
Obfuscation by Partial Evaluation of Distorted Interpreters

Roberto Giacobazzi
University of Verona

roberto.giacobazzi@univr.it

Neil D. Jones
DIKU, University of Copenhagen

neil@diku.dk

Isabella Mastroeni
University of Verona

isabella.mastroeni@univr.it

Abstract
How to construct a general program obfuscator? We present a novel
approach to automatically generating obfuscated code P′ from any
program P whose source code is given. Start with a (program-
executing) interpreter interp for the language in which P is writ-
ten. Then “distort” interp so it is still correct, but its specializa-
tion P′ w.r.t. P is transformed code that is equivalent to the original
program, but harder to understand or analyze. Potency of the ob-
fuscator is proved with respect to a general model of the attacker,
modeled as an approximate (abstract) interpreter. A systematic ap-
proach to distortion is to make program P obscure by transform-
ing it to P′ on which (abstract) interpretation is incomplete. Inter-
preter distortion can be done by making residual in the specializa-
tion process sufficiently many interpreter operations to defeat an
attacker in extracting sensible information from transformed code.
Our method is applied to: code flattening, data-type obfuscation,
and opaque predicate insertion. The technique is language inde-
pendent and can be exploited for designing obfuscating compilers.

Categories and Subject Descriptors I.2.2 [Automatic Program-
ming]: Program Synthesis; F.3.2 [Semantics of Programming Lan-
guages]: Partial Evaluation, Program Analysis

General Terms Languages, theory

Keywords Obfuscation, semantics, partial evaluation, program
transformation, program interpretation, abstract interpretation.

1. Introduction
Code obfuscation is increasing its relevance in security, providing
an effective way for facing the problem of both source code pro-
tection and binary protection. This contributes to comprehensive
digital asset protection, with relevance to applications in DRM sys-
tems, IPP systems, tamper resistant applications, watermarking and
fingerprinting (see [7] for a comprehensive survey on the literature),
and white-box cryptography [5].

1.1 The problem
The idea of code obfuscation is simple and relies upon making se-
curity inseparable from code: a program, or parts of it, are trans-
formed in order to make them hard to understand or analyze [8].
This may provide room for hiding cryptographic keys or sensible
information concerning algorithmic design, making a direct attack

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PEPM’12, January 23–24, 2012, Philadelphia, PA, USA.
Copyright c© 2012 ACM 978-1-4503-1118-2/12/01. . . $10.00

to software in an untrusted environment harder, in a security by ob-
scurity approach. Results on the impossibility of perfect and uni-
versal obfuscation, such as [2], did not dishearten researchers in
developing methods and algorithms for hiding sensitive informa-
tion in programs. By analogy with Rice’s theorem (a great chal-
lenge for the development of automatic program analysis and veri-
fication tools), the impossibility of perfect obfuscation against ma-
licious host attacks is a major challenge for developing concrete
techniques that are sufficiently robust that an attacker is in trouble
for an unacceptable amount of time in trying to defeat them. In dig-
ital contexts, hiding information means both hiding as in making
imperceptible, as in watermarking, and obscuring as in making in-
comprehensible, as in obfuscation [30]. In programming languages,
both aspects have deep semantic aspects: on one hand modified
code should behave consistently with its source version yet hiding
secret information, on the other hand, analysis of the modified pro-
gram should not reveal its secrets to untrusted users. Both require-
ments depend on the notion of analysis, which depends on the rela-
tive precision of the observer. In this context, software diversity [6]
plays a fundamental role in conjunction with code obfuscation, pro-
viding different immunity to hide vulnerabilities and enforcing that
each instance must be attacked separately, dramatically increasing
the effort required for hackers to develop automated attack tools
[7]. Successful obfuscation should therefore implement meaning-
ful diversity, and be able to generate diversified obfuscated code
quickly enough for comparative evaluation.

1.2 The idea
We apply interpreter specialization to automatically generating ob-
fuscated programs. An attacker (human or automatic) can only ob-
serve program execution at some fixed level of detail, e.g., in a
program profiler, in a debugger, by static analysis, by program slic-
ing, by program monitoring, or by code decompilation. In all these
cases, the attacker extracts approximate properties of code under at-
tack. We formalize the attack model as an abstract interpretation of
the concrete semantics of the program. Our idea is then to transform
original program P into an obfuscated program P′ by specializing a
distorted (but still correct) interpreter as in [23, 24]. The aim is to
obfuscate P either by making its observation hard and imprecise, or
by making hidden information imperceptible.

The attacker. The model of attack is an approximate interpreter,
formalized as an abstract interpretation. This general model in-
cludes relevant attack methods and tools such as: static and dy-
namic analysis [11], debugging [3], slicing [28], and approaches
to information disclosure and reverse engineering by monitoring
[13]. Obfuscation means here making the attacker unable to discern
properties of code. In terms of abstract interpretation, this means
that an abstract interpretion is incomplete. Completeness [12, 22]
expresses precisely the accuracy of the approximate semantics in
modeling program behavior. This corresponds to the possibility of
replacing, with no loss of precision, concrete computations with

approximate ones. The lack of completeness of the attacker corre-
sponds here to its poor understanding of the obscured program’s
semantics – the key for understanding the meaning of its code.

The defender. We make code protection by program transforma-
tion. Let P be the simple statement, C : x = a∗b, multiplying a and
b, and storing the result in x, as considered in [18]. An automated
program sign analysis approximating values in the simple domain
of signs is clearly able to catch, with no loss of precision, the in-
tended behaviour of C with respect to sign, as the sign abstraction
O = {+, 0,−}, is complete for integer multiplication. However, if
we obtain obfuscated program P′ by replacing C with O(C):

x = 0; if b ≤ 0 then {a =−a; b =−b};
while b 6= 0 {x = a + x; b = b− 1}

the sign analysis is now unable to extract any information concern-
ing the computed sign, because the rule of signs is incomplete for
integer addition. O(C) is therefore an obfuscation of P for the at-
tack performed by sign analysis. O(C) can be obtained by modi-
fying a self-interpreter interp in order to force abstract interpre-
tation to deal with operations that induce incompleteness in the at-
tacker. Suppose the distorted interpreter interp+ recursively im-
plements multiplication by a sequence of additions in the obvious
way (as above). This yields, by specialization as in [24], a modified
program P′ := JspecK(interp+, P) which is precisely O(C).

1.3 Our contribution
Three conflicts make program obfuscation a subtle problem.

1. The first concerns a general principle in programming: good
programs are well-structured and have concise invariants. This
is a key to understanding a program, and adapting it to new
purposes. Good structure and short invariants are necessity in
order to develop, debug and perfect a program P in the first
place. However, instead an obfuscated program should not be
well-structured and easy to understand.

2. A conflict more specific to our approach concerns performance
of the obfuscated program: in [24], Section 6.4, a specializer
is called “optimal” with respect to interp if, for all pro-
grams P and data d, one has for P′ = JspecK(interp, P):
timeP′(d) ≤ timeP(d). This asserts that specialization has
removed all interpretational overhead from an interpreted exe-
cution JinterpK(P, d). Typically, optimal specialization yields
a P′ that is equivalent to P up to variable renaming, which is not
acceptable as an obfuscation.

3. In contrast to cryptography, the current state of the art does
not provide provably secure obfuscation schemata. This makes
essential in any successful code protection strategy the ability
to diversify code in conjunction with obfuscation, generating
a large amount, at a sufficiently high rate, of different obfus-
cated versions of the source program. Automated code genera-
tion tools typically generate code that can be easily reverse en-
gineered, making the diversification useless and the protection
strategy vulnerable.

This paper’s main contribution is in providing a comprehensive
theory of systematically obscuring program analysis. The main
idea is to re-program an interpreter interp so its specialization
will obfuscate a program relatively to a given attacker. This can
be achieved, given an attack specified by an abstract interpretation,
by transforming the language structures and operations into new
ones that defeat the considered analysis by making it incomplete.
This approach to obfuscation resolves both conflicts 1 and 2 above
by transforming an arbitrary program P into an equivalent P′ in
which program structure and invariants are hard to see (in code
or in data). In particular, about efficiency, program P′ may be

less than “optimal”, but it will still be acceptable if timeP′(d) ≤
c · timeP(d) for a reasonably small constant factor c that may
depend on P, but which is independent of input data d. Moreover,
by relating obscurity with interpretation, it provides an effective
solution for 3, shifting the problem of generating diversified code to
the problem of diversifying the interpreter. Standard results in code
generation by interpreter specialization are a help in this direction.

