
of traces can be abstracted by collecting only the commands executed along the traces
[12]. Thus p(7) = {C |30 € 7. 35 € [0,|0]). 3p € €. 5, = {p,C)} induces a Galois

. S . . .
insertion (p(®),C) <—,, (P/=,C) which interprets programs as an abstraction of

their (trace) semantics. In the abstract domain of programs, P and Q collapse (P = Q)
iff S(P) = S(Q) up to semantic equivalences between actions (for instance, Y := 6
is semantically equivalent to Y := 2 x 3). The syntactic refinement P C Q holds iff
S(P) C S(Q) up to semantic equivalences between actions.

Principle of Program Transformation. Any syntactic program transformer t, altering
the code of P and returning new program P’, induces a corresponding semantic trans-
former ¢ turning S(P) into S(P’) [12]]. If we let £(7) £ {t(¢) | o € T}, then ¢ induces

a Galois connection (p(D),C) “—., (p(D), C), where 7 acts as an abstraction. By
t
composing the two Galois connection introduced so far, we can derive a similar notion

. ¥ o o
about t, i.e., (P/=,C) “—_, (P/=,C) [12]. This kind of composition allows us to de-
t
rive t as the best correct approximation of semantic transformer ¢, i.e.,t d pofo S.In

particular, when the transformation is decidable, we have t = p o 7 o S. The systematic
design of ¢ from 7 takes advantage of fixpoint transfers [12]]. In the following we con-
sider only decidable transformations, such as loop-unrolling and assignment-insertion.
Hence, we derive t £ Ifp= ' in fixpoint form by combining t = p o ¢ o S with the
following equivalence: p o f o S = p ot o IfpSF = p o IfpS F' = Ifp= [F'. Notice
that the first equality follows by definition of S; the other ones hold only if operators
F'i p(®) — p(®) and F' : P/= — P/ are designed to fit the requirements of

the fixpoint transfers applied within Galois connections {p(D), C) <—th_> (p(D),C)

y =

and (p(D), C) <TS)_» (P/=, C) respectively. The correctness of ¢ is formalized through

some observational abstraction oo such that (p(D), C) <—zo_, (Do, Cp). Trans-
former t is correct wrt. ap if and only if for every program P € P, ap(S(P)) =

ao(1(S(P))) [12].

3 Assignment-Insertion

Let us define in the framework described above the transformation of assignment-
insertion that we exploit for the embedding of My,. Suppose we wish to insert, at
entrypoint J € lab(P), an assignment W := E; we use J, J'...to denote labels targeted
for insertion and L, L. . . to denote other labels. Syntactically, the solution is straightfor-
ward (see Fig.B): we modify in P every command referring to J so that now it refers
to a new J ¢ lab(P), then we insert in P a new command C £ J.W:=E — J;,



Hiding Software Watermarks in Loop Structures 179

// Original program P
00e Z:=0; // Program Q

00f X:=0; // generated at extraction time
00e Z:=0;
S 00f X:=0;
// unrolled £or-loop F1 (u1 = 1)
S 10g —(X<Zop—5)— 20g;
S 10g X<Zp—5— 10h;
10h Y:=Fib(X+7);
10v  W:= (215 —Y) x 259;
10v Z:=Z+YXY;
101 W:= 14 X W+ 245760 ;
S 10i X:=X+1— 10g;
// unrolled £oxr-loop Fa (uz = 3)
20g (X <Zo—4) — 00g;
20g X <Zop—4 — 20nh;
20h  Y:=Fib(X+71);
20v W:= (215 —Y) x 259;
20v Z:=Z4+YXY;
o S 20i W:=14 X W+ 245760 ;

// Native for-loop F
00g —(X <Zp) — end;
00g X < Zo — 00h;
00h Y:=Fib(X+7:);
00v Z:=Z+YXY;
001 X:=X+4+1—00g;

