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Abstract. In this paper we exploit abstract interpretation for trans-
forming abstract domains and semantics. The driving force in both trans-
formations is making domains and semantics, i.e. abstract interpretations
themselves, complete, namely precise, for some given observation. We
prove that a common geometric pattern is shared by all these transfor-
mations, both at the domain and semantic level. This pattern is based
on the notion residuated closures, which in our case can be viewed as an
instance of abstract interpretation. We consider these operations in the
context of language-based security, and show how domain and seman-
tic transformations model security policies and attackers, opening new
perspectives in the model of information flow in programming languages.

1 Introduction

Abstract interpretation [6] is not only a theory for the approximation of the
semantics of dynamic systems, but also a way of thinking information and com-
putation. From this point of view a program can be seen as an abstraction trans-
former, generalising Dijkstra’s predicate transformer semantics, by considering
abstractions as the objects of the computation: The way a program transforms
abstractions tells us a lot about the way information flows and is manipulated
during the computation. Abstract non-interference [13] is an example of this
use of abstract interpretation, capturing precisely the intuition that in order to
understand who can attack the code and what information flows, we have to
consider programs as abstraction transformers, attackers as abstract interpreta-
tions, and secrets as data properties, which are abstractions again. This view lets
out new possibilities for abstract interpretation use, e.g. in security, code design
and obfuscation, as well as posing problems concerning the methods according
to which these transformations are studied. Even if clearly previewed in the
early stages of abstract interpretation [8], this approach to the use of abstract
interpretation is still relatively unexplored.

In this paper we show that the standard theory of abstract interpretation,
based on the so called adjoint-framework of Galois connections, can be directly
applied to reason about operators that transform abstract domains and seman-
tics, yet providing new formal methodologies for the systematic design of abstract
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domain refinements and program transformations (in our case program deforma-
tions). We first show that most domain transformers can be viewed as suitable
problems of completeness w.r.t. some given semantic feature of the considered
programming language. This observation has indeed an intuitive justification:
The goal of refining a domain is always that of improving its precision with re-
spect to some basic semantic operation (e.g., arithmetic operations, unification
in logic programs, data structure operations in simple and higher-order types,
and temporal operators in model checking). Analogously, simplifying domains
corresponds to the dual operation of reducing precision with respect to analogous
semantic operations. We show that most well known domain transformers can be
interpreted in this way and that the relation between refinement and simplifica-
tion on domains is indeed an instance of the same abstract interpretation frame-
work lifted to higher types, i.e. where the objects of abstraction/concretization
are abstract domains or semantics rather then computational objects.
Residuated closures [2, 22] provide the in-
stance of Galois connections on closure op-
erators, i.e. on abstract domains. We prove
that standard refinement/simplification (also
called shell/core) and expansion/compression
are residuated closures on abstract domains. Shell

Core

Compressor
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+

+
+

-
-

-
In particular it is always possible to derive an operation which reduces a given
domain by considering either the right (+) or left (−) adjoint of a domain refine-
ment. We show that the meaning of these transformations are deeply different:
while the left adjoint of a refinement is always a simplification which keeps
completeness (core), the right one moves towards maximal incompleteness by
reducing the domain (compression). Similarly we can always refine a domain
by considering the same adjoints of a domain simplification. In this case the
left adjoint always moves towards maximal incompleteness by refining the do-
main (expander) while the right one refines the domain yet keeping completeness
(shell), as depicted above. We prove that this construction can be generalised to
arbitrary semantic transformers, which in view of [10] may correspond to code
transformations, where instead of transforming domains we transform semantics.
The result is a unique geometric interpretation of abstract domain and semantic
transformers where both notions can be systematically derived by considering
standard abstract interpretation methods. We apply these transformations to
the case of language-based security, by modelling security policies and attackers
as suitable abstract domain and semantic transformations.

2 Abstract domains individually and collectively

We consider standard abstract domain definition as formalised in [6] and [8] in
terms of Galois connections. It is well known that this is a restriction for ab-
stract interpretation because relevant abstractions do not form Galois connec-
tions and Galois connections are not expressive enough for modelling dynamic
fix-point approximation [9]. Formally, if 〈C ,≤,>,⊥,∨,∧〉 is a complete lattice,
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monotone functions α : C m−→A and γ : A m−→C form an adjunction or a Ga-
lois connection if for any x ∈ C and y ∈ A: α(x ) ≤A y ⇔ x ≤C γ(y). α
[resp. γ] is the left- [right-]adjoint to γ [α] and it is additive [co-additive], i.e.
it preserves lub’s [glb] of all subsets of the domain (emptyset included). The
right adjoint of a function α is α+ def= λx .

