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Università di Verona
Strada Le Grazie, I-37134 Verona, Italy

giaco@sci.univr.it

Isabella Mastroeni
Dipartimento di Informatica

Università di Verona
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ABSTRACT
In this paper we study the connection between the struc-
ture of relational abstract domains for program analysis and
compositionality of the underlying semantics. Both can be
systematically designed as solution of the same abstract do-
main equation involving the same domain refinement: the
reduced power operation. We prove that most well-known
compositional semantics of imperative programs, such as the
standard denotational and weakest precondition semantics
can be systematically derived as solutions of simple abstract
domain equations. This provides an equational presentation
of both semantics and abstract domains for program anal-
ysis in a unique formal setting. Moreover both finite and
transfinite compositional semantics share the same struc-
ture, and this allows us to provide consistent models for
program manipulation.

Categories and Subject Descriptors
D.3 [Programming languages]: Formal definitions and
theory—Semantics; F.3 [Logics and meanings of pro-
grams]: Semantics of Programming Languages—algebraic
approaches to semantics, denotational semantics, operational
semantics

General Terms
Theory, Verification

Keywords
Abstract interpretation, reduced power, compositional se-
mantics, transfinite semantics, program manipulation.

1. INTRODUCTION
Compositionality plays a key role in program manipula-

tion and program analysis. Compositional semantics are
typically used to derive compositional analyzers, where the
analysis of a program can be obtained by composing the
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analysis of its sub-components or to derive program manip-
ulation algorithms. The essence of compositional semantics
is usually hidden in the ability of the semantics to observe in-
put/output relations about program’s behaviors. One of the
best frameworks to study semantics and compare them ac-
cording to their relative precision is the hierarchy developed
in [8], here called Cousot’s hierarchy of semantics, where se-
mantics at different levels of abstractions are related with
each other by abstract interpretation. A number of seman-
tics including big-step, termination and non-termination,
Plotkin’s natural, Smyth’s demonic, Hoare’s angelic rela-
tional and corresponding denotational, Dijkstra’s predicate
transformer weakest-precondition and weakest-liberal pre-
condition and Hoare’s partial and total axiomatic seman-
tics, have all been derived by successive abstractions starting
from an (operational) maximal trace semantics of a transi-
tion system. The resulting hierarchy provides a complete
account on the structure and the relative precision of most
well-known semantics of programming languages.

One of the major challenge in Cousot’s construction is
that semantics are abstract domains. Therefore they can
be transformed, refined, decomposed, and composed simi-
larly to what is usually done with abstract domains in static
program analysis [18]. In this paper we characterize com-
positional semantics as solutions of simple abstract domain
equations. The idea is to consider the reduced power op-
eration [9] for abstract domain refinement as the basic op-
eration able to include input/output relations in domains.
The reduced power operation has been proved to give the
necessary structure of abstract domains in order to model
relational properties of program behavior [10, 21, 24, 28].
A similar structure can be included in semantics as well.
If [[P1]] and [[P2]] are the semantics of program components
P1 and P2, and � is a syntactic operator for program com-
position, then the semantics [[·]] is compositional if there
exists an operation ◦ such that: [[P1 � P2]] = [[P1]] ◦ [[P2]].
We show that most well-known compositional semantics of
imperative programs, such as the standard angelic denota-
tional and weakest-liberal precondition semantics, can be
systematically derived as solutions of simple abstract do-
main equations. We consider sequential syntactic compo-
sition of programs and trace composition _ for compos-
ing semantics. In this case compositionality boils down to
[[P1;P2]] = [[P1]]_[[P2]]. We prove that the compositional
semantics observing finite computations only, such that the
angelic denotational and weakest-liberal precondition seman-
tics, can be systematically derived as the most abstract
semantics closed under reduced power and including non-



compositional semantics which observe respectively final and
initial states of finite traces. Unfortunately this construction
is not applicable to infinite semantics. This is mainly due
to the fact that the composition of infinite traces looses pre-
cision as we are unable to observe limit states, when they
exist, on which traces may compose. These facts put in ev-
idence that the use of reduced power in these conditions is
limited and it doesn’t allow us to capture exactly the rela-
tional information in infinite computations. This fact leads
to a stronger notion of compositionality, where the equation
above holds also for non-terminating slices of code.