All this is achieved by formally specifying both attack and
defense strategies as complementary aspects of interpretation: the
attack is an abstract interpreter designed for extracting properties
of code behavior, while the defense is a program transformation
that forces the attacker to follow a distorted interpretation of the
transformed code, the one that increases uncertainty by maximizing
the loss of precision in the abstract interpretation, thereby making
the resulting program obscure.

2. Background
2.1 Basic notions
If P is a set, ℘(P) is the powerset of P . f ◦g def

= fg
def
= λz . f (g(z)).

id def
= λx . x . A poset P with ordering relation≤ is denoted 〈P ,≤〉,

while 〈P ,≤,∨,∧,>,⊥〉 denotes a complete lattice P , with order-
ing ≤, lub ∨, glb ∧, top and bottom element > and ⊥ respectively.
Often,≤P will be used to denote the underlying ordering of a poset
P , and ∨P , ∧P , >P and ⊥P denote the basic operations and ele-
ments if P is a complete lattice. Functions on ordered sets P1 and
P2 are point-wise ordered by v, and function f : P1−→P2 is
additive (continuous) if f preserves lub’s of all subsets (chains) of
P1, empty-set included. Given a function on sets f : P1−→P2, its
additive lift is a function f : ℘(P1)−→℘(P2) such that f (X) ={
f (x)

∣∣ x ∈ X
}

. Additive and co-additive functions f admit re-
spectively right and left adjoints: f + def

= λx .
∨{

y
∣∣ f (y) ≤ x

}
and f −

def
= λx .

∧{
y
∣∣ x ≤ f (y)

}
. For continuous and addi-

tive functions on a complete lattice P , the least fix-point (closure)
greater or equal to x ∈ P is denoted lfpx f .

2.2 Small-step and whole-program semantics
Small-step semantics: for abstract interpretation, one needs a
fine-grain small-step semantics containing program points or sim-
ilar syntactic information to which abstract values can be bound.
Consider a simple imperative language L:

C ::= skip | x := e | C 0; C 1 | while B do C endw |
if B then C 0 else C 1 fi | output x | input x

A notational convenience: write case e of v1 : C 1; . . . ; vn : C n

to stand for a chain of if − then − else on mutually exclusive
values (the vi are the possible values that e can take, and Ci is
the corresponding program fragment to execute). In Table 1 we
omit the formal semantics of input x which corresponds to a
dynamic assignment to x , and of output x which corresponds to
the visualization of the output result. We consider a quite standard
operational semantics of the language. Let PL be a set of programs
in the language L, Var(P) the set of all the variables in P, and
PLP be a set of program lines of P ∈ PL containing a special
notation ε for the empty program line, V be the set of values, and
M def

= Var(P)−→V be a set of possible program memories. When
a statement st belongs to a program P we write st ∈ P, then we
define the auxiliary functions StmP : PLP → PL be such that
StmP(l) = c if c is the statement in P at program line l (denoted
l.c) and PcP = StmP

−1 : PL → PLP with the simple extension to
blocks of instructions PcP(st ; C) = PcP(st) where st ∈ P. Then,
let σ ∈ M, we define the semantics of L in Table 1, where x are
variables, , e are expressions, B are boolean expressions, J·K is the

〈σ, skip〉 ⇓ 〈σ, skip〉 (Fix-point)
JeK(σ) = n ∈ V

〈σ, x := e〉 ⇓ 〈σ[x 7→ n], skip〉

〈σ, st〉 ⇓ σ′

〈σ, st ; C 1〉 ⇓ 〈σ′, C 1〉

JBKσ = true

〈σ, if B then C 0 else C 1 fi〉 ⇓ 〈σ, C 0〉

JBKσ = false

〈σ, if B then C 0 else C 1 fi〉 ⇓ 〈σ, C 1〉

JBKσ = true

〈σ,while B do C endw〉 ⇓ 〈σ, C ;while B do C endw〉

JBKσ = false

〈σ,while B do C endw〉 ⇓ 〈σ, skip〉

Table 1. Small-step operational semantics of L

evaluation of expressions, and where we write 〈σ, C 〉 ⇓ 〈σ′, C ′〉 for
the execution of C in the memory σ. We can formally characterize
the small-step operational semantics of programs. Let D = M×PL

be the set of states, containing the actual memory and the code to
execute, and 〈σ, C 〉 ∈ D. fL : D−→℘(D) is such that:

fL(〈σ, C 〉) =
{
〈σ′, C ′〉

∣∣ 〈σ, C 〉 ⇓ 〈σ′, C ′〉 }
It is worth noting that for deterministic programs, like L, this
set contains only one state. We abuse notation by denoting as
fL also its trivial additive lift on ℘(D). We define the small-step
program semantics as the fix-point of the transfer function fL: let
S ∈ ℘(D) then JPK(S)

def
= lfpS fL ∈ ℘(D). In the following, when

we consider the semantics of a program P starting from any possible
initial memory state of P we simply write JPK denoting the set{

lfp〈σ, P〉 fL
∣∣ σ ∈ M

}
.

Whole-program semantics: We use notations as in [24] to de-
scribe the net effect of program execution, partial evaluation, pro-
gram running times, etc. Let D be a data set of first-order value,
including any program text and any pair of values. The whole-
program semantic function of program P is a partial function JPK :
D−→D ∪ {⊥}. It transforms a program’s input values into its final
output (if any). If P terminates then JPK(d) is in D, and JPK(d) = ⊥
if P fails to terminate on d. Function JPK : D−→D ∪ {⊥} can be
obtained from the small-step semantics by fix-point closure.

We also assume given a measure of program run time (this
might be proportional to the size of a computation tree deduc-
ing JPK(d) = e). The time taken to compute JPK(d) is written
timeP(d) ∈ N ∪ {∞}; it equals∞ iff P fails to terminate on d.

2.3 Self-interpreters and program specialization
In the following, inputs may be combined in pairs, so (d, e) is in D
if both d and e are in D. Program interp is a self-interpreter if for
all programs P and data d ∈ D we have JPK(d) = JinterpK(P, d).
By = we mean equality of partial values over D ∪ {⊥}.

A partial evaluator (or program specializer) is a program spec
such that for every program P with “static” input s ∈ D and “dy-
namic” input d ∈ D, JPK(s, d) = JJspecK(P, s)K(d). A specializer
executes P in two stages: first, P is specialized to its first input s,
yielding a “residual program” Ps = JspecK(P, s). Second, pro-
gram Ps is run on P’s dynamic input d.

A trivial specializer spec is easy to build by “freezing” the static
input s (Kleene’s s-m-n Theorem of the 1930s did specialization in
this way.) The practical goal, however, is that spec should make Ps
as efficient as possible, by performing many of P’s computations —
ideally, all of those that depend on s alone. A number of practical
program specializers exist. Published partial evaluation systems
include Tempo, Ecce, Logen, Unmix, Similix and PGG [10, 25, 26,
32, 33]. We used Unmix in our experiments.

2.4 Program transformation by interpreter specialization
Suppose P′ := JspecK(interp, P) is the result of specializing a
self-interpreter to program P. It is immediate that JPK = JP′K, by
simple equational reasoning: for any d ∈ D, we have
JPK(d) = JinterpK(P, d) def’n of self-interpreter

= JJspecK(interp, P)K(d) definition of specializer
= JP′K(d) definition of P′

Therefore function λP.JspecK(interp, P) is a semantics-preserving
program transformer [23]. However, even though P and P′ are se-
mantically equivalent, they may be syntactically quite different (far
more different than just by renaming). Examples in [23] show why

1. program P′ inherits the programming style of interp; but

2. program P′ inherits the algorithm of program P;.

The reason for Point 1 is that program P′ is specialized code
taken from the interpreter interp: P′ consists of the operations of
interp that depend on its dynamic input d (and not only on P, else
they would have been “specialized away”). A general-purpose pro-
gram transformer can thus be built by programming self-interpreter
interp in a style appropriate to the desired transformation.

The reason for Point 2 is that even though program P′ may be
a disguised form of P, a correct interpreter interp must faithfully
execute the operations that P specifies. In usual practice, the spe-
cialized program P′ will perform the same computations in the
same order as those performed by P. One does not expect an in-
terpreter to devise new computational approaches.

3. A top-down view of program obfuscation
The point of program obfuscation is to transform a program P, or
parts of a program, into a new program P′ that is computationally
equivalent, but such that P′ is hard to adapt or analyze. Criteria for
good obfuscation are:

1. (Semantics) Preservation: JP′K = JPK is necessary.