∨{
y
∣∣α(y) ≤ x

}
. Conversely the left

adjoint of γ is γ− def= λx .
∧{

y
∣∣ x ≤ γ(y)

}
[8]. Abstract domains can be also

equivalently formalized as closure operators on the concrete domain. An upper
[lower] closure operator ρ : P−→P on a poset P is monotone, idempotent,
and extensive: ∀x ∈ P . x ≤P ρ(x ) [reductive: ∀x ∈ P . x ≥P ρ(x )]. Closures
are uniquely determined by their fix-points ρ(C ). The set of all upper [lower]
closure operators on P is denoted by uco(P) [lco(P)]. The lattice of abstract
domains of C , is therefore isomorphic to uco(C ), (cf. [6, Section 7] and [8, Sec-
tion 8]). Recall that if C is a complete lattice, then 〈uco(C ),v,t,u, λx .>, id〉
is a complete lattice [24], where id def= λx .x and for every ρ, η ∈ uco(C ), ρ v η
iff ∀y ∈ C . ρ(y) ≤ η(y) iff η(C ) ⊆ ρ(C ). A1 is more precise than A2 (i.e., A2 is
an abstraction of A1) iff A1 v A2 in uco(C ). Given X ⊆ C , the least abstract
domain containing X is the least closure including X as fix-points, which is the
Moore-closure M(X ) def= {

∧
S | S ⊆ X }. Precision of an abstract interpretation

typically relies upon the structure of the abstract domain [19]. Depending on
where we compare the concrete and the abstract computations we obtain two
different notions of completeness. If we compare the results in the abstract do-
main, we obtain what is called backward completeness (B), while, if we compare
the results in the concrete domain we obtain the so called forward completeness
(F ) [8, 19, 15]. Formally, if f : C m−→C and ρ ∈ uco(C ), then ρ is B-complete
if ρ ◦ f ◦ ρ = ρ ◦ f , while it is F -complete if ρ ◦ f ◦ ρ = f ◦ ρ. The problem of
making abstract domains B-complete has been solved in [19] and later gener-
alised to F -completeness in [15]. In a more general setting let f : C1−→C2 and
ρ ∈ uco(C2) and η ∈ uco(C1). 〈ρ, η〉 is a pair of B[F ]-complete abstractions
for f if ρ ◦ f = ρ ◦ f ◦ η [f ◦ η = ρ ◦ f ◦ η]. A pair of domain transformers has
been associated with any completeness problem [11, 16], which are respectively
a domain refinement and simplification. In [19] and [15], a constructive char-
acterization of the most abstract refinement, called complete shell , and of the
most concrete simplification, called complete core, of any domain, making it F
or B-complete, for a given continuous function f , is given as a solution of simple
domain equations given by the following basic operators:

RF
f

def= λX .M(f (X )) RB
f

def= λX .M(
⋃

y∈X max(f −1(↓y)))
C F

f
def= λX .

{
y ∈ L

∣∣ f (y) ⊆ X
}

C B
f

def= λX .
{

y ∈ L
∣∣max(f −1(↓y)) ⊆ X

}
Let ` ∈ {F ,B}. In [19] the authors proved that the most concrete β w ρ such
that 〈β, η〉 is `-complete and the most abstract β v η such that 〈ρ, β〉 is `-
complete are respectively the `-complete core and `-complete shell, which are:
C`,ηf (ρ) def= ρ t C `

f (η) and R`,ρf (η) def= η u R`
f (ρ). When η = ρ, then the fix-point

iteration on abstract domains of the above functionR`f (ρ) = gfp(λX . ρ u R`
f (X ))

is called the absolute `-complete shell . By construction if f is additive then
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RB
f = RF

f + (analogously CB
f = CF

f +) [15]. This means that when we have to solve
a problem of B-completeness for an additive function then we can equivalently
solve the corresponding F -completeness problem for the right adjoint function.

Completeness can be used for modelling non-interference in language-based
security [14, 1]. Abstract non-interference (ANI) [13] is a natural weakening of
non-interference by abstract interpretation. Let η, ρ ∈ uco(VL) and φ ∈ uco(VH),
where VL and VH are the domains of public (L) and private (H) variables. η and
ρ characterise the attacker to the policy. A policy characterises a weakening of
the information that can flow. We consider φ ∈ uco(VH), which states what, of
the private data, can indeed flow to the output observation, the so called declas-
sification of φ. In the following if P is a program JPK denotes its denotational
semantics. A program P satisfies declassified ANI if ∀h1, h2 ∈ VH,∀l1, l2 ∈ VL:

η(l1) = η(l2) ∧ φ(h1) = φ(h2) ⇒ ρ(JPK(h1, η(l1))L) = ρ(JPK(h2, η(l2))L).

This notion says that, whenever the attacker is able to analyze the input prop-
erty η and the ρ property of the output, then it can observe nothing more
than the property φ of private input. Clearly, transforming abstractions corre-
sponds here to transform attackers and policies. If Hρ(〈x H, x L〉) def= 〈VH, ρ(x L)〉,
Hφη (〈x H, x L〉) def= 〈φ(x H), η(x L)〉, JPKη

def= λx . JPK(x H, η(x L)) and the weakest liberal
precondition semantics is wlpP

η
def= λX .

{
〈h, η(l)〉

∣∣ JPK(〈h, η(l)〉) ⊆ X
}

[5], then
the equivalent B- and F -completeness equations modelling ANI above, with at-
tacker η and ρ, and declassified by the partitioning abstraction1 φ are [14]:

Hρ ◦ JPKη ◦Hφη = Hρ ◦ JPK ⇐⇒ Hφη ◦wlpP
η ◦Hρ = wlpP

η ◦Hρ (1)