In order to find a semantics that satisfies this new con-
cept of compositionality we define a non-standard seman-
tics of traces, here called transfinite trace semantics, that is
able to observe what happens also after an infinite loop1.
The transfinite semantics of a program is the set of all its
possibly transfinite computations, i.e. computations whose
length can be any ordinal, finite or infinite. We insert this
new semantics in the Cousot’s hierarchy as a concretization
(through a Galois insertion) of the maximal trace semantics.
In this context we are able to systematically build by re-
duced power a transfinite version of denotational and weak-
est precondition semantics and prove that the standard cor-
responding semantics are abstractions of these latter ones.
In this way we can outline a projection of the Cousot’s (stan-
dard) hierarchy of semantics in a more concrete level, here
called non-standard level, connected with the standard one
by abstract interpretation (see Fig. 2). In this new con-
text we are able to prove the optimality of denotational and
weakest precondition non-standard semantics, i.e. they are
the most abstract semantics, on the non-standard level, that
observe respectively the last and the first state of computa-
tions and that are closed under reduced power refinement.
Moreover we prove formally the compositionality, in the
stronger sense, of these semantics. This peculiarity of the
transfinite denotational and weakest precondition semantics
allows us to use them for modeling program slicing [26, 32]
and more in general in program manipulation. Moreover the
fact that these semantics don’t loose precision in presence
of infinite computations makes it possible to give semantics
to a program P in a way such that the semantics of a slice
of P is always contained in the semantics of P . This proves
the consistency of program slicing with respect to these se-
mantics.

Related work
The idea of using abstract domain transformers to study se-
mantics of programming languages is not new. For instance
in [7] the domain operation of tensor product [30] is con-
sidered in order to design Hoare’s axiomatic semantics by
exploiting the adjoint relation between pre and post condi-
tions in Hoare triples. Most of the works that apply abstract
domain transformers in the design of semantics consider the
logic programming paradigm, which basically relies on the
hierarchy of semantics developed in [4, 15]. In [15] reduced
product is used in order to systematically compose a con-
crete semantics with abstract domains for program analy-
sis. In [17] the authors study the relations between different
semantics of logic programs, such as success pattern seman-
tics, computed answer substitution semantics, and call pat-
tern semantics by means of complementation. This idea is

1Cousot, in [7], noted this possibility underlining the utility
of a transfinite trace semantics for modeling program slicing.

further exploited in [16] where domain complementation is
considered in order to study the symmetrical structure of
Cousot’s hierarchy of semantics, in particular in the charac-
terization of the complementary nature of angelic, infinite,
and demonic semantics of a transition system.
As for compositionality is concerned, the very first and, up
to our knowledge, unique example of construction of compo-
sitional semantics by abstract domain transformation is in
[19]. In this work, the authors proved that compositional
semantics of logic programs in [2, 14] can be systemati-
cally designed by a generalization of Cousot’s reduced car-
dinal power operation [9] from non-compositional semantics
of computed answer substitution. This work represents a
starting point for our work, which generalizes the results in
[19] to arbitrary programming languages whose semantics
can be specified by a transition system of states. Moreover,
we prove that the standard and non-standard (transfinite)
compositional semantics are optimal, i.e. they are the most
abstract solutions of simple domain equations. Clearly, our
results can be specialized to the case of logic and constraint
logic programming, obtaining in this way an enhanced the-
ory for logic programming compositionality with respect to
[2, 14, 19].
As for program manipulation, and in particular program
slicing, is concerned, in [1, 3, 26, 29] we can find several ap-
proaches to lazy semantics for program dependence graphs.
These kind of semantics are used in order to model program
manipulation in a way such that the semantics of a slice
approximates the semantics of the full program.