// Watermarked program P’
00e Z:=0;
00f X:=0;
// for-loop F'
00g —(X <Zp) — end;
00g X < To — O0h;
00E  Y:=Fib(X+T1);
— 00v W= (215 —Y) x 259;
00v Z:=Z+YXY;
— 001 W:= 14 X W+ 245760;

0 n nwn

201 tt;

001 X:=X+1— 00g; 21g t®;

. o ) , , 2lh Y:=Fib((X+1) +71);
Assignment-insertion turns P into P'. Then P * 21v W:= (215 —Y) x 259;
yields program Q provided that its for-loop F’ 21v Z:=Z+YXY;
is unrolled with u = (1,3> and £ = <57 2>. o S 21i W:= 14 X W+ 245760;
The entrypoint of each program is 00e. The new 21i t;
assignments carry the watermark of signature 22¢ t;

5 = 120736. To extract 5, we need to run on 29h Y:=Fib((X +2) +71);
P’ the algorithm described in Sec.5. The algo- 29y Wi= (215 — Y) x 259;
rithm computes Q and try to detect a candidate 29y Z:=Z+YXY;
assignment (%). The copies (x) of that assign- _, , g 994 W:= 14 X W - 245760 ;
ment are discarded. In resulting program Q’ it de- s 22i X:=X+3— 20g;
termines (— o) backward-slicing criterion C and // £or-loop F of program P’
computes slicing S. On the key input, the com- 00g [..]

mands in S yield signature 5 embedded in P’.

Fig. 3. Three programs

obtaining P’. In case W € var(P), however, S(P’) may differ a lot from S(P), as the
new value of W may alter deeply the evaluations of subsequent boolean conditions and
control flow of P. To prevent these major changes, we might restore the value of W
before W is used again. Alternatively, we just exploit a variable W that is either fresh
wrt. P, namely W ¢ var(P), or dead wrt. entrypoint J targeted for the insertion, i.e.,
commands executed after the reaching of J must not define or use W any longer. Under
this hypothesis, (pg,L: Ag — J;)(p1,J: Ay — L';) € S(P) can be transformed into
(po,L: Ao — J; ) {p1,C){(p},T: Ay = L;) € S(P'). We let g, ¢1 be po, p1 enriched
with W — U in case W is fresh. On the other side, we let ¢} = p; @ {W — A(E)p1},
meaning that W has to belong to dom [} ] and has to take value A(E)p;. We say that ¢
is an enhancement of p;. In general, given p € &, its enhancement p @ w = (p\ w) Uw
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M (e(p,C)) £ "((p,C), {W; — U |W; € WAW; & dom[p]})
(o' (p',C'){p,C)) 2 let o (p,C) = " (" (p',C")) in o (p, C)i" ({p, C), p restricted to domain W)
((p,C),w) £ let ¢ = p & w in match /" (C) with

J:Wy:=E; =L ;C v (¢, J: Wy :=E; — L'; ){p[Ws := A(Ey)w], C")

¢ — (p,C)
MI:A— T )2 T W =B — J;J:A— T ML:A—J;)2L:a—T;
MI:A—L ;)2 30 =E —J;J:A—1L; ML:A—L ;)20 A—1;

Fig. 4. Semantic assignment-insertion

augments p with the mappings in w € €&, overwriting A(W)p with A(W)w in case there
is a clash on W. Due to the triviality of the trace transformation, observational abstrac-
tion !} for assignment-insertion needs only to discard the inserted states and return the
resulting sequence, expunged from environments:

aB (o) £ Aj. alb (o)) ab(ims: A—1';) 2 ims: A —1/;

aB({p,C)) £ ab(C) ab(ims: A—1';)2¢e .