3 The geometry of abstract domain transformers

The notion of abstract domain refinement and simplification has been introduced
in [11, 16] as a generalisation of most well-known operations for transforming ab-
stract domains, e.g., those introduced in [8]. In this section we consider these
notions as instances of a more general pattern where abstract domain trans-
formers have the same structures of abstract domains. For the sake of sim-
plicity we consider unary functions only, even if all the following results can
be easily generalized to generic n-ary functions (e.g., see [16] for examples). If
τ, η : uco(C )−→uco(C ), following [16], we distinguish between domain refine-
ments which concretise domains, i.e. X ⊆ τ(X ), and domain simplifications
which simplify domains, i.e. η(X ) ⊆ X . Monotone refinements and simplifica-
tions can be associated with closure operators: If τ [η] is a monotone refine-
ment [simplification] then λX . gfp(λY . X u τ(Y )) [λX . lfp(λY . X t η(Y ))] is
the corresponding idempotent refinement [simplification] [7]. Therefore, mono-
tone refinements τ and simplifications η may have the same structure of ab-
stract domains, as closure operators on uco(C ), resp. τ ∈ lco(uco(C )) and

1 An abstraction of a complete Boolean concrete domain C is partitioning if it is a
complete Boolean sub-semilattice of C .
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η ∈ uco(uco(C )). This observation will be the basis in order to lift standard
abstract interpretation in higher types, i.e. from a theory for approximating
computational objects, such as semantics, to a theory for abstract domain trans-
formers. In this sense, standard Cousot and Cousot’s Galois connection based
abstract interpretation theory is perfectly adequate to develop also a theory of
abstract domain transformers providing these transformations with the same
calculational design techniques which are known for standard abstract interpre-
tation [4]. In particular, Janowitz [2, 22], characterised the structure of residuated
(adjoint) closure operators by the following basic result.

Theorem 1 ([22]). Let 〈η, η+〉 and 〈η−, η〉 be pairs of adjoint operators on C .

(1) η ∈ uco(C ) ⇔ η+ ∈ lco(C ) ⇔
{
η ◦η+ = η+

η+ ◦η = η

(2) η ∈ uco(C ) ⇔ η− ∈ lco(C ) ⇔
{
η ◦η− = η
η− ◦η = η−

Stated in terms of refinements, this result says that any (either right or left)
adjoint of a refinement [simplification] is a simplification [refinement]. This means
that for any refinement [simplification] we may have two possible simplifications
[refinements] corresponding to either right or left adjoint, when they exist. Let
τ ∈ lco(C ) be a domain refinement. By Th. 1, if τ− exists then τ−(τ(X )) = τ(X )
and τ(τ−(X )) = τ−(X ). This means that τ− is a simplification such that both τ
and τ− have the same sets of fix-points, namely τ− reduces any abstract domain
X until the reduced domain Y satisfies τ(Y ) = Y . Due to the analogy with
completeness, in this case we call τ− the core of τ and τ the shell of τ−.

Proposition 2. Let τ ∈ lco(C ) and η ∈ uco(C ). If 〈τ−, τ〉 and 〈η, η+〉 are
pairs of adjoint functions then we have τ− = λX .

∧
{τ(Y )|τ(Y ) ≤ X } and

η+ = λX .
∨
{η(Y )|X ≤ η(Y )}.

The interpretation of the second point of Th. 1 for refinements, i.e, of the right
adjoint of a refinement τ , when it exists, is quite different. By Th. 1, we have that
if τ+ exists then τ+(τ(X )) = τ+(X ) and τ(τ+(X )) = τ(X ). In this case τ+(X ) is
not a fix-point of τ . Instead, it returns the most abstract domain whose precision
can be lifted to that of X by refinement. τ+ reduces any abstract domain X such
that τ(X ) = X towards the most abstract domain Y such that τ(Y ) = X . We
call τ+ the compressor of τ and τ the expander of τ+.

Proposition 3. Let τ ∈ lco(C ) and η ∈ uco(C ). If 〈τ, τ+〉 and 〈η−, η〉 are
pairs of adjoint functions then we have τ+ = λX .

∨
{Y |τ(Y ) = τ(X )} and

η− = λX .
∧
{Y |η(X ) = η(Y )}.

3.1 Shell vs core

Not all domain transformers admit adjoints, because not all closure are either
additive or co-additive functions. However adjointness can be weakened by con-
sidering only those properties that make a transformer reversible, either as a
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pair shell-core or expander-compressor. In the following we describe the prop-
erties of invertible refinements since the properties of invertible simplifications
can be derived by duality as shown above. By Prop. 2, the relation between
the shell τ and the core τ− is characterized by the fact that τ−(X ) isolates
the most concrete domain which is contained in X and which is a fix-point
of τ : τ−(X ) =

∧{
τ (Y )

∣∣X ≤ τ (Y )
}

. While τ− ◦ τ = τ always holds for any
τ ∈ lco(C ), the key property which characterizes the pair shell-core, τ ◦τ− = τ−,
holds iff 〈τ−, τ 〉 is a pair of adjoint functions.

Theorem 4. Let τ ∈ lco(C ). τ ◦τ− = τ− holds iff τ is co-additive.

This means that the relation between shell and core just holds in the standard
adjoint framework. An example of the core/shell is in F -completeness, where
CF
f is a F -completeness core for f iff CF

f (X ) v Y ⇔ X v RF
f (Y ) [15].