2. Automation: P′ is obtained from P without hand work.

3. Potency: P is hard to obtain from P′. The goal is that, even
though P′ can be executed, it should be hard to adapt, exploit,
or analyze by automatic and manual methods.

4. Efficiency: program P′ should not be too much slower or larger
than P. It is acceptable, however, for interp to be slow, as long
as P′ is satisfactorily efficient and hard to understand.

To satisfy these criteria, we design interp so that in general P′ will
be harder to abstractly interpret than P is; and P′ will be satisfac-
torily efficient. We prove that many useful program obfuscations
can be obtained by interpreter specialization, achieving (1) and (2)
straight from correctness of the self-interpreter and the specializer.

We exemplify this in the case of code flattening. The idea is
simple: in conventional program analysis, without knowledge of
the branch targets and the execution order of the code blocks, every
block is potentially the immediate predecessor of every other block,
making the overall control-flow obscure. Code flattening is the ba-
sic principle behind relevant obfuscation strategies, most devoted
to make hard the reverse engineering of flattening, such as obfus-
cation by unintelligible (NP-hard) dispatcher design in [4] and ob-
fuscation of the dispatcher by enlarging its search space with spuri-
ous aliases in [34]. We begin with simple self-interpreter interp,
and then modify interp into an equivalent interpflat whose spe-
cialization will, for any P, yield P′ := JspecK(interpflat, P)
with non-evident (hidden) control flow. The general idea is to re-
program interp so its specialization will “scramble” or “distort”
the control-flow and/or data-flow of its input program P, without
changing its whole-program semantics.

EXAMPLE 3.1. Flattening: consider the program P on the left. A
flattened equivalent program (on the right) has an explicit program
counter pc and only one loop, regardless of P.

1.input x ;
2.y := 2;
3.while x > 0 do

4.y := y + 2;
5.x := x − 1

endw
6.output y;
7.end

1.input x ; 2.pc := 2;
3.while pc < 6 do

4.case pc of
2 : 5.y := 2; 6.pc := 3;
3 : 7.if x > 0 then 8.pc := 4 else 9.pc := 6 fi;
4 : 10.y := y + 2; 11.pc := 5;
5 : 12.x := x − 1; 13.pc := 3;

endw
14.output y
15.end

Experimental context: We did the following and other experi-
ments using the Unmix specializer (suitable since its input lan-
guage SCHEME is good for program representations). Both interp
and spec are general SCHEME programs. However, their input and
output P and P′ are tail-recursive programs, in a SCHEME subset
isomorphic to the imperative language L from Section 2.2.

Structure of the simple self-interpreter. interp is a SCHEME
implementation of the following. Assume input program P has vari-
ables in, out , x1, . . . , xn . The overall structure of the interpreter is
traditional, with a “dispatch on syntax” loop: find the form of the
current P instruction at pc (program counter), and then execute it.
The memory of program P is held in interp variable store .

input P, d ; Program to be interpreted, and its data
pc := 2; store := [in 7→ d , out 7→ 0, x1 7→ 0, . . .];
while pc < length(P) do

instruction := lookup(P, pc); Find the pc-th instruction
case instruction of Dispatch on syntax
skip : pc := pc + 1;
x := e : store := store[x 7→ eval(e, store)]; pc := pc + 1;
. . . endw ;

output store[out];
eval(e, store) = case e of Function to evaluate expressions

constant : e
variable : store(e)
e1 + e2 : eval(e1, store) + eval(e2, store)
e1− e2 : eval(e1, store)− eval(e2, store)
e1 ∗ e2 : eval(e1, store) ∗ eval(e2, store)
. . .

end

Specialization of the simple self-interpreter: This gives a resid-
ual (specialized) program P′ = JspecK(interp, P) that is essen-
tially identical to P (up to variable renaming), as follows:

• interp variable P is classified as “static”, and variable d is
classified as “dynamic”.

• interp variables e, pc and instruction are classified as “static”,
since given any P they can only assume finitely many values.
• interp function eval is completely unfolded and so does not

appear in P′, since all recursive calls decrease the static value e .
• The simple self-interpreter’s while loop is completely unfolded

by Unmix, so the only remaining control transfers correspond
to those present in program P.
• interp variable store is a function with static domain but

dynamic range. Unmix does “arity raising”, splitting store into
one residual program variable for each of P’s variables.

Specialization of the “flattening” interpreter: A small change to
interp gives the residual program P′ = JspecK(interpflat, P)
as in Example 3.1. The essential trick here is to recode interp so
that the specializer will classify variable pc as dynamic.1 Since pc is
dynamic, the while loop in interpflat will no longer be unfolded
by Unmix, and so comes to appear in the specialized program P′.
This accounts for the form of P′ in Example 3.1. The transformation
P 7→ P′ = JspecK(interpflat, P) will flatten any L program; i.e.,
it is in no way specific to this example input program P.

4. The potency of obfuscation
The design of potent obfuscations requires a precise model of at-
tacker. We consider the potency of a program-transforming obfus-
cation to be its ability to make imprecise an approximate semantics,
viz. an abstract interpreter, following the idea introduced in [18].

4.1 Abstract interpretation
For simplicity we consider Galois connection based abstract inter-
pretations [11, 12]. An abstraction on a domain D , partially ordered
by≤D , is any function ρ : D−→D such that x ≤D ρ(x), meaning
that ρ(x) contains less information than x , ρ is monotone, mean-
ing that it respects the relative precision of objects, and ρ(ρ(x)) =
ρ(x) meaning that the loss of information made by abstraction is
performed all-at-once. Abstractions and abstract domains can in
this way be isomorphically represented as upper closure operators
on a concrete domain D , i.e., elements in uco(D) [12]. Closure
operators in uco(D) are uniquely determined by the set of their fix-
points ρ(D). X ⊆ C is the set of fix-points of ρ ∈ uco(D) iff
X is a Moore-family of D , i.e., X = M(X)

def
= {∧S | S ⊆ X },

∧∅ = > ∈ M(X). If D is a complete lattice then 〈uco(D),v〉
is also a complete lattice 〈uco(D),v,t,u, λx .>, id〉, where for
any ρ, η ∈ uco(D), {ρi}i∈I ⊆ uco(D) and x ∈ D : ρ v η iff
η(D) ⊆ ρ(D); (ui∈I ρi)(x) = ∧i∈I ρi(x); and (ti∈I ρi)(x) =
x ⇔ ∀i ∈ I . ρi(x) = x . In the following we will find conve-
nient to identify closure operators ρ equivalently either as functions
(abstractions) or as sets ρ(D) (abstract domains).

Soundness. Soundness means that abstract computation includes
all possible concrete computations: the semantic approximation
is from above [12]. Let f : D c−→D be a continuous predicate
transformer (also called transfer function), ρ, η ∈ uco(D), and
f] : η(D) m−→ρ(D). Then f] is a sound abstraction of f from
η to ρ if ρ◦ f ≤ f] ◦η. The best correct approximation of f is
f bca

def
= ρ◦ f ◦η. It is known [12] that f] is sound iff f bca v f];

implying ρ(lfp(f)) ≤ lfp(f bca) ≤ lfp(f]). Suppose JPK is speci-
fied as fix-point of (a combination of) predicate-transformers FP :
D c−→D , and ρ, η ∈ uco(D). Define JPK(ρ,η) to be the abstract

1 Technically, pc is made dynamic using the Unmix generalize annota-
tion. Some modest reprogramming is also needed: interp is extended to
have both dynamic and static copies of pc, so specialization will generate
P′ code such as case . . . pc = 5 : x := x − 1; pc := 3 in Example 3.1.

semantics associated with F bca
P , so JPK(ρ,η) is the best correct ab-

stract interpretation of P in ρ and η. In this case soundness means
ρ(JPK) ≤ JPK(ρ,η).

Completeness. Completeness means that no loss of precision is
added by computing with approximate objects [12, 22], namely
ρ(JPK) = JPK(ρ,η). Following [21] we distinguish between back-
ward (B) and forward (F) completeness. Backward complete-
ness holds when ρ◦ f = f] ◦η, meaning that no loss of precision
is accumulated by approximating the input arguments of a concrete
transfer function. Forward completeness holds when f ◦η = ρ◦ f],
meaning that no loss of precision is accumulated by approximat-
ing the result of computations on abstract objects. The key point
in this construction is that there exists an either B or F -complete
abstract function f] for ρ, η ∈ uco(C) iff the best correct approx-
imation ρ ◦ f ◦ η of f is respectively either B or F -complete, i.e.,
ρ ◦ f = ρ ◦ f ◦ η or f ◦ η = ρ ◦ f ◦ η [22]. This means that both
F and B completeness are properties of the abstraction in relation
with concrete predicate transformers. It is known [22] that, if f is
additive: ρ◦ f = ρ◦ f ◦η if and only if f + ◦ρ = η ◦ f + ◦ρ.