Semantic transformation £ for assignment-insertion, shown in Fig.[] scans the traces
of P state by state, performing different insertions. Each time it finds entrypoint J, it
inserts correspondent assignment Wy := Ej. We have that each J is a target label in P,
each W; is a variable from a set W and each Ej is such that var(E;) C var(P) UW. The
algorithm also enhances the environments of the trace, replacing each p with p & w. To
this purpose, it maintains a special environment w which changes dynamically from state
to state. At the beginning, it tracks only the fresh variables in J/, mapping each one to O.
In the following, after a state has been transformed, it tracks all variables in WV, deriving
their values from the (enhanced) environment of the transformed state. Since each W; €
W is dead at entrypoint J, the enhancement of p influence neither the evaluation of
arithmetic and boolean expressions, nor the control flow, as desired. We can formally
prove this fact by taking advantage of 3.

Proposition 1. Let P be a program and o € S(P). Then (o) is a trace and ol (1" (o))
= ap(0). Furthermore p o (" o F) =" o p.

The fixpoint transfer inside the proposition allows us to derive from £ a syntactic algo-
rithm t™ for assignment-insertion. We express it as follows:
INIT"(P) £ {C’ | 3C € P. lab(C) € £(P) AC isinA"(C)}
NEXT"(P)(Q) £ {C¢’ | 3¢ € P. ID € Q. €' is in £"(C)A
lab(C) = ims A (suc(D) = ims V suc(D) = ims)}
ITER™(P)(Q) £ let Q' = QU NEXT"(P)(Q) inif @' = Q then Q' else ITER™(P)(Q') fi.
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4 Loop-Unrolling

The easiest looping constructs to unroll are for-loops. Program P of Fig.[Blincludes a
for-loop F. This loop, on input (Zy, Z1 ), sums in Z the squares of the numbers which, in
the Fibonacci sequence, have indexes from Zg to Zyp+7Z; — 1:ife.g. Zp = 4 and Z; = 3,
then Z finally evaluates to 324-524-82 = 98. Whenever a program P includes a for-loop
F, we write F € fors(P). More formally, F € fors(P) iffF C PandF = {G,G, I}UH. The
couple of commands G £ g: X <E — h; andG £ g: ~(X < E) — p;, withg # hand
g # p, implements a branching named guard. As F always starts with the evaluation of
its guard, we have £(F) = {g}, lab(F)nlab(P\ F) = 0 and suc(P \ F) Nlab(F) C {g}.
The guard is satisfied as long as X € X is less4 than E € E. If the guard is not satisfied,
the £or-loop ends transferring the control flow at entrypoint p ¢ lab(F). Otherwise, the
execution goes on through H, a set of commands named body, and eventually through an
increment command I = i: X ;==X +E — g;,withi #gandi =h V i € Suc(H);
notice that I makes the control flow return to the guard again. We formally define H as
the collection of all the commands of P that are reachable from G without going through
I,ie.,H2 IfpS flow(P), where flow(P)(Q) £ {C € P\ {I}|lab(C) = suc(G) v 3¢’ €
Q. lab(C) = suc(C’)}. We require g, i ¢ lab(H). We expect both X and the variables in
E and E not to be assigned inside H. We require X not to be used in E or E.

Finite partial trace {p,G)n(p’,I) € S(F) is an iteration of £or-loop F, where nj €
S(H); if H = () then 7 = &. A maximal trace 0 € S(F) is a sequence of terminating
iterationd followed by a state with command G. Along the trace, the values of E and E
do not change, while the value of X, though constant throughout each iteration, increases
by E from one iteration to another. Thus, if p is an environment in a state of o € S(F),
we can predict how many increments X still has to undergo, i.e., the number of the
iterations from p till the end of 0. Let ¢ = A(E)p, ¢ = A(E)p and = = A(X)p. We

just need to define ag : &(F) — N such that ag(p) = Vé*"’”)ﬂé’l)J if ¢ > z and

e
ar(p) £ 0 otherwise. We let ¢ be the total number of iterations of o.