3.2 Expander vs compressor

The notion of domain compression was introduced in [11, 16] and later developed
for the case of disjunctive completion λX .

b
(X ), making a domain a complete

join-subsemilattice of the concrete domain (viz. an additive closure), and reduced
product , which is the glb in uco(C ), resp. in [17] and [3]. In view of Janowitz’s
results we review the theory of domain compression in [18], where the notion
of uniform closure was introduced. f : C −→C is join-uniform [18] if for all
Y ⊆ C , (∃x̄ ∈ Y . ∀y ∈ Y . f (y) = f (x̄ )) ⇒ (∃x̄ ∈ Y . f (

∨
Y ) = f (x̄ )). Meet-

uniformity is defined dually. By Prop. 3, the relation between the expander
τ and its compressor τ+ is characterized by the fact that τ+(X ) is the most
abstract domain which allows us to reconstruct τ(X ) by refinement: τ+(X ) =⊔{

Y
∣∣ τ(X ) = τ(Y )

}
. While τ+ ◦τ = τ+ always holds for any τ ∈ lco(C ), the

key property which characterizes the pair expander/compressor, is τ ◦ τ+ = τ
and it holds iff τ is join-uniform. Join-uniformity captures precisely the intuitive
insight of the pair expander/compressor. If τ is join-uniform, and x ∈ C , then
there always exists a (unique) element

∨
Z , such that τ(

∨
Z ) = τ(x ) where

Z = {y ∈ C | τ(x ) = τ(y)}. As observed in [18], τ+ may fail monotonicity.
In [18] the authors proved that τ+ is monotone on a lifted order induced by τ .
Let τ : C m−→C , the lifted order ≤τ⊆ C × C is defined as follows: x ≤τ y ⇔
(τ(x ) ≤ τ(y)) ∧ (τ(x ) = τ(y) ⇒ x ≤ y). ≤τ is such that ≤⇒≤τ . Next
theorem strengthen [18, Th. 5.10]2 proving the equivalence between reversibility
and adjointness in ≤τ for any refinement.

Theorem 5. Let τ ∈ lco(L) and τ+ = λx .
∨{

y
∣∣ τ(y) = τ(x )

}
. The following

facts are equivalent:

1. τ ◦τ+ = τ ;
2. τ is join-uniform on ≤;
3. τ is additive on ≤τ and the right adjoint of τ on ≤τ is τ+.
2 In [18, Th. 5.10] the authors proved only that 1.⇔ 2.⇒ 3.
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The relation between join-uniformity and meet-uniformity is preserved by the
relation of adjointness.

Proposition 6. Let τ ∈ lco(L) be a join-uniform operator on ≤. Then we have
τ+(x ) =

∨
{y |τ(x ) = τ(y)} is meet-uniform on ≤.

Unfortunately, the inverse implication of Prop. 6 does not hold in general.

Example 7. In the picture on the right, we provide an

example where the map τ+ (denoted with dashed arrows)

is meet-uniform, while τ is not join-uniform. Indeed, note

that τ+ = λX .>, which is clearly meet-uniform, while τ

is not join-uniform since, for instance, τ(x ) = τ(y) 6= >,

but τ(x ∨ y) = τ(>) = >.

x y

τ

τ
+

Examples of join-uniform refinements include disjunctive completion and re-
duced product , where the corresponding compressors are the disjunctive base
[17] and complementation [3]. Both are compressors associated with complete-
ness refinements, the first being F -completeness w.r.t. disjunction and the sec-
ond being B-completeness w.r.t. conjunction, i.e. F -completeness w.r.t. implica-
tion [21, 20]. The problem of studying whether a generic completeness refinement
admits a compressor has been investigated with the aim of finding a characteri-
zation of all the functions f such that the corresponding completeness refinement
has the compressor. The only known characterisation is in [12], for the case of
F -completeness. In this case the authors provide an algorithmic construction
which is based on the the notion of f -reducible element, i.e. those elements that
can be generated by others by means of the function f or by Moore closure. If
all the f -irreducible elements form an abstract domain, then this is called the
complete base and the compressor locally (i.e., for the particular abstract domain
to which we apply the algorithm) exists.

+

+

+

-
-

-

Core:
Minimal complete
simplification

Shell:
Minimal complete

refinement

Expander:
Maximal incomplete

refinement

Compressor:
Maximal incomplete

simplification

Rf

Cf Ef

Kf

Fig. 1. Basic abstract domain transformers.

3.3 Transforming abstractions for transforming policies

By transforming abstractions in abstract non interference (Eq. 1), we transform
the corresponding non-interference policy. In particular, if we transform the input



8

abstraction we transform the declassification policy, while when we transform the
output abstraction we transform the attacker policy [14]. Let us see the meaning
of the shell/core and expander/compressor transformations in these cases.

Shell: The maximal released information by an attacker. The shell min-
imally refines the domain Hφη in order to satisfy Eq. 1 [14]. When the equation
does not hold, it means that the given attacker is able to disclose more informa-
tion than what is modelled by φ about the private input. In non-interference,
disclosing means observing variations in the ρ abstraction of the output due to
input variations not modelled by φ. In other words, there are at least two private
inputs h1 and h2 with the same property φ which generate a different ρ property
in output. Therefore in order to characterise the closest declassification policy
satisfied by the program, namely the maximal information disclosed by the at-
tacker, we have to refine the policy φ, and in particular we have to distinguish
by φ the values h1 and h2, above. This is what the shell does, by modelling the
minimal amount of distinguishable values that the attacker is able to observe.
We denote by RHρ

JPK(H
φ
η ) this transformation.

Example 8. Consider the program fragment: P
def
= l := l ∗ h2, with l : L and h : H.

We want to find the shell in order to make the input/outpur pair of abstract domains
〈H,HPar〉, where Par

def
= {Z, 2Z + 1, 2Z,∅}, complete for JPK. Let H def

= Hid
id .