2. PRELIMINARIES
In the following g ◦ f denotes function composition, i.e.,

g ◦ f def
= λx.g(f(x)). The identity function λx. x : X−→X

is denoted ιX , ∼= denotes the isomorphism of ordered struc-
tures, and S−→T denotes the set of all functions from S to
T ordered point-wise by v. Let C and A be complete lat-
tices. Then, C m−→A, C c−→A, C a−→A, and C coa−→A denote,

respectively, the set of all monotone, (Scott-)continuous,
additive (i.e. commuting on arbitrary suprema), and co-
additive functions from C to A. The first infinite ordinal
is ω

def
=
⋃
n∈N n. The proper class of all the ordinals is O. Ol

is the proper class of limit ordinals, and λ is a typical limit
ordinal. Note that 0 ∈ Ol.
Following standard definitions we consider abstract domains
formulated either in terms of Galois connections or in terms
of closure operators [9]. An upper closure operator on a
poset 〈P,≤P 〉 is an operator ρ : P → P monotone, idem-
potent and extensive (∀x ∈ P. x ≤P ρ(x)). uco(P ) de-
notes the set of all upper closure operators on P . Often,
we will find particularly convenient to identify closure oper-
ators with their sets of fix-points. If 〈C,≤,∨,∧,>,⊥〉 is a
complete lattice then 〈uco(C),v,t,u, λx.>, λx.x〉 is also a
complete lattice where, for every {ρ}, {η}, {ρi}i∈I ⊆ uco(C)
and x ∈ C: ρ v η iff ∀y ∈ C. ρ(y) ≤ η(y) iff η(C) ⊆ ρ(C)
and (ui∈Iρi)(x) = ∧i∈Iρi(x). If α : C m−→A and γ : A m−→C
are monotone functions such that ιC v γ ◦ α and α◦γ v ιA,
then (A,α, γ, C) is a Galois connection (GC) between A and
C. The set of all GC’s between two complete lattices A and
C is the tensor product A⊗C. A⊗C ∼= A a−→C ∼= C coa−→A

[30]. If α ◦ γ = ιA we have a Galois insertion (GI) also
denoted 〈C,≤C〉 →−→←−α

γ
〈A,≤A〉. Note that A ∼= C if and

only if 〈C,≤C〉 →−→←←−α
γ
〈A,≤A〉. If 〈C,≤C〉 →−→←−α

γ
〈A,≤A〉 and



f : C −→ C, the best correct approximation f ] : A −→ A of
f is defined as f ]

def
= α◦f◦γ. Note that α◦f ≤A f ]◦α.

Any GI 〈C,≤C〉 →−→←←−α
γ
〈A,≤A〉 uniquely determines an upper

closure operator γ ◦ α ∈ uco(C) and conversely ρ ∈ uco(C)
uniquely determines a GI (ρ(C), ρ, id, C). Hence, we will
identify uco(C) with the so-called lattice LC of abstract in-
terpretations of C [9]. The point-wise ordering on uco(C)
corresponds precisely to the standard ordering used to com-
pare abstract domains with regard to their precision: A1 is
more precise than A2 (i.e., A2 is an abstraction of A1) iff
A1 v A2 in uco(C) iff 〈A1,≤A1〉 →−→←−α

γ
〈A2,≤A2〉.

Reduced product and power are the best known opera-
tions to compose domains in order to exploit respectively
the attribute independent and relational properties of pro-
grams [9]. The reduced product ui∈IAi of a family of do-
mains {Ai}i∈I ⊆ uco(C) is the most abstract domain in LC
which is more concrete than every Ai. The reduced relative
power in [19] is a generalization over arbitrary quantales
of Cousot’s original reduced power [9]. Let 〈D,≤,�〉 be a
semi-quantale [27], i.e. an algebraic structure where 〈D,≤〉
is a complete lattice and � : D × D −→ D is an associa-
tive, monotone and left-additive binary operation. Given a
pair of Galois connections between a concrete domain D and
the two domains D1 and D2: 〈D,≤D〉 →−→←−

α1

γ1 〈D1,≤D1〉 and

〈D,≤D〉 →−→←−
α2

γ2 〈D2,≤D2〉, we define the (relative) reduced
power of D1 and D2, as the set D1

�−→ D2 of all the mono-

tone functions from D1 to D2 defined as λx.α2(d � γ1(x))
with d ∈ D. The dual operation for a right-additive opera-
tion � is D2

�←− D1 and it represents the set of all the mono-

tone functions λx.α2(γ1(x)�d). D1
�−→ D2 is called forward

reduced power and the set D2
�←− D1 is called backward re-

duced power . We have that 〈D,≤D〉 →−→←−α
γ
〈D1

�−→ D2,v〉
with the function α = λd. λx. α2(d� γ1(x)) and, by duality,
〈D,≤D〉 →−→←−α

γ
〈D2

�←− D1,v〉 with α = λd.λx.α2(γ1(x)�d).