Along o € S(F) iterations are naturally unfolded, i.e., they come sequentially one
after another. In p({c}) they fold because any command C € F, although occurring in
many different iterations, always appears with the same entrypoint lab(C). In the pro-
posed watermarking technique, folding has to be neutralized at embedding/extraction
time. Loop-unrolling [2] is good at this task because it changes labels in the following
way: given the so-called unrolling factor u € N, it makes all and only the occurrences
of C atiterations k£ (mod u) have the same label (with 0 < k < ¢), thus partitioning the
iterations of o into u classes. Only iterations from the same class fold together. So the
code of the unrolled loop is u times longer than F and each of its iterations sequentially
executes the task of u native iterations. Consider for instance for-loop F’ € fors(P’)
in Fig.[B which has a command C with entrypoint 00h. Clearly C appears in every iter-
ation of any o € S(F’). Now let o = /0", where o’ encompasses the first 0 < o1 <
iterations and o’ the last 15 = ¢ — ¢1 ones. To unroll o’ with factor us = 3, we scan

2 For short, we ignore similar kinds of for-loops, which use >, < or > as comparison operator.

3 An iteration also might not conclude: this occurs when the execution of F gets trapped inside
some non-terminating loops possibly included in H. In such a case none of the partial traces of
S(F) can be recognized as a maximal trace which fully outlines the entire execution.
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Y = ?[tmxE)y] £ Y = i+1 ifi<IAN(C=G
Y= E[(mxB)y] 2 Y [()H—me ) I(i,¢) 2 V(CEFA SU?(C) = 00g))
B, @ B2[(x+m><ié)/x L By [(x+m><E)/x] @ By [(x+me)/x] ’ 0 ifi=INC=G
% otherwise

HD

—B[(+mxE)/x

]
]
]
]
& fee [(k+m xE) /y]
]
]
]
]
]

[()H—me)/x]

Hl>

/=

m+1 ifme0,u —1)

0 ifm=wu; —1

Hl>

E; @ Eo[(X+mxE)/y

Eq [(+mxE)/y] @ By [(*+mxE) ] M(m,i,I) = {
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Fig. 5. Semantic loop-unrolling

the iterations of " by triplets; for each triplet, we set the memory value of lab(C) to
0 in the first iteration, 1 in the second iteration and to 2 in the third iteration. If we
fold the new trace, we obtain for-loop Fo of program Q in Fig.[3l here three copies of
C coexists at entrypoints 20h, 21h and 22h. Similarly, by unrolling ¢’ with the trivial
factor u; = 1, we get for-loop F; of Q, in which the only one copy of C is located at
10h. All the copies of C have the same symbol h. As index value, they use a number
identifying the unrolled loop which they are member of. The fact that the code of the
unrolled loops actually implements tuples of native iterations is essential to the pro-
posed watermarking technique. We hide signatures in iterations, which are semantic
objects. However, the embedder and the extractor are automatic tools that cannot deal
with semantics. But they can deal with code. Thus if we define loop-unrolling as a se-
mantic transformation and then we abstract it to a syntactic transformation [12]], we can
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safely rely on loop-unrolling to both embed and extract signatures. In our last example
we unrolled o = ¢’¢” using w; only for ¢’. To attain this, we kept on unrolling o only
while X < E — (b +uy — 1) x E was true, where we let /1 = ¢5. This approach was
supported by the following proposition. Define ¢ € [0, ¢] to be the lessening factor. Let
g(u,f) & ¢+u—1andB 2 X < E— g(u, /) xE. Let p € &(F) be an environmentin o.

Proposition 2. B(B)p = ff ifand only if 0 < ar(p) < g(u, ?), i.e., B gets false in o at
the last but g(u, £) iteration. Moreover | (=0/u] u —u < t — g(u, ) < [=0O/u] u.

So the unrolling of & with uy, ¢1 involved just the first | (¢—¢1)/u, | uy iterations. This did
not keep us from unrolling unprocessed iterations with new factors uy = 3 and /5 = 0.