Program properties. It is known that any abstraction on a con-
crete domain D , i.e., a pair of closures ρ, η ∈ uco(D), induces a
corresponding partition on programs in PL:

P ≡ρ,η Q ⇐⇒ JPK(ρ,η) = JQK(ρ,η)

It is clear (e.g., see [12]) that the equivalence induced by the
concrete semantics is a refinement of any partition induced by a
sound abstract interpretation and that, by refining abstractions, e.g.,
by completeness [22], we obtain refined partitions of programs. In
the following we identify the closures ρ and η with the property
on programs corresponding to the above partition, and call ρ and η
respectively output and input program properties.

4.2 Example: attack model foiled by Flattening
In this section, we show that the control flow flattening-based ob-
fuscation can be modeled as a problem of making incomplete an ab-
stract interpreter. The attacker is an abstract interpreter extracting
the control flow graph, which is obtained by considering two ab-
straction steps: in input we lose the control flow when the program
counter is dynamic, namely when it is controlled in the program it-
self, in output we lose the memory and the history of computations
(traversed branches).

Graph semantics. Consider the set of graphs defined as follows:
G = 〈Nodes(G),Arcs(G)〉 ∈ G, where Nodes(G) ⊆ PLP and
Arcs(G) ⊆ PLP × PLP. In order to characterize the history of
computation, we define the function determining the sequence of
program lines executed: NextP : M× PLP → PLP.

NextP(σ, l) = l ′ iff
fL(〈σ,StmP(l)〉) = 〈σ′, C 〉 ∧ PcP(C) = l ′

Let us define the auxiliary function: Next]P : PLP → ℘(PLP):

Next]P(l) =


{PcP(C), l + |C |+ 1}

if StmP(l) = while B do C endw
{PcP(C 1),PcP(C 2)}

if StmP(l) = if B then C 1 else C 2 fi{
NextP(l , σ)

∣∣ σ ∈ M
}

otherwise

Note that, Next]P can be defined as abstract interpretation of
NextP, where we abstract on the evaluation of the guard of while
and if. Let us define the graph semantics of a program P:

• States: DG = M×((N∪{ε})×N)×G. A state is 〈σ, 〈l1, l2〉,G〉
where σ ∈ M is the memory before the execution of l2, l1 is the

program line of the last executed statement, and G represents
the execution graph until the execution of l1 (l1 included).

• Transfer functions: gL : DG −→ DG:
gL

def
= λ〈σ, 〈l1, l2〉,G〉. 〈σ′, 〈l2,NextP(σ, l2)〉,G] {l1, l2}〉:

where σ′ = fL(〈σ,StmP(l2)〉)|M and 〈σ, C 〉|M = σ,] de-
notes the union of graphs, i.e., G1] G2 = G where we have
Nodes(G)

def
= Nodes(G1)∪Nodes(G2) and Arcs(G)

def
= Arcs(G1)∪

Arcs(G2), and {l1, l2} is a simplified notation for the graph G′

such that Nodes(G′) = {l1, l2} and Arcs(G′) = {〈l1, l2〉}. We
abuse notation denoting by gL also its additive lift on ℘(DG).

In graph semantics 〈l1, l2〉 ∈ Arcs(G) iff l2 ∈ Next]P(l1).
For any program P ∈ PL, its generic initial state is sP =
〈σ, 〈ε, 1〉, 〈∅,∅〉〉 ∈ DG, where 〈ε, 1〉 is the initial point of the
program corresponding to program line 1. We can define the graph
semantics in fix-point form: JPKG(sP)

def
= lfpsP

gL ∈ ℘(DG). Also
in this case, when we consider the semantics of a program P start-
ing from any possible initial state of P we simply write JPKG
to denote the set {lfpsP

gL | σ ∈ M}. In the following we de-
note by vG the standard subgraph relation, i.e., G1 vG G2 iff
Nodes(G1) ⊆ Nodes(G2) and Arcs(G1) ⊆ Arcs(G2). For simplic-
ity we abuse notation by using the same relation between states,
i.e., 〈σ1, 〈l ′1, l ′′1 〉,G1〉 vG 〈σ2, 〈l ′2, l ′′2 〉,G2〉 iff G1 vG G2. The next
result proves that gL is increasing.

PROPOSITION 4.1. Let s ∈ DG. ∀n ∈ N. gn
L(s) vG gn+1

L (s).

EXAMPLE 4.2. Consider the program in Example 3.1. In this case
the small-step semantics when x = 1 is:

〈(x , y), 〈ε, 1〉, 〈∅,∅〉〉 −→ 〈(1, y), 〈1, 2〉,G1〉
−→ 〈(1, 2), 〈2, 3〉,G2〉 −→ 〈(1, 2), 〈3, 4〉,G3〉
−→ 〈(1, 4), 〈4, 5〉,G4〉 −→ 〈(0, 4), 〈5, 3〉,G5〉
−→ 〈(0, 4), 〈3, 6〉,G6〉 −→ 〈(0, 4), 〈6, 7〉,G7〉

The final graph G7 is:

2: y:=2;1: input x; 4: while x> 0 do 7: output y

5: y:=y+2;

6: x:=x-1;endw

Note that, if the input for x is 0, then the guard of the while becomes
false and therefore the semantics and the final graph is:

2: y:=2;1: input x; 4: while x> 0 do 7: output y

Abstracting the program control structure. Flattening means to
lose the control structure of a program only when it controls the
program counter. In other words, an observer is unable to under-
stand which is the next statement of each program point. We ob-
served that this can be achieved by considering the program counter
(pc) as a program variable, which is determined dynamically in-
stead of statically. In this way, the control flow constructed corre-
sponds to the real execution (branch) when the control statement
guard concerns only program variables, but it loses the branch in-
formation when among the controlled variables there is the pro-
gram counter. The next function is a recursive map that skips the
evaluation of the guards concerning the program counter. The re-
cursive function F decides when to skip the evaluation of the guard,
while B takes both the branches of a control structure ignoring the
evaluation of the corresponding guard. We need a recursive appli-
cation since we may have nested control structures to check. Let

〈σ, 〈l1, l2〉,G〉 ∈ DG:

F(〈σ, 〈l1, l2〉,G〉)
def
= F◦B(〈σ, 〈l1, l2〉,G〉) if StmP(l2) ∈ {if B ,while B} ∧

pc ∈ Var(B)
〈σ, 〈l1, l2〉,G〉 otherwise

B(〈σ, 〈l1, l2〉,G〉) =
{
〈σ, 〈l2, l〉,G] {l1, l2}〉

∣∣∣ l ∈ Next]P(l2)
}

Let us denote by F also its fix-point closure.

PROPOSITION 4.3. F ∈ uco(℘(DG)).

EXAMPLE 4.4. Consider the flattened program of Example 3.1. A
recursive definition of F is needed because we have to apply B to
a case statement on pc, nested in a while also controlling pc:

F◦B(〈(1, 2), 〈2, 3〉,G2〉)
= F({〈(1, 2), 〈3, 4〉,G′3〉, 〈(1, 2), 〈3, 14〉,G′′3 〉})
= {F◦B(〈(1, 2), 〈3, 4〉,G′3〉), 〈(1, 2), 〈3, 14〉,G′′3 〉}

=

{
F(
{
〈(1, 2), 〈4, i〉,Gi 〉

∣∣ i ∈ {5, 7, 10, 12}
}
),

〈(1, 2), 〈3, 14〉,G′′3 〉

}
=

{ {
〈(1, 2), 〈4, i〉,Gi 〉

∣∣ i ∈ {5, 7, 10, 12}
}
,

〈(1, 2), 〈3, 14〉,G′′3 〉

}
Note that, F(〈(1, 2), 〈4, 7〉,G7〉) = 〈(1, 2), 〈4, 7〉,G7〉 because the
statement at program line 7 is an if, whose guard does not concern
the program counter. The resulting control flow-graph is:

2: pc:=2;

1: input x;

4: while pc< 6 do

14: output y

5: y:=2;

6: pc:=3;

7: if x>0 then

8: pc:=4; 9: pc:=6;

10: y:=y+2;

11: pc:=5;

12: x:=x-1;

13: pc:=3;

Note that the circled part will select a branch depending on the
value of x , namely it will correspond to the real computation.