RHPar
JPK (H) = H u

„
〈Z,Z〉, 〈Z, 2Z〉 ∪ 〈2Z, 2Z + 1〉, 〈2Z + 1, 2Z + 1〉,
〈2Z + 1, 2Z〉,∅

ff«
Note that 〈2Z, 2Z + 1〉, 〈2Z, l〉 ∈ RHPar

JPK (H) for each l ∈ 2Z + 1. For instance, in this

case HPar(JPK(RHPar
JPK (H)(〈2, 3〉))) = HPar(JPK(〈2Z, 3〉)) = 〈Z, 2Z〉 = HPar(JPK(〈2, 3〉)).

Core: The most powerful attacker for a declassification policy. The core
minimally transform the domain Hρ in order to satisfy Eq. 1 [14]. Exactly as
before, when the equation does not hold, it means that the attacker, observing
ρ, is able to disclose more information than what is modelled by φ about the
private input. In this case we simplify the model of the attacker. If there are at
least two private inputs h1 and h2 having the same property φ which generate
a different ρ property in output, then we decide to simplify the attacker making
the corresponding output values indistinguishable. The core of Hρ collapses all
the outputs generated by private inputs with a different φ property. In this way,
we are able to characterize, given a declassification policy φ, the most power-
ful attacker, weaker than ρ, which is harmless, namely unable to disclose any

information about φ of private data. We denote by CH
φ
η

JPK(Hρ) this tranformation.

Example 9. Let the program P
def
= while h 6= 0 do l := 2l ; h := 0 endw, with l : L and

h : H. CHJPK(Hid) = {〈Z,L〉 | ∀l ∈ VL . l ∈ L ⇔ 2l ∈ L} makes 〈H,Hid〉 complete for

JPK. It is easy to show that CHJPK(Hid) is the abstract domain
b`
{n{2}N | n ∈ 2Z + 1}

´
,

where {2}N def
= {2k | k ∈ N}. Then CHJPK(Hid)(JPK(H(〈3, 5〉))) = CHJPK(Hid)(JPK(Z, 5)) =

CHJPK(Hid)(〈Z, {5, 10}〉) = 〈Z, 5{2}N〉, CHJPK(Hid)(JPK(〈3, 5〉)) = CHJPK(Hid)(〈Z, {10}〉) =

〈Z, 5{2}N〉.
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Expander. Let us consider the left adjoint of the core. In this case we look
for the more concrete attacker, which adjoints the same harmless one. This is
interpreted by saying that the expander provides the inferior limit to the range
of all the attacks making a given policy insecure. In other words it provides the
most successful attack for the given policy.

Example 10. Consider the program fragment P
def
= l := 2h. We can easily show that the

most powerful harmless attacker is the one that cannot distinguish even numbers, i.e.,b
({2Z, {1}, {3}, . . .}). Suppose now that the inital observer of the program in output

observes ρ = {Z, 2Z r {0}, {0}, 2Z + 1,∅}. Then we obtain that the most powerful

harmless attacker which is more abstract than ρ is Par. At this point the compressor

provides the most concrete abstraction, whose core is exactly Par. We can show that

this abstraction is
b

({2Z + 1, {0}, {2}, {4}, . . . , }). We can interpret this abstraction as

the most powerful malicious attacker, namely the one that is able to exploit as much as

possible the failure of the non-interference policy, since it can disclose the exact value

of h. Any more abstract domain, has to confuse some even numbers, for instance it can

confuse 0 with 2, which means that it cannot distinguish when h = 0 and h = 1.

Compressor. Finally, let us consider the right adjoint of the completeness shell.
In this case we look for the most abstract declassification policy which cannot
capture what is indeed released by the attacker observing the program. Also in
this case, we interpret this abstraction as a superior limit to the range of all the
policies which are inadequate to protect a program from an attacker.

Example 11. Consider the program P
def
= if h = 0 then l := 0 else l := |l |(h/|h|),

where |x | is the absolute value of x . Let the declassification policy φ = {Z,≥ 0, < 0,∅}.
The wlpP is {l = 0 7→ h = 0, l > 0 7→ h > 0, l < 0 7→ h < 0} hence, the information

released is φ′ = {Z,≥ 0, 6= 0,≤ 0, > 0, 0, < 0,∅}. If we compute the compressor then

we obtain φ′′ = λX . Z, which means that every policy between φ′ and φ′′ is not able

to protect the program.

4 The geometry of completeness semantic transformers

In this section, we introduce a completely symmetric construction for semantic
transformers. The problem is: Can we (minimally) transform the semantics in
order to satisfy completeness? The transformation is made in two steps: first we
induce completeness, and then we force monotonicity by using standard results
on function transformers in [7], since in some cases, the completeness transfor-
mation may generate not monotone functions. Recall that any function can be
transformed to the closest (from below and from above) monotone function by
considering the following basic transformers [7]:

M↓ def= λf . λx .
∧{

f (y)
∣∣y ≥ x

}
M↑ def= λf . λx .

∨{
f (y)

∣∣y ≤ x
}

Before introducing these transformers we have to understand what we mean by
minimally transforming semantics. As usual we consider a lattice of functions
where maps are point-wise ordered: f v g iff ∀x ∈ C . f (x ) ≤ g(x ). Hence, a
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minimal transformation of f finds the closest function, by reducing or increasing
the images of f , wrt. a given property we want to hold for f (in this context,
completeness). In abstract interpretation this corresponds to find the closest
(viz., least abstraction or concretisation) of the semantics such that completeness
holds for a given pair of abstractions. In the following, for simplicity, we consider
the case of forward completeness.