As we know, loop-unrolling affects labels. Consider again for-loop F in Fig.3t
in iterations & (mod us) each 00s was replaced with 2ms, where m £ k mod us is
the memory value. But loop-unrolling affects actions as well: each iteration of Fy, for
instance, stemmed from the merger of us = 3 subsequent native iterations. The process
was as follows. Guards and increments were replaced by tt in every iteration of ¢,
except for iterations 0 (mod us), where By = To — 4 was used as the new guard, and
for iterations (ug — 1) (mod wuz), where act(I)[(x+(uz—1)xE)/x] — see Fig.Bl- was used
as the new increment. In iterations & (mod us), any other act(C) was replaced with
act(C)[(x+mxE)/x], and every environment p was updated to p[X := A(X)p — mA(E)p].
After | (t=£2)/us, | uy iterations of o, By becomes false; thus here a new state with com-
mand 20g: —Bs — 00g; was inserted. Such new states are discarded by observational
abstraction al(g for loop-unrolling which, for any other state (p,C), gets rid of C and
reverses the update of p using the memory value inside lab(C):

ap(T) £ {ag(0) [0 € TH  ag(o) = Aj. a(0;)

aB({p,ims: A —ims’;)) 2if (s = &) c else p[X := A(X)p + mA(E)p] fi .

Semantic transformation #* for loop-unrolling, shown in Fig.[3] scans a trace in S(P)
and unrolls any subtrace o € S(F), using factors from vectors u = (uy,...,us) and
£ = ({y,...,0r). For each u; > 1,¢; > 0 it produces unrolled for-loop F;. Native
iterations left unprocessed in the rear of o belong to F = F(, where the equality holds
since up £ 1 and £, £ 0. Index 4, initially set to 0, is ruled by function |, which
increases it just at the beginning of o and after the insertion of each new state. When
the unrolling is over, | reverts i to 0. While unrolling is performed (i > 0), B; has to be
checked and inserted every w; iterations of o. The count is kept through memory value
m controlled by function M. The check is performed by validation function V, and it
occurs whenever m = 0 and ™ is about to transform a guard state. In particular, if B;
evaluates to false, the additional state is inserted and then unrolling goes on using the
next factors, if any, provided that there are still native iterations to unroll.

Proposition 3. Let P be a program and o € S(P). Then 1 (o) is a trace and o/ (1" (o))
= ol (o). Furthermore p o (" o F) = F™ o p.

M turns a trace o € S(F) into an al3-equivalent trace o/ € S(Fy U ... UF; UF),
notwithstanding o is a subtrace inside a trace of P. Thanks to the fixpoint transfer, we
get the algorithm yielding P’ £ PUF; U...UF from P O F. We express it as follows:
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INIT"(P) £ {C’ | 3C € P. lab(C) € £(P) ACisin"(C,0,if C € F then 1 else 0 fi)}
NEXT"(P)(Q) £ {C’|3C € P. 3L: A — i'm’s’; € Q.lab(C) = 00s’ A Cis in A*(C,m’, i)}
ITER"(P)(Q) £ let Q' = QU NEXT"(P)(Q) inif Q' = Q then Q' else ITER"(P)(Q’) fi .

5 Software Watermarking by Loop-Unrolling

In the watermarking technique we propose here, a signature is a natural number s, which
is computed iteratively in watermark variable W by mean of the following stegomark:
W:=ua; forX:=0ton —1doW:=¢ X W+ b; od. This stegomark implements
the Horner technique for the evaluation at 2 = ¢ of n-degree polynomial P, (z) =
az™ +b Z;:Ol 27. Hence we have s = P, (£). Let us consider an example: signature
s = 120736, obtained as the evaluation at = 14 of the 3-degree polynomial Ps(z) =
—1999482° + 24576022 + 2457602 + 245760, can be computed by the following
stegomark: W:= —199948; for X := 0 to 2do W := 14xW+245760; od. The degree of
P, is precisely the number n of iterations performed by the for-loop in the stegomark.
The stegomark is going to be embedded in a for-loop F € fors(P) performing, on
some input Z, at least n iterations. Thus n can range from 1 to the maximum number
of iterations F can perform when P is executed. Reasonably we assume that for any
for-loop F € fors(P) there exists an input Z such that F performs at least one iteration
on Z. Thus any for-loop can be targeted for embedding. Likely, we expect that in any
program which is complex enough to be worth protection there is at least a for-loop
where to embed the stegomark. This because, in such programs, large amounts of data
aggregate in data structures, like e.g. arrays, that need for-loops to be manipulated.