3. COUSOT’S SEMANTICS HIERARCHY
We consider Cousot’s hierarchy of semantics as depicted

in Fig. 1 (see [7, 11]), where continuous lines and arrows
denote, respectively, isomorphisms and strict abstractions
between semantics. Given a transition system 〈Σ, τ〉 with
τ ⊆ Σ × Σ, Σ+ and Σω

def
= N−→Σ denote respectively the

set of finite non-empty and of (ω-)infinite sequences on Σ,
the set of all sequences is Σ∞ = Σ+ ∪ Σω. The length
of a sequence σ is denoted |σ| ∈ ω and its i-th element
is denoted σi. A non-empty finite (infinite) trace σ is a
finite (infinite) sequence of program states where two con-
secutive elements are in the transition relation τ , i.e. for all
i < |σ|: 〈σi, σi+1〉 ∈ τ . The maximal trace semantics of
a transitions system [11] is the set τ∞ of all the finite and
infinite traces of a program. The concatenation of traces
is defined as follows: Let σ, δ ∈ Σ∞, |σ| = n, |δ| = m
and A,B ⊆ Σ∞ then σ_δ = η where σn−1 = δ0 and
∀i < n . ηi = σi ∧ ∀n ≤ j < m . ηj = δj−n+1 while A_B ={
σ_δ

∣∣ σ ∈ A ∧ δ ∈ B ∧ σn−1 = δ0
}

. This operation is
both right and left additive and ∀X ∈ ℘(Σ∞) . X_

∅ = ∅

and Σ_X = X_Σ = X.
Each semantics in Cousot’s hierarchy is derived as abstract
interpretation of the maximal trace semantics τ∞, as sum-
marized in Table 1. The relational semantics R∞ asso-
ciates an input/output relation with program traces by us-
ing the bottom symbol ⊥ 6∈ Σ to denote non-termination.
The denotational semantics D∞ gives semantics by con-

sidering input-output functions. Dijkstra’s predicate trans-
former gWp and Hoare’s axiomatic semantics gH consider
respectively the weakest precondition predicate transformers
and the set of all the Galois connections that specify the ad-
joint relation between weakest precondition and strongest-
postcondition in Hoare’s triples {P} C {Q} [7]. Each se-
mantics in natural style may have a corresponding angelic,
demonic, and infinite observable which is again an abstrac-
tion, as summarized in Table 1. The angelic trace seman-
tics τ+ observes only finite computations. We denote by
R+, D+, Wlp, and pH the angelic abstractions of the corre-
sponding semantics in natural style. The demonic semantics
approximates non-termination by chaos, i.e. if there is a pos-
sibility of non-termination then any possible output is given,
and this corresponds to allow the worst possible behavior of
the program [8, 13]. We denote by R∂ , D∂ , Wp∂ , and gH∂

the demonic observables of the corresponding semantics in
natural style. The infinite trace semantics τω, with cor-
responding infinite relational Rω, observes non-terminating
traces only.
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Figure 1: Semantics in Cousot’s hierarchy.