4.1 Transforming semantics for inducing forward completeness

Moving upwards. Let us consider first the case of increasing a given function
f : C m−→C in order to induce completeness with respect to two fixed abstrac-
tions η, ρ ∈ uco(C ). We first observe that such a minimal transformation exists,
namely the set {h : C m−→C | f v h, ρ ◦ h ◦ η = h ◦ η} has the minimal element.
The following result proves that we can always minimally increase a given mono-
tone function f in order to induce completeness.

Theorem 12. The set
{

f : C m−→C
∣∣ρ ◦ f ◦ η = f ◦ η

}
is an upper closure op-

erator on 〈C m−→C ,v〉.
For any f ∈ C m−→C and η, ρ ∈ uco(C ) define

F↑η,ρ
def= λf .λx .

{
ρ ◦ f (x ) if x ∈ η(C )
f (x ) otherwise

Lemma 13. Let f : C m−→C . Then

F↑η,ρ(f ) =
l{

h : C −→C
∣∣ f v h, ρ ◦ h ◦ η = h ◦ η

}
.

The function F↑η,ρ(f ) is not the one we look for since it may lack monotonicity.
Next example shows that F↑η,ρ(f ) may not be monotone for some f : C m−→C .

Example 14. Consider the pictures on the right. The

(purple) circled points are those in ρ and the (green) ar-

rows in the picture (a) represent f . The (purple) arrows

in the picture (b) are those of the map obtained from f

by applying F↑ which is clearly not monotone.

f f*

(a) (b)

The lack of monotonicity is due to the fact that, in order to minimally trans-
form f , only the images of the elements in η are modified, leaving unchanged
the images of all the other elements. Indeed monotonicity fails when we check
it between the new image of one element in η and one outside. We need there-
fore to apply the transformer M↑ for finding the best monotone transforma-
tion of f which is complete for the pair of abstractions η, ρ ∈ uco(C ). Define
F↑η,ρ

def= λf . M↑ ◦F↑η,ρ(f ).

Theorem 15. Let f : C m−→C .

F↑η,ρ(f ) =
l{

h : C m−→C
∣∣ f v h, ρ ◦ h ◦ η = h ◦ η

}
.
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Moving downwards. We consider the maximal approximation from below of a
given f : C m−→C , making it complete This exists unique under some hypothesis.

Theorem 16. The set {f : C m−→C | ρ ◦ f ◦ η = f ◦ η} is a lower closure oper-
ator on 〈C m−→C ,v〉 iff ρ is additive.

For any f : C m−→C and additive closure ρ ∈ uco(C ), define:

F↓η,ρ
def= λf .λx .

{
ρ+ ◦ f (x ) if x ∈ η(C )
f (x ) otherwise

Lemma 17. Let f : C m−→C , then

F↓η,ρ(f ) =
⊔{

h : C −→C
∣∣ f w h, ρ ◦ h ◦ η = h ◦ η

}

Example 18. Consider the pictures on the

right. The (purple) circled points are those

in ρ and the (green) arrows on picture (a)

are those of f . The (purple) arrows on the

picture (b) are those of the map obtained

from f by means of F↓, and this map is

clearly not monotone.

f f*

(a) (b)

Again, the lack of monotonicity is due to the fact that, in sake of minimality, the
transformers changes the image by f of only some elements, those of η. Again
we apply the transformer M↓ for finding the best monotone transformation of f .
Next theorem shows that it is not necessary a fix-point transformation since the
monotone transformer does not change the completeness of functions obtained
by F↓. Define F↓η,ρ

def= λf . M↓ ◦F↓(f ).

Theorem 19. Let f : C m−→C , then

F↓η,ρ(f ) =
⊔{

h : C m−→C
∣∣ f w h, ρ ◦ h ◦ η = h ◦ η

}
.

Next result tells us that the completeness transformers, moving in opposite di-
rections in the lattice of functions, are indeed adjoint transformers whenever
both exist, namely when the output abstraction ρ is additive, i.e.

b
(ρ) = ρ.

Theorem 20. If ρ ∈ uco(C ) is additive then (F↑η,ρ)+ = F↓η,ρ.

4.2 Transforming semantics for inducing forward incompleteness

Consider the two F -completeness transformers for making functions complete
for a given pair of domains, η on the input and ρ on the output. We proved
that F↑η,ρ ∈ uco(C m−→C ) and F↓η,ρ ∈ lco(C m−→C ). We prove that their adjoint
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functions increase incompleteness. Given a function f , we look for the most dis-
tant function with the same complete transformation as f . In particular, when
we consider F↑η,ρ, we look for the smallest function with the same transforma-
tion complete transformation as f which surely includes the maximal amount
of incompleteness. A dual reasoning can be done for the other transformation
following Janowitz’s results.

+

+
+

-
-

-

F
↑

F
↓

O
↓

O
↑

Minimal complete
transformation

from above

Minimal complete
transformation

from below

Maximal incomplete
transformation

from below

Maximal incomplete
transformation

from above

Fig. 2. Basic semantic transformers.