Given s and n > 0, we would like P, (§) = a&™ + bZ}‘;& &9 = 5. We thereby
leta £ ;l — flil ;.L;Ol &7, We ask for &, b and a to be whole numbers, so that s can
be safely evaluated through the stegomark. First, we require {" to be a divisor of s.
In our example we have s = 120736 = 2° - 73 -1l andn = 3, s0 & = 14 is one
possible choice. Next, we require b to be a nonzero multiple of £”, namely b # 0 and
b= 5”*”'2, where n’ € N and z € Z are random numbers. In our example we set
b= 143+11 .15 = 245760. As watermarked program Q in Fig.[Bshows, £ and b are not
obfuscated. Moreover, by design, it is known that b is a multiple of £™. If n’ was fixed
by design, e.g. ' £ 0, then n could be easily retrieved — by just subtracting n’ to the
number ¢ of times ¢ divides b. This would be unpleasant because n is part of the secret
watermarking key. By letting n’ be selected randomly, what it is known to an attacker
is that 0 < n < ¢: the greater is n/, the larger is the range of n. Programming languages
do not allow numbers to exceed a prefixed maximum MAX. If parameters £ and b are
too big, we may compute them using ad-hoc functions fed with smaller values; this also
increases the stealth of such parameters.

Embedding. In order to inlay the stegomark computing s in P, we run the embedding
algorithm shown in Fig.[6l The algorithm looks for a for-loop F that, on a given input
7, performs at least n iterations. If the guard of F includes variables that are initialized
randomly, the number of iterations on Z may not be fixed. Therefore we let ¢ be the
minimum number of iterations of F on Z, and we require ¢ > n. Furthermore, stegomark
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funct embed (P,Z,W,n, &, a,b)
P’ — P; F « fors(P);
while 7 £ ) AP =P do
F « next(F); (bydef.F 2 {G,G, I} UH)
F— F\{F}
L «— min # iterations of F when P is run on Z;
if (¢« > n A Wis dead wrt. the guard of F)
u— (1); £—(0);
Q — t"(P; F,u,£);
if (there exists C € Q such that
C=L:A—1L;
L=16s withs#£iAé€[0,0—n]
A=Y:=EwithYevar(Q AE€E
L' =16v withv € lab(F))
S « slice(Q, C);
y «— value of Y when S is run on Z;
ro < arandom number in Z \ {y};
r1 < arandom number in Z;
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funct extract(P’, (Z, §,n))
S — 0
for each F ¢ fors(P’) do
1 «— # iterations of F when P’ is run on Z;
if (¢ > n)
u — (1,n);
l— (L—06,0—06—mn);
Q — t"(P'; F,u,%);
foreachL: A — L'; € Q such that

L=20s withseS
A=Ww:=EwithW € var(Q) \ var(E)
ANE€EE
L' =20s" withs €S
do
Q—Q\{cenq]

Im > 0. lab(C) = 2ms};
R(—{LN: A/ —)L/N,‘ EQ/ ‘
L” =2[n—1]s" withs” € S
A =W:=E withw € var(E)

et fV) 2" T Y-y +a
To —Y
w «— a label from lab(HU {I}) that
is reached after v in the CFG of P;
90 — <V7 w7 f(Y)>7
01 (W, W,§ X W+ b);
P’ — t"(P; 0p,61); fifiod
return (P’, (Z,6,n));

NE€EE
L" =2[n —1]s" withs"" € S}
if (R is a singleton with element C)
S « slice(Q’, C);
w <« value of W when S is run on Z;
S — SU{w}; fiodfiod
return S;