4. PROGRAM MANIPULATION
In the following we consider a simple imperative language,

Imp [33], with the following syntax:

c ::= nil | id := e | c; c | if e then c else c | while e do c

We know that the denotational semantics is compositional ,
namely it is equal to the composition of the semantics of
program’s sub-components. We want to give a characteri-
zation of this property of denotational semantics as a prop-
erty of the corresponding abstraction in Cousot’s hierarchy.
One of the major consequence of Cousot’s construction of
semantics as abstract interpretations is that semantics corre-
spond to abstract domains, namely it is possible to associate
with each semantics a closure operator, i.e. an abstract do-
main, defined on the domain of maximal finite and infinite
traces, and representing what is actually observable by the
semantics. Hence we can think of formulating the problem
of compositionality in terms of closure operators: If X and
Y are two sets of traces representing the semantics of the



Semantics Domain relation Abstraction

R∞ = αR(τ∞) 〈℘(Σ∞),⊆〉 →−→←−
αR

γR

〈℘(Σ× Σ⊥),⊆〉 αR(X) =
{
〈σ0, σn−1〉

∣∣ σ ∈ X+
}
∪{

〈σ0,⊥〉
∣∣ σ ∈ Xω

}
D∞ = αD(R∞) 〈℘(Σ× Σ⊥),⊆〉 →−→←←−

αD

γD

〈Σ −→ ℘(Σ⊥),v〉 αD(X)
def
= λs.{s′ ∈ Σ⊥| 〈s, s′〉 ∈ X}

gWp = αgWp(D∞) 〈Σ −→ ℘(Σ⊥),v〉 →−→←←−
αgWp

γgWp

〈℘(Σ⊥) coa−→℘(Σ),w〉 αgWp(f) = λP.
{
s ∈ Σ

∣∣ f(s) ⊆ P
}

gH = αgH(gWp) 〈℘(Σ⊥) coa−→℘(Σ),w〉 →−→←←−
αgH

γgH

〈℘(Σ)⊗ ℘(Σ⊥),⊇〉 αgH(Φ) =
{
〈X,Y 〉

∣∣ X ⊆ Φ(Y )
}

R+ = αR+(R∞) 〈℘(Σ× Σ⊥),⊆〉 →−→←−
αR+

γR+

〈℘(Σ× Σ),⊆〉 αR+(X) = X ∩ (Σ× Σ)

R∂ = αR∂(R∞) 〈℘(Σ× Σ⊥),⊆〉 →−→←−
αR∂

γR∂

〈D∂ ,⊆〉 αR∂(X) = X ∪
{
〈σ0, s〉

∣∣∣∣ 〈σ0,⊥〉 ∈ X
∧ s ∈ Σ

}

Rω = αRω(R∞) 〈℘(Σ× Σ⊥),⊆〉 →−→←−
αRω

γRω

〈℘(Σ× {⊥}),⊆〉 αRω(X) = X ∩ (Σ× {⊥})

Table 1: Basic semantics and observables as abstract interpretations

components of a program and ρ is a closure operator rep-
resenting an observable property of the semantics, then the
corresponding semantics is compositional if

(Comp) ρ(X_Y ) = ρ(ρ(X)_ρ(Y ))

where the concatenation operator, _, is the canonical way
of composing traces. The idea is that we can compose
the observations made on partial computations and obtain
back, as result and without any loss of precision, the ob-
servation of the whole computation. Let’s consider a well-
known compositional semantics as regards the concatena-
tion of traces, which is the maximal trace semantics. We
remind that if we denote as [[·]] this semantics, then we
can describe its compositionality as [[P1;P2]] = [[P1]]_[[P2]],
where P1 and P2 are generic programs. Consider a GI:
〈℘(Σ∞),⊆〉 →−→←−α

γ
〈A,≤A〉 defined on the concrete domain

of the maximal traces ℘(Σ∞). This induces an abstract
semantics which is defined on the abstract domain of de-
notations A: [[·]]A def

= α([[·]]). Our aim in this paper is that
of characterizing those abstract semantics that are compo-
sitional as regards the concatenation of programs, i.e. such
that [[P1;P2]]A = [[P1]]A�[[P2]]A. In this equation we have the
abstract operation � that has to approximate the concrete
composition of traces on abstract denotations. The best cor-
rect approximation of _ in A is by definition the best choice
defining �: [[P1]]A � [[P2]]A

def
= α(γ([[P1]])_γ([[P2]])). Note that

we have [[P1;P2]]A = α([[P1;P2]]) = α([[P1]]_[[P2]]). It is
known that, if we consider � as the best correct approxima-
tion of _ as defined above, then the relation α([[P1]]_[[P2]]) ≤
[[P1]]A � [[P2]]A = α(γ([[P1]])_γ([[P2]])) holds. Now, for the re-
lation between GI and closure operators, its clear that the
abstract semantics that satisfy the equation (Comp) are ex-
actly those semantics that make this relation an equality.
This means that the equation (Comp) characterizes pre-
cisely the semantics that are compositional as regards the

concatenation of traces. Clearly, not all the semantics sat-
isfy condition (Comp), as shown in the following example.