Moving upwards. The corresponding right adjoint, when it exists (see Sec. 3),
of F↓η,ρ is O↑η,ρ(f ) def=

⊔
{g : C m−→C | F↓η,ρ(g) = F↓η,ρ(f )}. Being F↓η,ρ the compo-

sition of two function transformations, we study first the adjoint operation as-
sociated with F↓: O↑η,ρ(f ) def=

⊔
{g : C −→C | F↓η,ρ(g) = F↓η,ρ(f )} and then prove

that we can always apply the monotonicity transformer afterwards. As observed
in Sect. 3, this adjoint operator may not always exist. Moreover, in the previous
section we also observed that F↓ may not always exist. Next theorem tells us that
the incompleteness transformer exists when ρ+ is join-uniform, which implicitly
says that ρ+ exists, namely that we also need ρ additive.

Theorem 21. The transformer O↑η,ρ(f ) ∈ uco(C −→C ) iff ρ+ exists and it is
join-uniform. In this case

O↑η,ρ(f )(x ) =
{

(ρ+)+(f (x )) =
∨{

y
∣∣ρ+(y) = ρ+(f (x ))

}
if x ∈ η

f (x ) otherwise

Note that, also in this case, the transformer does not change all the elements,
but only those in η. This implies that, also in this case, the function obtained by
applying O↑ is not necessarily monotone, even if applied to a monotone function.

Example 22. Consider η = ρ. In picture
(a) the (purple) circled points are those
in ρ (and in ρ+) and the (blue) arrows
corresponds to the function f . In picture
(b) we have represented with (green) cir-
cled points the closure (ρ+)+ (which is an
uco on the lifted order). We note that the
transformation induced by O↑ represented
with a dotted line, is non monotone.

f

ρ
+

ρ

f (ρ+)+

(a) (b)

By applying M↓ we obtain the monotone one represented with a dashed line.
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The example above shows that by applying the transformer M↓ we still obtain
a monotone incomplete function. Next result proves that the transformer M↓
does not change the class of complete functions, hence we can always make the
monotonicity transformation if necessary, without having to reapply O↑.

Theorem 23.
If f : C m−→C then F↓η,ρ ◦M↓ ◦O↑η,ρ(f ) = F↓η,ρ and O↑η,ρ(f ) wM↓ ◦O↑η,ρ(f ).

At this point, we have that O↑ is the adjoint of a transformer inducing
completeness, hence intuitively it induces incompleteness. Clearly, we wonder
if there are complete functions which are fix-point of O↑. Next theorem proves
that O↑ does not always transform a complete function into an incomplete one.
This is the case when no incomplete functions are available.

Theorem 24. If f : C m−→C then O↑η,ρ(f ) is complete iff for each x ∈ C we
have

{
y
∣∣ρ+(y) = ρ◦ f ◦η(x )

}
= {f ◦η(x )}.

In Fig. 3 (a) we show an example where the condition above holds also for
non-trivial functions and closures where η = ρ. In the picture the closure is
represented with (purple) circled points and the map with (green) arrows. This
is a non-trivial complete function which is a fix-point of the transformer. In Fig. 3

f

(a)

x

z

ρ

ρ
+

x

z
(ρ+)+

(b) (c)

Fig. 3. Incompleteness transformations examples.

(b) and (c) we show a case where a complete function is indeed transformed in
an incomplete one by the transformer. Again, in Fig. 3 (b) the closure ρ (and
ρ+) is represented with (purple) circled points and the function f , for which the
domain is complete, is represented with (blue) arrows. O↑η,ρ(f ) is in Fig. 3 (c).

Moving downwards. We close our construction of semantic transformers by
characterising an incompleteness transformer associated with the left-adjoint
of F↑η,ρ, in the sense of expansion: O↓η,ρ(f ) =

d
{g : C m−→C | F↑η,ρ(g) = F↑η,ρ(f )}

when it exists (see Sect. 3). As in the previous case, we study the following trans-
formation first O↓η,ρ(f ) def=

d
{g : C −→C | F↑η,ρ(g) = F↑η,ρ(f )}. While F↑η,ρ always

exists, O↓η,ρ may not always exist. Next theorem proves that the incompleteness
transformer exists when ρ− exists, namely when ρ is meet-uniform.
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Theorem 25. O↓η,ρ(f ) ∈ lco(C −→C ) iff ρ is meet-uniform. In this case

O↓η,ρ(f )(x ) =
{
ρ−(f (x )) =

∧{
y
∣∣ρ(y) = ρ(f (x ))

}
if x ∈ η

f (x ) otherwise

Exactly as it happens in all previous cases, the transformer does not change all
the elements, but only those in η. This implies that the function obtained by O↓
may not be monotone, even if we start with a monotone function f .

Example 26. Consider the pictures on the

right, where η = ρ. Here we have an exam-

ple of transformation which returns a non

monotone function. We see in picture (b),

the closure ρ− denoted with (green) cir-

cled points. The transformed map is the

one represented in picture (b) with (red)

dashed lines. Note that M↑(O↓η,ρ(f )) = f .

f

ρ

f

ρ
−

(a) (b)

Theorem 27.
If f : C m−→C then F↑η,ρ ◦M↑ ◦O↓η,ρ(f ) = F↑η,ρ and O↓η,ρ(f ) vM↑ ◦O↓η,ρ(f ).

Also in this case, we consider the case when this trasformation induces incom-
pleteness. Namely, we wonder when ρ◦O↓η,ρ(f )◦η 6= O↓η,ρ(f )◦η.