Fig. 6. Embedding and extraction algorithms

variable W must be dead during the execution of F. If such a for-loop does not exists
in P, the algorithm fails and returns P and the empty key. Otherwise, it gets from F
an unrolled for-loop F; which syntactically displays all the ¢ iterations as sequential
code: actually, any command C’ € F; derived from iteration m € [0,¢) is such that
Jds € S. lab(C’) = 1ms; here we also say that C’ is at offser m. Next, the algorithm
looks for a command C at offset § € [0, —n) such that act(C) = Y := E. If it succeeds,
it computes actual value y of Y on input Z, using backward-slicing with criterion C.
Then it lets first-degree polynomial f(Y) to model the line passing through points (y, a)
and (1o, 1) in the Cartesian coordinate system; in such a way, one possible dependence
between y and parameter a of the stegomark is established. Finally, the algorithm comes
back to subject program P, and it inserts W := f(Y) at entrypointlab(C) and W := { xW+b
somewhere below, inside the body of F. In such a way, it obtains marked program P’
which it returns together with key (Z, 6, n). Note that we can guarantee f(Y) = a only at
offset 6. If Y denotes stochastic behavior, i.e., it changes its own value from one iteration
to another, the knowledge of 6 becomes essential at extraction time to get the correct
initialization of W. This improves reliability and stealth of the watermark. The iteration
at offset ¢ is the promoter of the signature recovery, and 6 measures its displacement in
the sequence of the ¢ iterations.
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As shown in Fig.[3] the embedding phase basically consists in a pair of assignment
insertions. To inlay in P our signature s = P3(14) = 120736, we want the £or-loop
to perform at least n = 3 iterations, so we let Z, £ 3, obtaining ¢« = 8. Furthermore,
by fixing Z; £ 13 and f £ AY. (215 — Y) x 259, we ensure that, at entry point v of
the iteration at offset § = 3, we have y = Fib(X + Z;) = Fib(3 4+ 13) = 987 and
f(987) = —199948 = a. Thus, once we have chosen label w = i as target entry point
for the second assignment, we insert W := f(Y) at vand W := 14 x W + 245760 at w.

Extraction. To extract our signature s from marked program P’, we need to deliver
P’ and key k = (Z,6,n) to the algorithm described in Fig.[dl From each for-loop
F in P’ performing on input Z a number ¢ > n of iterations, the algorithm tries to
gain a set of candidate signatures; the final result of the extraction is a union set S
collecting altogether the candidate signatures coming from each set. To gain a set of
candidate signatures from F, the algorithm unrolls F into F; U Fo U F. The unrolling
is instrumented so as to make unfold, within the body of F, only the n iterations at
offsets from ¢ to 6 + n — 1. The iterations at lesser or greater offsets are left folded
in Fy and F respectively. Iteration at §, now denoting offset O within the body of Fa, is
potentially a promoter. In particular, any of its assignment W := E not defining W in terms
of itself may be the initializer of the stegomark. Given such an assignment command C,
the algorithm removes its copies at nonzero offsets within Fo. Next, at offset n — 1, it
looks for a unique assignment C’ redefining W it terms of itself, and it applies backward-
slicing using C’ as criterion. The result is a program S which on input Z first provides
an initialization to W, then updates it n times, thus computing candidate signature w.
In particular, if W is the watermark variable, then w = s. Once identified s among the
candidates in S, one has only to prove it to be his/her signature, as discussed above.

We now exploit the algorithm to extract signature s = 120736 from watermarked
program P’ of Fig.[3l Recall that in our running example the key & is ((Zg,Z1),8,n) =
((8,13),3,3) and + = 8. After the unrolling of F C P’, we get program Q shown in
Fig.Bl The promoter always covers entry points 20s, with s € S. Here both variable
Y and variable W might initialize the stegomark. However, only W at entry point 221 is
able to update itself. After the slicing, we get a program S C Q which, on input (8, 13),
sets X to 3, Y to Fib(3 + 13) = 987 and W to (215 — 987) x 259 = —199948 = q; just
before terminating, S updates n = 3 times W, finally getting w = 120736 = s.