Example 4.1. Consider the semantics obtained by ap-
proximating the trace semantics with the abstraction func-
tion α(X) =

{
σn−1

∣∣ σ ∈ X ∧ |σ| = n
}

. This semantics
observes the final states of finite computations only. Con-
sider the program

P


P1

[
x := 0;
while x ≤ 3 do x := x+ 1;

P2

[
y := 0;
z := x+ y;

The concrete semantics of P , where the states are the values
in N⊥ of the variables of P , is the only finite trace

[[P ]] = {〈0,⊥,⊥〉 → 〈1,⊥,⊥〉 → 〈2,⊥,⊥〉 →
→ 〈3,⊥,⊥〉 → 〈4,⊥,⊥〉 → 〈4, 0,⊥〉 → 〈4, 0, 4〉}

and the concrete semantics of P1 and P2 are

[[P1]] = {〈0,⊥,⊥〉 → 〈1,⊥,⊥〉 → 〈2,⊥,⊥〉 →
→ 〈3,⊥,⊥〉 → 〈4,⊥,⊥〉}

[[P2]] = {〈⊥, 0,⊥〉 → 〈⊥, 0,⊥〉 → 〈⊥, 0,⊥〉}

Then the abstract semantics, denoted by [[·]]A def
= α([[·]]), are

[[P ]]A = {〈4, 0, 4〉}
[[P1]]A = {〈4,⊥,⊥〉}
[[P2]]A = {〈⊥, 0,⊥〉}

It is easy to observe that there is no way of combining [[P1]]A

and [[P2]]A in order to obtain [[P ]]A, since we have lost the
history of the computation of the programs above.

Another problem related with equation (Comp) corresponds
to characterize how the semantics ρ behaves in presence of



divergence. It is known that in standard semantics [33], if
the X component diverges then ρ(X_Y ) = ρ(X). Even if
equation (Comp) holds, this fact represents a bound in com-
positionality because for any two computations Y 6= Z, if
X diverges then ρ(X_Y ) = ρ(X) = ρ(X_Z). In this case
we are unable to characterize what may happen beyond di-
vergent computations. On the contrary this information is
essential in order to give a consistent model for program ma-
nipulation [32]. Program slicing is a program manipulation
technique that identifies syntactically well-defined portions
of programs which are semantically significant but not nec-
essarily close to each other. In particular a program slice
is defined as a set of program statements that directly or
indirectly contribute to the values assumed by a set of vari-
ables at some program point. Whenever a program is sliced
we have the problem of how the semantics of a slice relates
with the semantics of the original program. In general slic-
ing can change the termination status, and therefore the
program behavior. Indeed a slice can terminate on specific
inputs that lead the original program to non-termination.
Note that slicing can’t introduce divergence, it can only in-
troduce termination.

Example 4.2. Consider the following programs written
in Imp, taken from [26]:

P1

 x := 0 ;
i := 1 ; while i > 0 do i := i+ 1 ;
y := x ;

P2

 x := 0 ;
w := 1 ;
y := x ;

P3

 x := 0 ;

y := x ;

Note that P3 is a slice of both P1 and of P2. Let vsl be the
relation “is-slice-of”2, and let vsem be the relation of se-
mantic approximation. In standard denotational semantics
of imperative languages (denoted as [[·]]) the commands are
denoted as store transformations. P1 contains a loop so we
have that [[P1]] = λs.⊥. Hence P3 vsl P1 and P3 vsl P2

but it is clear that [[P1]] vsem [[P3]] vsem [[P2]]. In other
words in the standard semantics of imperative languages the
relation “is-slice-of” is inconsistent with the semantic ap-
proximation relation.