Theorem 28. If f : C m−→C then O↓η,ρ(f ) is complete iff for each x ∈ C we
have

{
y
∣∣ρ(y) = ρ◦ f ◦η(x )

}
= {f ◦η(x )}.

An example of complete function which is left unchanged by O↓ is the same
shown before for O↑ (Fig. 3 (a)). Next example shows, instead, a case where a
complete function is indeed transformed into an incomplete one by O↓.

Example 29. Consider the pictures on the

right where η = ρ. Again the closure is

represented with (purple) circled points. In

the picture (a) we have the original func-

tion f , for which the domain is complete,

as we can simply verify. In (b) we have the

function that we obtain by applying the

transformer O↓ to f .

f

x y

f

x y

(a) (b)

4.3 Transforming semantics for transforming program security

Transforming functions corresponds to transform semantics [10]. In the following
we consider the meaning of transformed semantics in language-based security.
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Inducing completeness. Assume η be disjunctive, i.e.
b

(η) = η. We consider
F↑
Hφ

η ,Hρ
(wlpP

η ) and F↓
Hφ

η ,Hρ
(wlpP

η ), where Hφ+

η = λ〈X H,X L〉. 〈φ+(X H), η+(X L)〉.
The transformations above, show that whenever we have wlpP

η (X ) = 〈H , η(L)〉,
and X ∈ Hρ then F↑

Hφ
η ,Hρ

(wlpP
η )(X ) = 〈φ(H ), η(L)〉 by idempotence of η, and

F↓
Hφ

η ,Hρ
(wlpP

η )(X ) = 〈φ+(H ), η(L)〉 by Th. 1(1). This result tells us that, while
by using the core we can transform the output observation ρ for characterizing
attackers, we cannot transform the input observation η.

Example 30. Let P
def
= while (h > 0) do (h := h − 1; l := h) endw. Suppose the

attacker can observe the identity. The wlp is {l = 0 7→ h ≥ 0, l 6= 0 7→ h = 0}. This

program is insecure for the policy φ = λx .Z, which says that nothing has to flow. The

secure semantic transformation is F↑
Hφ

id
,Hid

(wlpP
id): {l = 0 7→ h ∈ Z, l 6= 0 7→ h ∈ Z}

which, for example, is the semantics of the transformed program P ′
def
= l1 := l ; P ; l := l1.

Inducing incompleteness. Let us consider the incompleteness transformers
O↑
Hφ

η ,Hρ
(wlpP

η ) and O↓
Hφ

η ,Hρ
(wlpP

η ) where, when the necessary conditions on η

and φ hold, Hφ++

η (X ) = 〈φ++(X H), η++(X L)〉 and Hφ−η (X ) = 〈φ−(X H), η−(X L)〉.
The problem is that the completeness equation with φ holds if φ is partitioning
[1]. This is a problem since it implies that φ is not meet-uniform and φ+ cannot
be join-uniform. Hence we don’t have an optimal transformation of wlpP

η but
rather only maximal incomplete transformations. This is interpreted by noting
that a semantic transformer corresponds to an active attacker that wants to
exploit its activity for disclosing more private information. A program that does
not reveal to an active attacker more than what is revealed to a passive one is
called robust [23]. Therefore there is no best active attacker that can extract all
about private data. An attacker can only decide what it wants to disclose and
consequently actively transform the code.

Example 31. Let P
def
= h := h mod 2; if h = 0 then l := 0 else l := 1 and ρ = η = id,

φ = Par. wlpP
id is {l = 0 7→ h ∈ 2Z, l = 1 7→ h ∈ 2Z+1} namely we disclose parity of h.

Suppose the attacker wants to distinguish in addition if h is 0 or not. Then we consider

the partitioning closure σ
def
=

b
({{0}, 2Z r {0}, 2Z + 1}). For what we said above, we

don’t have a best transformation allowing to observe 0, hence the attacker has to choose

to disclose weaker information about h, for example {0, 2} instead of 0. We can consider

the semantics: {l = 0 7→ h ∈ {0, 2}, l = 1 7→ h ∈ 2Z+1} approximating O↓Hσ
id
,Hid

(wlpP
id)

which, for example, is the semantics of if h ≤ 2 ∨ h mod 2 = 1 then P else l := 2

5 Discussion

We proved that standard abstract interpretation methods, based on Galois con-
nections, can provide an adequate model for reasoning about transformations of
both abstract domains and semantics. While the abstract domain side is more
traditional in static program analysis, in particular in the field of abstraction
design, the semantic side is completely new. In this paper we proved that a
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completely symmetric construction holds for both semantic and domain trans-
formers, sharing the same geometric structure which is based on the lifting of
Galois connections higher order, from the objects of computation to the space
of abstract domains and predicate transformers. This shows that abstract in-
terpretation, as originally developed in [6], may have a universal validity not
only for approximating semantics but also on reasoning about its own meth-
ods. The key aspect in this construction is completeness, which is the driving
force for transforming domains and semantics to achieve a given precision de-
gree. We used language-based security as an application ground for interpreting
our transformations, but the validity of these results are general. For instance
possible applications of the basic semantic transformers for achieving maximal
incompleteness are in code obfuscation. In this case an obfuscated program fight-
ing against an attacker which performs static analysis driven reverse engineering
can be viewed as the maximal incomplete transformation of the program with
respect to the abstractions used by the analyser. Similarly minimal complete
transformations can be used in abstract model checking for isolating temporal
sub-logics which are complete for a given abstract system to analyse.
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