Abstracting the memory. We define the output abstraction losing
the memory and the branch computational history. Let S ⊆ DG.

C(S)
def
=

{
〈M , 〈l1, l2〉,

⊎
i

Gi〉
∣∣ ∀σ ∈ M .∃i . 〈σ, 〈l1, l2〉,Gi〉 ∈ S

}
This function abstracts the memory and the program structure
component-wise, keeping no relational information among them.
Note that, this function is trivially an abstraction on DG.

PROPOSITION 4.5. C ∈ uco(℘(DG)).

Flattening as incompleteness. At this point the abstract seman-
tics losing the control structure on the program counter can be
specified as an abstract interpretation: JPKF = lfp (gF

L)|G where
gF
L

def
= C ◦ gL ◦ F. The next result justifies the construction of the

distorted interpreter interpflat in Section 3: Flattening the con-
trol structure of a program corresponds precisely to dynamically
interpreting the program counter, which is equivalent to making in-
complete the abstract interpreter that collects the CFG and does
not evaluate guards concerning the program counter.

THEOREM 4.6. C(JPKG) =G JPKF iff P has no dynamic pc.

5. Incompleteness driven obfuscation
Let ρ, η ∈ uco(℘(D)) be properties of program execution states,
and let O : P−→P be a program transformation such that

(1): JPK = JO(P)K. Assume that (ρ, η) is B-complete for JPK,
i.e.,

(2): ρ(JPK) = JPK(ρ,η) def
=
{

lfp〈σ, P〉ρ◦ fL ◦η
∣∣ σ ∈ M

}
. Then

O obfuscates P for the property (ρ, η) if
(3): JPK(ρ,η) @ JO(P)K(ρ,η).

THEOREM 5.1 ([18]). For any J·K : P−→℘(D), ρ, η ∈ uco(℘(D)),
transformation O : P−→P , and P program P we have:

JPK(ρ,η) @ JO(P)K(ρ,η) iff ρ(JO(P)K) @ JO(P)K(ρ,η).

The intuition here is simple: obfuscating a program means making
an observer (the attacker) unable to observe some aspects of the
computation, thereby lessening its ability to distinguish programs
by observing what and how they compute. The observable property
(ρ, η) here is fixed and cannot be distorted, therefore we can only
act by distorting the program’s syntax so that a loss of precision
is induced in the abstract interpretation of the distorted program.
We now prove that such a distorted program can be systematically
obtained by specializing a distorted interpreter, in such a way that
the residual program makes an abstract interpretation incomplete.

5.1 Universal distortion: obfuscator generation
THEOREM 5.2. Suppose int is any correct self-interpreter for
language L. Then JPK = JO(P)K holds for O(P)

def
= JspecK(int, P).

An obfuscator can therefore be generated by the following steps:

• Consider a B-complete property (ρ, η) on the semantics of pro-
gram P, where ρ/η are the observable output/input properties;
• Isolate a set of programs, here called incomplete structures

Π =
{
P ∈ PL

∣∣ ρ(JPK) 6= JPK(ρ,η)
}

• Design a correct self-interpreter Ĩnt such that O(P) ∈ Π for
some L-programs P.

Now (1) holds by Theorem 5.2, and (2) since (ρ, η) is B-complete.
(3) will hold if Ĩnt can be devised such that O(P) ∈ Π for some
L-programs P. In practice this can be straightforwardly achieved
by modifying a “vanilla” self-interpreter int. We have already
seen one special case of universal distortion, namely Example
3.1. For this flattening example, Ĩnt uses a dynamic variable pc,
representing a program counter. Since pc is dynamic it appears in
the specialized programs O(P); so the incomplete structures in Π
are one-loop programs with control statements incorporating pc.

The following example (more directly following the recipe
above) does a workaround in int so that its specialised code avoids
the operator ∗ on which sign analysis is B-complete.

EXAMPLE 5.3. Consider the simple case of sign analysis specified
by the abstraction ρs ∈ uco(℘(Z)): ρs = {∅, 0, 0+, 0−,Z}
where 0+ and 0− represent respectively the set of all non negative
and non positive integers. A distorted interpreter can be obtained
by replacing in the interpreter for the language of call-by-value
recursion equation systems the evaluation of integer multiplication
by calling a function to multiply by repeated addition.

eval(e, env) = case e of
e1 ∗ e2 : m(eval(e1, env), eval(e2, env))
. . .

end
m(a, b) = if b < 0 then mm(−a,−b, 0) else mm(a, b, 0) fi
mm(a, b, z) = if b = 0 then z else mm(a, b − 1, z + a) fi

Specialization of this distorted interpreter will yield only special-
ized programs written in the following simple functional program-
ming language L+ with n ∈ Z:

Program ::= Equation,...,Equation
Equation ::= FuncName(Varlist) = Exp
Varlist ::= Var,...,Var
Exp ::= n | Var | if Exp then Exp else Exp

| FuncName(Arglist)
| Exp+Exp | Exp-Exp | Exp<Exp | Exp=Exp

Arglist ::= Exp,...,Exp

This grammar generates only programs without ∗. These are in-
complete with respect to the abstract interpretation J K(ρs ,ρs) ob-
tained by abstracting with the rule of signs the language of call-by-
value recursion equation systems. The interpreter operates on an
environment defined as a function env mapping variables into Z.
The corresponding abstract environment maps variables into ρs .

If given as static input program P : 2mult(x , y) = y ∗x +x ∗y
and as dynamic input x and y , the Unmix specializer will return
(modulo some syntactic sugar) the following obfuscated program:

2mult(x , y) = m(y, x) +m(x , y)
m(a, b) = if b < 0 then mm(−a,−b, 0) else mm(a, b, 0) fi
mm(a, b, z) = if b = 0 then z else mm(a, b − 1, z + a) fi

In this case, JPK(ρs ,ρs)(x , y) 6= Z iff x = 0 or y = 0, making the
abstract interpreter of the transformed programs unable to extract
the sign of the result of the computation.

5.2 Local distortion
In this section we explore weaker conditions for the existence of a
distorted interpreter. The idea is to act locally, to restricted portions
of the source program, making them obscure with respect to a fixed
abstraction, yet inducing obscurity in the resulting program. This is
indeed a common practice in code obfuscation, where obfuscation
is restricted to specific code portions, e.g., those holding secrets
relevant for the whole program structure. Let us consider a program
P, and consider a set of its variables, {xi}i∈[1,n]. If P[x] denotes
the presence of a variable x in P, its β-reduction obtained by
substituting x with a value d ∈ V in P is denoted P[d]. For each
i , let Pi be the program fragment of P that computes the value of xi
during the execution of the program P. Hence we use the notation
P[P1...Pn] for representing these elements in P and we denote by
P[x1...xn] (P[xi] for short) the program P where all the program
fragments Pi are substituted by skip. This can be achieved for
instance by a slicing algorithm [31, 35] that extracts Pi out of
P by slicing P with respect to some of its (local) variables xi . If
we consider a family {Qi}i∈[1,n] to substitute to the several Pi we
denote the resulting program as P[Q1...Qn] (P[Qi] for short).

The effect of replacing code in programs can only be under-
stood by the notion of dependency [1]. We model the effect of sub-
stituting program fragments with equivalent incomplete structures
by abstract non-interference [19]. Abstract non-interference (ANI)
is a natural weakening of non-interference (and therefore of depen-
dency) by abstract interpretation, providing a model where interfer-
ing objects are properties of code instead of actual computed val-
ues. We want to characterize the dependency between the compu-
tation of the values of the different variables xi and the observable
semantics of the program P. For this reason we define the follow-
ing notion of stability, which specifies that a program P is stable
w.r.t. the variables xi , when any change of its abstract (computed)
values does not change the observable semantics of the program.
First of all, consider as observable semantics what the attacker can
see, namely the abstract semantics computed by abstract interpre-
tation JPK(ρ,ρ), with D = M = Var−→V and where we abuse
notation by denoting ρ the natural lift extension to states of a value

abstraction ρ ∈ uco(V). Consider a variable x in P[x]. Its values are
approximated in ρ when evaluated in J·K(ρ,ρ).