Compositionality as described in equation (Comp) is neces-
sary for modeling program manipulation, but it is not suffi-
cient, as shown above for program slicing. In this example
it is clear that the problem of the semantics lies upon the
fact that it is unable to distinguish programs that may di-
verge. This means that a semantics is consistent with the
program slicing if, independently from the termination sta-
tus of program’s sub-components, the semantics can always
distinguish the meaning of programs even if some of its sub-
components diverge. We can formalize this fact in the fol-
lowing way:

[[P1]] 6= [[P2]] ⇒ ∀Q,W . [[Q]]� [[P1]]� [[W ]] 6= [[Q]]� [[P2]]� [[W ]].

It is clear that the above holds iff

[[P1]] 6= [[P2]] ⇒ ∀Q . [[Q]] � [[P1]] 6= [[Q]] � [[P2]].

2See [25] for a formal definition of the relation “is-slice-of”
in terms of program dependency graphs, PDG.

In order to solve this problem, the composition ρ(X) � ρ(Y )
of two semantics ρ(X) and ρ(Y ) should keep trace of what
happens in Y even if X diverges. This corresponds to ask
a stronger form of compositionality with respect to equa-
tion (Comp), namely that it is possible to subtract part of
the computation and still be able to re-compose the whole
computation back by composing its fragments. This form
of compositionality is called strong compositionality . In a
certain sense we are looking for a semantics which is both
compositional, as in (Comp), and monotone with respect
to a relation ṽ on semantic objects, such that XṽY iff
X = [[P1]], Y = [[P2]], and P1 vsl P2. Clearly, the stan-
dard maximal trace semantics, even though compositional,
is not concrete enough to provide the ground for defining
semantics which are strongly compositional, i.e. monotone
with respect to ṽ.

In the following we introduce systematic methods for de-
riving semantics of programming languages which are both
compositional and strongly compositional, namely they are
adequate for modeling program manipulation techniques like
slicing. We provide a domain-theoretic characterization of
these properties as solutions of simple recursive abstract
domain equations. This will correspond to ask for a lazy
compositional semantics to be compositional as specified in
equation (Comp), even beyond non-terminating traces.

5. TRANSFINITE SEMANTICS
In order to find a compositional semantics which is useful

for slicing we consider traces able to look beyond the infi-
nite computations, namely we use semantics represented by
transfinite state traces of programs (e.g. see [23]). For trans-
finite traces we mean traces whose length can be any β ∈ O.
In this way the finite computations are finite traces, while
the infinite computations can have lengths which overcome
the first infinite ordinal ω.

We can generalize the definition of finite trace obtaining
the set of traces of length at most β, with β ∈ O:

Σ<β
def
=
⋃
α∈β

α −→ Σ

With this notation it is evident that Σ+ = Σ<ω. In order to
specify the relation between semantics observing program’s
behavior at different β-depth, with β ∈ O, as abstract inter-
pretations of a most concrete transfinite semantics, we have
to find if there exists an upper-bound, expressed in terms of
number of states, on the possible length of a generic trace
in the semantics of an Imp program.

Theorem 5.1. Let P a program written in Imp. The up-
per bound for the length of possible traces expressed in term
of number of states of P is ωω+1 ∈ O.

Proof. Consider a program P written in the simple im-
perative language Imp. We have to prove that, indepen-
dently from the number of instructions (always finite) of P ,
the number of states is upper bounded by ωω+1.

First of all each program has a number of instructions
upper bounded by ω, because it has to be executed so it
can have only a finite number of instructions. Now we have
to find the possible bounds for the single instructions. The
command while is the only one that can diverge and so
it is the command that can generate the greater number