6 Discussion

In this paper we exploit the semantics of for-loops to hide watermarks. Loop iterations
are described extensionally by traces of execution in which iterations come one after an-
other. When abstracted to code, they collapse into a unique loop body. Thus embedding
the stegomark in the loop body means embedding it in every iteration. Our idea is to set
up the stegomark so that only one iteration, the promoter, can provide the correct ini-
tialization for the computation of the signature. The choice and the localization of the
promoter take place automatically thanks to loop-unrolling, used as a transformation
which abstract iterations from trace to code without making them collapse. We think
that our watermarking technique may be extended to other programming constructs
which, like for-loops, provide code reuse, such as recursive functions and objects.
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Signature s must reliably identify the author of the watermarked program. To this
end, the author can let s be the product of a set of prime numbers. If some factors of s
are large enough, its factorization is computationally unfeasible, yet the author is able to
produce it. False positives may be obtained at extraction time, both in the case of marked
and unmarked loops. However, it is unlikely that their factorization is computationally
unfeasible and yet known by a malicious claimer. If the extraction of the signature s
results in a overflow runtime error then, as suggested in [13]], s can be replaced with an
equivalent set of smaller signatures obtained through the Chinese remainder theorem.

Watermarked programs can include more than one signature. However, they do not
record which signature was inserted first, and which ones were inserted later through ad-
ditive attacks. Unfortunately, our watermarking technique does not provide any means
to register temporal precedence of signatures. To the best of our knowledge, vulnerabil-
ity to additive attacks is a common drawback to all the exiting watermarking
techniques [3/4)]. This key problem might be solved if the insertion of the signature
coincided with a not reversible semantics-preserving program evolution [3]]: in such a
case the order of insertion of signatures would become relevant, especially if later evo-
lutions were strictly dependent on earlier ones. As in the field of code obfuscation [7],
nontrivial semantics-preserving program transformations are likely to be systematically
derived only from semantics-based frameworks. Consequently, we suppose that a better
exploitation of the gap between semantics and syntax may be of help in the design of
watermarking techniques that can withstand additive attacks.

Typical loop transformations [2], such as loop-reversal, loop-unrolling and
loop-blocking, might distort the syntactic structure of the marked loop and obstruct
the extraction of the signature; however, they are applicable only when the number of
iterations can be ultimately quantified; thus a countermeasure is to embed the water-
mark in a for-loop not enjoying this property, e.g. a for-loop that updates an array
of arbitrary length. To avoid that the inserted assigments are declared useless for the
output, we must introduce fake dependencies between the output and W, for example by
using opaque predicates which require hard program analyses to be removed [8]]. In-
deed our technique does not provide innovative contribution to the age-old problem of
the resilience of watermarks. Anyway we think that semantics-based approaches may
help us understand to which extent watermarks can be tied to the very core of programs.

As suggested by Fig.[[l our watermarking technique seems to resemble the DNA
transcription step in protein biosynthesis. During transcription, information coded in a
DNA stretch is extracted and recoded in a complementary RNA molecule. In partic-
ular, DNA unwinds and produces a small open stretch containing a promoter, which
is a regulatory region providing an entry point for transcription. The transcribed RNA
molecule can be partitioned in exons/introns, i.e., subregions carrying useful/useless in-
formation. Through splicing, every intron in RNA is discarded to keep only exons. Now,
notice that the marked loop can be seen as the folded DNA: at extraction time, partially
unrolling the marked loop corresponds to partially unwinding DNA and producing a
stretch; the iteration targeted by 6 is the promoter; slicing and the other minor removals
correspond to RNA splicing. The idea of inserting proprietary information in a DNA
molecule has been initially explored in [I8]. Surely, our technique is not applicable to
DNA. However, this comparison could provide intriguing insights for further research.
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