DEFINITION 5.4. The program P[x] ∈ P is ρ-stable w.r.t. the
variable x if for any d , z , y ∈ V:

ρ(z) 6= ρ(y) ⇒ JP[ρ(z)]K
(ρ,ρ)(d)=JP[ρ(y)]K

(ρ,ρ)(d)

Instability is given by negation:

∃z , y , d ∈ V. ρ(z) 6= ρ(y) ∧ JP[ρ(z)]K
(ρ,ρ)(d) 6=JP[ρ(y)]K

(ρ,ρ)(d)

namely, there exist values for x that causes a variation in the
output observation. The notion of stability corresponds to a slight
weakening of a form of abstract non-interference, considering d as
public, z and y as secret, but observing the whole output (and not
only the public part). In particular, since we have a condition on
an abstraction of the secret data, this corresponds to the so called
declassified non-interference via blocking [20], supposing that the
desired property is stability requires that no variations of the secret
property ρ have to flow in the output observation. In our case the
desired property is its negation, namely instability. In this case we
aim that a variation of the secret property ρ induces a variation in
the observable output. The notion of flow-irredundancy introduced
in ANI [19] provides a stronger property than instability, avoiding
existential quantification, which is problematic here.

DEFINITION 5.5. A property ρ is said to be flow-irredundant wrt.
a function f if ∀z , y ∈ V :

ρ(z) 6= ρ(y). ∃d ∈ V. f (ρ(z), d) 6= f (ρ(y), d).

Considering as f the abstract interpretation of P, we can observe
that flow-irredundancy is strictly stronger than instability due to
the initial universal quantifiers.

5.3 Modeling flow-irredundancy
Let us provide a set of rules for approximating the flow-irredundancy
property of a program.

DEFINITION 5.6. Let x , y be variables and P a program:

• y ρ→P[y]
x (simply denoted y

ρ→P x) iff

∀v1, v2 ∈ ρ . ∃σ ∈ D . JP[v1]K
(ρ,ρ)σ 6=x JP[v2]K

(ρ,ρ)σ

where 6=x means that the result is compared only on x ;
• y ρ
 e[y] (simply denoted y

ρ
 e), for an expression e , iff

∀v1, v2 ∈ ρ . ∃σ ∈ D . Je[v1]K
(ρ,ρ)σ 6= Je[v2]K

(ρ,ρ)σ;

• y ρ
 P[y] (denoted y

ρ
 P) iff ∃x ∈ Var(P) such that y ρ→P x .

The set of all the variables modified by a program fragment is:

MOD(P)
def
=
{
x ∈ Var(P)

∣∣ ∃σ ∈ D. JPKσ 6=x σ
}

the set MOD(P)(ρ,ρ) is analogously defined, but instead of standard
semantics we use an abstract one. Let us define the following rules:

y
ρ→P x

y
ρ
 P

∀x ∈ Var(P)
y

ρ
 e

y
ρ→x := e x

y
ρ
 C1, ∃x ∈ MOD(ρ,ρ)(C1). y

ρ→C1 x , x
ρ
 C2

y
ρ
 C1; C 2

y
ρ→C1

x , x /∈ MOD(ρ,ρ)(C2)

y
ρ→C 1; C2

x

y
ρ→C2

x

y
ρ→C1; C 2

x

y
ρ
 C

y
ρ
 while B do C endw

y
ρ
 B , x ∈ MOD(ρ,ρ)(C)

y
ρ→while B do C endw x

THEOREM 5.7. The system of rules above is sound wrt. Defini-
tion 5.6. Moreover x

ρ
 P iff ρ is flow-irredundant wrt. JPK(ρ,ρ)

and therefore this implies P[x] is not ρ-stable wrt. the variable x.

Consider the program P[Pi], where Pi are the program frag-
ments to obfuscate, each of them computing values stored in vari-
ables xi ∈ Var(P). Suppose it is unstable, namely there exists
ρ(zi) 6= ρ(yi) that imply different observations. Hence, we con-
sider a family of program fragments Qi (distortions of Pi) such that:
(i) JPiK = JQiK (required by obfuscation); (ii) ρ(JPiK) = JPiK(ρ,ρ)

(we suppose the original program was complete, for this reason we
need obfuscation); (iii) ρ(JQiK) 6= JQiK(ρ,ρ) guaranteeing that the
distorted program makes the observer lose precision. Hence, there
exists two values of ρ, i.e., JPiK(ρ,ρ) and JQiK(ρ,ρ) that induce in-
stability, i.e., suppose Qi are built in such a way that the abstract
semantics of Qi correspond to the values inducing instability.

PROPOSITION 5.8. Let ρ ∈ uco(V) and P[Pi] be a complete pro-
gram for (ρ, ρ), i.e., ρ(JPK) = JPK(ρ,ρ) and ρ-unstable. Consider
Pi and Qi defined as above, satisfying the conditions (i), (ii), and
(iii). Then the distorted program P[Qi] is incomplete for (ρ, ρ).

The next theorem gives a sufficient condition for systematically
deriving obfuscated code by specializing interpreters. The idea is
that, for an unstable program P, the specialized code has to leave
as residual the code for which the attacker is incomplete. This en-
sures that specialized code keeps incompleteness, becoming there-
fore obfuscated. Instability ensures that the resulting specialized
interpreter includes incomplete structures as residual in the trans-
formed program, making the resulting program obscure.

THEOREM 5.9. Let P ∈ P be an unstable program for given ab-
stractions. Then there exists an interpreter Ĩnt such that O(P) =
JspecK(Ĩnt, P) is an obfuscation in the sense of Theorem 5.1.

The next section shows how the distorted interpreter could be
designed for the case of opaque predicate insertion [9, 14, 15] and
data-type refinement obfuscation [17]. In both cases the obfuscated
code can be generated systematically by modifying an interpreter
making incomplete structures residual in specialized code.

5.4 Opaque predicates
Opacity is an obfuscation technique based on the idea of confus-
ing the control structure of a program by inserting predicates that
are always true (or false) independently of the memory [9]. This
means that the attacker deceived by opacity is exactly the one ob-
serving only the control structure of programs. In order to show
that opacity is making incomplete an abstract interpreter, we char-
acterize the construction of the control-flow graph (the attack) as
an abstract interpretation and prove that a program contains opaque
predicates if and only if this abstract interpretation is incomplete.
The input abstraction ignores the evaluation of any control state-
ment guard, considering always both the branches of computation;
and the output abstraction ignores the memory (unnecessary when
looking at the control structure of programs) and merges the col-
lected histories of computations obtained. Note that, the first ab-
straction is indeed similar to the function F defined for flattening in
Section 4.2, with the only difference that the branch information is
always lost, and for this reason also this abstraction is specified in
terms of B defined in Section 4.2, while the output abstraction is a
further abstraction of the function C defined in Section 4.2.

Abstracting control predicates. The abstract interpretation here
loses the evaluation of guarded commands such as if and while.
The next function is a recursive map that skips the evaluation of
the guards. The recursive function Bf decides when to skip the
evaluation of the guard, while B (defined in Section 4.2) considers

all the possible program lines that are reachable from the executed
one, independently from the memory. Nested control structures
require a recursive definition of abstraction:

Bf (〈σ, 〈l1, l2〉,G〉) ={
Bf ◦B(〈σ, 〈l1, l2〉,G〉) if StmP(l2) ∈ {if,while}
〈σ, 〈l1, l2〉,G〉 otherwise

We abuse notation by denoting Bf also its additive lift and by using
the notation: Bf (〈σ, 〈l1, l2〉,G〉) = lfp〈σ, 〈l1, l2〉, G〉B

f .

PROPOSITION 5.10. Bf ∈ uco(℘(D)).

Constructing CFG. We build the control-flow graph of an imper-
ative program as the fix-point abstraction of the concrete semantics:
JPKCFG = lfp (gCFG

L)|G where gCFG
L

def
= C◦gL ◦Bf .

Opacity by incompleteness. Opaque predicates [7] are predicates
whose values are known a priori, i.e. statically, and are independent
from the state in which the predicate is evaluated.

DEFINITION 5.11 (S-opaque predicate). A predicate B is S-opaque
iff ∀σ ∈ M. JBKσ = true or ∀σ ∈ M. JBKσ = false.

In contrast with static opaque predicates, dynamic opaque predi-
cates are predicates whose truth values depend on a dynamic prop-
erty of the environment in which the predicate is evaluated. There-
fore opacity depends on the property that the environment in which
the predicates are evaluated will yield an always true or always false
value (e.g, see opaque predicates from pointer-aliasing [7, 9]).

DEFINITION 5.12 (D-opaque predicate).
Let st ∈ {if B then C 1 else C 2,while B do C }, P = P′; st ,
S ′ = JP′KS , S ⊆ D and S ′ = 〈M , 〈l1, l2〉,G〉 with M ⊆ M. B is
D-opaque w.r.t. S if ∀s ∈ S ′. JBKs = true (denoted DS

T -opaque)
or ∀s ∈ S ′. JBKs = false (denoted DS

F -opaque).
A predicate B is D-opaque iff ∀S ⊆ D. B is either DS

T -opaque or
DS

F -opaque.

For instance the predicate x2 ≥ 0 is always true and it is a S-
opaque predicate. Instead, in n := |n|+ 2; if n > 1 then C ..., the
predicate n > 1 is not S-opaque, but it is D-opaque. With program

n := |n|+ 2; while n > 1 do n := n − 1;

the predicate is no more D-opaque, since there exists an iteration of
the while, making the predicate false. Indeed, in presence of loops,
only guards of a non terminating while can be S/D-opaque.

EXAMPLE 5.13. Consider Π = if B then C 1 else C 2 fi (lΠ the
initial program line of Π, l1 the program line of C 1, l2 the program
line of C 2, and le the exit point). G is s.t. Nodes(G) = {lΠ, l1, l2, le}
(for simplicity we omit the edges). Consider C ◦ gL ◦ Bf (Π): if
B is not opaque C ◦ gL(Π) generates G′ such that Nodes(G′) =
{lΠ, l1, l2}, while if B is (statically) opaque (for instance always
true) we obtain a graph G′′ such that Nodes(G′′) = {lΠ, l1}. Note
that in both cases we have incompleteness (G 6= G′ and G 6= G′′),
but while the difference between G and G′ is only le , that will be
added by gL in the fix-point computation, the difference between
G and G′′ is in the presence of l2 that the fix-point computation
of gL cannot add, being B always true. Suppose B is D-opaque
w.r.t. some set of memories MB ⊆ M, then for any P1 such that
there exists M ⊆ M s.t. JP1K(M) 6⊆ MB , we have that when
computing P1; Π, B is no more opaque, and therefore we lose the
incompleteness property on P1; Π, at least for Π.

LEMMA 5.14. Let S = 〈M , 〈l1, l2〉,G〉 ⊆ D with M ⊆ M.

1. ∀n ∈ N. (C◦gL)n(S) vG (gCFG
L)n(S)

2. ∀n ∈ N. C◦gn
L(S) vG (gCFG

L)n(S)

The next theorem characterizes static and dynamic opacity in
terms of completeness of abstract interpretation.

THEOREM 5.15. Let P ∈ P.

1. JPKCG =G JPKCFG iff P doesn’t contain S-opaque predicates;
2. C(JPKG) =G JPKCFG iff P doesn’t contain D-opaque predicates.

Because in general C(JPKG) vG JPKCG, as expected, the absence
of S-opacity implies the absence of D-opacity. Moreover the latter
can only be ensured by enforcing completeness relatively to a con-
crete enough semantics that dynamically executes the programs,
such as JPKG, while in the static case completeness is related with a
more abstract semantics that loses the memory associated with each
state, making all predicates equivalently evaluated to an unknown
(including either true or false) value.

COROLLARY 5.16. If O : P → P is a program transformation
adding only S-opaque predicates to a program P (not containing
opaque predicates), then C(JO(P)KG) = JO(P)KCG.

These results tell us that, while for S-opacity we can easily de-
sign a distorted interpreter that simply selects and inserts, in the
interpretation loop, predicates from a database of S-opaque pred-
icates, this is not in general possible for D-opacity. The intuition
beyond this negative result is that D-opacity depends on the seman-
tics of the program containing the predicate, i.e., it is the semantics
(viz., the computed environment) of the previous statements that
makes the predicate D-opaque. While instead S-opacity is a prop-
erty independent on the surrounding code.

5.5 Data-type obfuscation
Let us consider the obfuscation techniques based on the encod-
ing of data [17]. In this case obfuscation is achieved by data-
refinement, namely by exploiting the complexity of more complex
data-structures or values in such a way that actual computations
can be viewed as abstractions of the refined (obfuscated) ones. The
idea consists in choosing a pair of statements cα and cγ such that
cγ ; cα ≡ skip. This means that both cα and cγ are statements of
the form: cα ≡ x := G(x) and cγ ≡ x := F (x), for some func-
tion F and G . A program transformation O(P)

def
= cγ ; τx (P); cα is

data-type obfuscation for data-type x if O(P) ≡ P, where τx adjusts
the data-type computation for x on the refined type (see [17]). It is
known that data-type obfuscation can be modeled as adjoint func-
tions (Galois connections), where cγ represents the program con-
cretizing , viz. refining, the datum x and cα represents the program
abstracting the refined datum x back to the original data-type. As
proved in [18], this is precisely modeled as a pair of adjoint func-
tions: α : V−→V< and γ : V<−→V relating the standard data-
type V for x with its refined version V<.

EXAMPLE 5.17. Consider P = x := x + 2;, cα ≡ x := x/2 and
cγ ≡ x := 2x , then we have τx (P) = x := 2(x/2 + 2), namely
x := x + 4, therefore: O(P) ≡ x := 2x ; x := x + 4; x := x/2.
Consider, for instance a more complex program:

P = x := 1; s := 0; while x < 15 do s := s+x ; x := x+1; endw

Then we have

τx (P) =

[
x := 2; s := 0;
while x < 30 do s := s + x/2; x := x + 2; endw

α, γ, V, and V< are here the most obvious ones.

THEOREM 5.18. Let ρ ∈ uco(V). If x
ρ
 P[x] then for any

pair of adjoint functions (α, γ) such that γα v ρ and program
refinement τx mapping programs into incomplete structures of L
for ρ: ρ(JP[O(Q)]K @ JP[O(Q)]K(ρ,ρ).

Data-type obfuscation can be easily implemented by specializing
an interpreter, straight from Theorem 5.9.

EXAMPLE 5.19. A very simple data obfuscation can be generated
as specialization of the simple self-interpreter of Example 3.1. In
this case, it is not control, but data that are obfuscated. The tech-
nique is similar to that of Drape et al [16, 27], but automated by in-
terpreter specialization. In this example the simple self-interpreter
of Example 3.1, is modified so that all values in the store are ob-
fuscated by the simple trick of adding 1. Mutual inverse functions
obf (x) and dob(x) respectively obfuscate or invert the obfusca-
tion. Input values are obfuscated in the initial store, and output
values are de-obfuscated in the program’s final store. Expression
evaluation obfuscates constants. Also, it first de-obfuscates subex-
pression values, then applies the desired operation (here + or −),
and then obfuscates the result.

input P, d ; Program to be interpreted, and its data
pc := 2; store := [in 7→ obf (d), out 7→ obf (0), x1 7→ obf (0), . . .];
while pc < length(P) do

instruction := lookup(P, pc);
case instruction of Dispatch on syntax
skip : pc := pc + 1;
x := e : store := store[x 7→ eval(e, store)]; pc := pc + 1;
. . . endw ;

output dob(store[out]);
obf (x) = x + 1; dob(x) = x − 1 Obfuscation/de-obfuscation
eval(e, store) = case e of

constant : obf (e) Obfuscate constants
variable : store(e)
e1 + e2 : obf (dob(eval(e1, store)) + dob(eval(e2, store)))
e1− e2 : obf (dob(eval(e1, store))− dob(eval(e2, store)))
. . .

end

The program in Example 3.1 is automatically transformed into an
equivalent program with obfuscated expressions and data:

1.input x ;
1.5.x := x + 1;
2.y := 2 + 1;
3.while x − 1 > 0 + 1− 1 do

4.y := ((y − 1) + (2 + 1− 1)) + 1;
5.x := (x − (1 + 1− 1)) + 1 endw

6.output y − 1;
7.end

A wide variety of data obfuscations can be performed by modi-
fying the interpreter interp. For example, variables could be rep-
resented in pairs: (x , y) could be uniquely and decipherably be
represented by (x + y , x − y). Realizing this in practice involves
changing the interp code when variables are fetched (expression
x) and stored (x := e). While this would make P′ run somewhat
slower than P, it would be only by a constant factor and not asymp-
totically slower. On the other hand, familiar abstract interpretations
such as live variables, constant propagation, available expressions,
etc. would be substantially hindered by such a representation.

6. Discussion
The most related papers are [18] and [29]. In [18] the authors in-
troduced the idea of information hiding by making an abstract in-
terpretation incomplete. The corresponding transformations were
ad hoc due to the fact that the basic code transformers (which ex-
ist under restrictive hypothesis) were not semantics preserving. In
[29] the authors introduced the notion of obfuscated interpretation,
for hiding functionality of a given program. The idea is to reduce
the problem of catching the hidden functionality to the problem
of knowing the way the obfuscated interpreter implements instruc-

tions. This is an instance of our approach, where the attacker is an
abstract interpreter that is blind to context-dependent semantics.

Real-world attacks typically use combined attack strategies,
each one employing a fixed number of analysis tools and meth-
ods. We believe that these can be formalized as the combination
of abstract interpreters which can be defeated by specializing cor-
responding distorted interpreters. In principle, the combination of
these distorted interpreters may lead to a potentially robust obfus-
cation against an arbitrary combination of attacks. Future work
concerns the development and combination of protection mecha-
nisms based on specialization of distorted interpreters for execution
flow integrity, function boundary concealment, and defense against
code decompilation and program tracing. The modularity of our ap-
proach has here several advantages. For instance, Futamura projec-
tions (e.g., [24]) are as follow for distorted interpreters interp+:

1. P′ := [[spec]](interp+, P) Transform program
2. comp := [[spec]](spec, interp+) Generate transformer
3. cogen := [[spec]](spec, spec) Transformer generator

The obfuscating transformations we have seen are clearly instances
of the 1st projection. An obfuscating compiler has been gener-
ated by the 2nd projection using UNMIX. For example, if P is
interpflat, then comp is a stand-alone “flattening” obfuscator.
Immediate consequences are other better ways to transform and to
produce a transformer: P′ = [[comp]](P) (transform by compiler)
and comp = [[cogen]](interp+) (generate transformer). Future
developments will involve gaining a deeper understanding in ex-
pected slowdowns, namely the relations between: (a) timeP′(d)
and timeP(d), exemplifying the slowdown imposed by the flatten-
ing obfuscation; (b) timespec(interp

flat, P) and length(P), ex-
emplifying the amount of time required to do the flattening ob-
fuscation by general specialization; (c) timecomp(P) and length(P),
exemplifying the amount of time required to do the flattening ob-
fuscation by running the UNMIX-generated program obfuscator.

References
[1] M. Abadi, A. Banerjee, N. Heintze, and J. Riecke. A core calculus of

dependency. In 26th ACM POPL ’99, pp. 147–160. 1999.

[2] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P.
Vadhan, and K. Yang. On the (im)possibility of obfuscating programs.
In CRYPTO ’01, LNCS 2139, pp. 1–18. 2001.

[3] F. Bourdoncle. Abstract debugging of higher-order imperative lan-
guages. In ACM PLDI ’93, pp. 46–55, 1993.

[4] S. Chow, Y. Gu, H. Johnson, and V. A. Zakharov. An approach to the
obfuscation of control-flow of sequential computer programs. In ISC
’01, LNCS 2200, pp. 144–155. 2001.

[5] S. Chow, P. A. Eisen, H. Johnson, and P. C. van Oorschot. A white-box
des implementation for drm applications. In Digital Rights Manage-
ment Workshop, LNCS 2696, pp. 1–15. 2003.

[6] F. B. Cohen. Operating system protection through program evolution.
Computers & Security, 12(6):565–584, 1993.

[7] C. Collberg and J. Nagra. Surreptitious Software: Obfuscation, Wa-
termarking, and Tamperproofing for Software Protection. Addison-
Wesley Professional, 2009. ISBN 0321549252.

[8] C. Collberg and C. Thomborson. Watermarking, tamper-proofing, and
obduscation-tools for software protection. IEEE Trans. Software Eng.,
pp. 735–746, 2002.

[9] C. Collberg, C. D. Thomborson, and D. Low. Manufactoring cheap,
resilient, and stealthy opaque constructs. In 25st ACM POPL ’98, pp.
184–196. 1998.

[10] C. Consel, J. Lawall, and A.-F. L. Meur. A tour of Tempo: a program
specializer for the C language. Science of Computer Programming, 52
(17(1)):47–92, 2004.

[11] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approxima-
tion of fixpoints. In 4th ACM POPL ’77, pp. 238–252. 1977.

[12] P. Cousot and R. Cousot. Systematic design of program analysis
frameworks. In 6th ACM POPL ’79, pp. 269–282. 1979.

[13] P. Cousot and R. Cousot. Systematic design of program transformation
frameworks by abstract interpretation. In 29th ACM POPL ’02, pp.
178–190. 2002.

[14] M. Dalla Preda and R. Giacobazzi. Semantic-based code obfuscation
by abstract interpretation. J. of Comp. Security, 17(6):855–908, 2009.

[15] M. Dalla Preda, M. Madou, K. D. Bosschere, and R. Giacobazzi.
Opaque predicates detection by abstract interpretation. In 11th
AMAST ’06, LNCS 4019, pp. 81–95. 2006.

[16] S. Drape. Obfuscation of Abstract Data-Types. PhD thesis, University
of Oxford, 2004.

[17] S. Drape, C. Thomborson, and A. Majumdar. Specifying imperative
data obfuscations. In ISC’07, LNCS 4779, pp. 299–314. 2007.

[18] R. Giacobazzi. Hiding information in completeness holes - new
perspectives in code obfuscation and watermarking. In 6th IEEE
SEFM’08, pp. 7–20. 2008.

[19] R. Giacobazzi and I. Mastroeni. Abstract non-interference: Param-
eterizing non-interference by abstract interpretation. In 31st ACM
POPL ’04, pp. 186–197. 2004.

[20] R. Giacobazzi and I. Mastroeni. Adjoining classified and unclassi-
fied information by abstract interpretation. J. of Computer Security.,
18(5):751-797. 2010.

[21] R. Giacobazzi and E. Quintarelli. Incompleteness, counterexamples
and refinements in abstract model-checking. In 8th SAS’01, LNCS
2126, pp. 356–373. 2001.

[22] R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpre-
tation complete. J. of the ACM, 47(2):361–416, March 2000.

[23] N. D. Jones. Transformation by interpreter specialisation. Science of
Computer Programming, 52(17(1)):307–339, 2004.

[24] N. D. Jones, C. K. Gomard, and P. Sestoft. Partial evaluation and
automatic program generation. Prentice-Hall, Inc., 1993.

[25] J. Jørgensen. Similix: A self-applicable partial evaluator for scheme.
In Partial Evaluation, LNCS 1706, pp. 83–107. 1998.

[26] M. Leuschel. Advanced logic program specialisation. In Partial
Evaluation - Practice and Theory, DIKU 1998 Int. Summer School,
pp. 271–292. 1999. ISBN 3-540-66710-5.

[27] A. Majumdar, S. J. Drape, and C. D. Thomborson. Slicing obfusca-
tions: design, correctness, and evaluation. In DRM ’07, pp. 70–81.
ACM, 2007.

[28] I. Mastroeni and D. Zanardini. Data dependencies and program slic-
ing: From syntax to abstract semantics. In ACM PEPM’08, pp. 125 –
134. 2008.

[29] A. Monden, A. Monsifrot, and C. D. Thomborson. A framework for
obfuscated interpretation. In ACSW Frontiers, AISW2004, pp. 7–16,
2004.

[30] F. A. P. Petitcolas, R. J. Anderson, and M. G. Kuhn. Information hiding
– A survey. Proc. of the IEEE, 87(7):1062–1078, 1999.

[31] T. Reps and W. Yang. The semantics of program slicing and program
integration. In Colloq. on Current Issues in Programming Languages,
LNCS 352, pp. 360–374. 1989.

[32] S. Romanenko. Unmix, a specializer for a subset of Scheme:
http://code.google.com/p/unmix/ . Keldysh Institute,
Moscow, 1993-2009.

[33] P. Thiemann. Aspects of the PGG system: Specialization for standard
scheme. In Partial Evaluation - Practice and Theory, DIKU 1998 Int.
Summer School, pp. 412–432. Springer, 1999. ISBN 3-540-66710-5.

[34] C. Wang, J. Davidson, J. Hill, and J. Knight. Protection of software-
based survivability mechanisms. In IEEE International Conference of
Dependable Systems and Networks, pp. 193–202, 2001.

[35] M. Ward and H. Zedan. Slicing as a program transformation. ACM
Trans. Program. Lang. Syst., 29(2), 2007.