of states, if compared with all the other commands. So a
generic program with n instructions has a number of pos-
sible states which is surely less than a program that has n
while’s. Therefore suppose that the program contains only
while’s. We have to find the upper bound for this com-
mand. Now we prove, by induction on the nesting level of
while that if n is the maximum number of nested while,
then the bound for the possible states of the most external
while is ω2n+2. If the nesting level is 0, then we have a
while only with instructions with a finite number of states,
so the upper bound of each instruction is ω. In the worst
case the command diverges and so we have ω iterations, this
means that the length is bounded by ω · ω = ω2.
Now suppose that a while, with a nesting level of n, is
bounded by ω2n+2 states. We prove that we can add an-
other while externally, enhancing the level of nesting to
n + 1, then the upper bound becomes ω2n+4. A generic
while with maximum nesting level n+ 1 has surely a num-
ber of states less than the one that contains only while
commands with maximum level n. Then the possible states
for this instruction is the number of iterations, bounded by
ω, multiplied by the bound of each instruction, that for in-
ductive hypothesis is ω2n+2, multiplied by the number of
instructions in the while, bounded by ω. So we have the
bound ω2n+2ωω = ω2n+4. This means that the bound of
a generic while is ωω, because we know, from [22], that⋃{

ωm
∣∣ m ∈ ω }

= ωω. Because a generic program has
a number of instruction bounded by ω, the final bound is
ωω · ω = ωω+1.

We will denote this maximal ordinal as ∝ def
= ωω+1. At

this point we can define the maximal transfinite trace se-
mantics as the semantics represented by the traces of the
domain ℘(Σ∝), where

Σ∝
def
=
⋃
α∈∝

α −→ Σ

Consider for instance the following program written in Imp:

P

 x := 1;
while x > 0 do x := 3;
x := 5;

It is clear that the program loops infinitely but it is also
clear that after the execution of while there exists another
state of the program, which cannot be reached in any finite
computation, and which associates the value 5 with the vari-
able x. So we think of studying computations which lead to
the infinite, in order to observe what happens after a diver-
gence. We can generalize the concept of transition system to
the transfinite case by supposing that the transition relation
can distinguish at which degree of infinite the transition is
possible. Let the length of a transfinite trace be α ∈ O. If
α is a limit ordinal then the index of the last state is α,
otherwise it is α− 1. In general we will denote always with
σκ−1 the last state of a transfinite trace.

In order to generalize the trace concatenation to trans-
finite traces, we have to specify a topology on transfinite
traces which allows us to specify limit states for traces whose
length is a limit ordinal. This is achieved by considering the
standard topology on traces as induced by O : The limit
ordinal are the open elements on O while the successor ones
are the closed elements of the topology [23]. This induces
a topology on Σ∝ and in the following we assume that this

topology is metrizable and complete [31], i.e. any Cauchy
sequence of transfinite traces has a limit in Σ∝.

The transfinite semantics is more concrete than the max-
imal trace semantics defined in the Cousot semantic hierar-
chy. In the following we denote the semantics of transfinite
traces of a program by τ∝.

Example 5.2. Consider the following program written in
Imp:

P

 x := 2;
while x > 0 do x := x+ 1;
x := 5;

we represent the trace of states on the maximal trace se-
mantics by considering the trace of the values of x in the
computation:

2 −→ 3 −→ 4 −→ 5 −→ · · · −→ n −→ · · · ⊥

Namely the maximal trace semantics is not able to see be-
yond the loop. Instead if we consider the transfinite trace
semantics, the trace becomes

2 −→ 3 −→ 4 −→ 5 −→ · · · −→ n −→ · · · ω −→ 5

In the following we prove that the maximal trace semantics
τ∞ is indeed an abstract interpretation of the transfinite
semantics τ∝ given by a Galois insertion between ℘(Σ∞)
and ℘(Σ∝). We define the functions α∝ : ℘(Σ∝) −→ ℘(Σ∞)
and γ∝ : ℘(Σ∞) −→ ℘(Σ∝) as

α∝(X) =
{
σ ∈ Σω

∣∣ ∃δ ∈ X . σ 4 δ
}
∪ (X ∩ Σ+)

γ∝(Y ) = (Y ∩ Σ+) ∪
{
σ ∈ Σ∝

∣∣ ∃δ ∈ Y ω . δ 4 σ }
The relation4 is the prefix relation generalized to transfinite
traces, namely if we define the relation σ 4n δ as σ cut at
the length n is prefix of δ, then we can define σ 4∞ δ as
∀n ∈ ω . σ 4n δ. This is the same as 4∞

def
=
⋂
n∈ω 4

n. In
the following we will denote with 4 the relation 4∞.

Proposition 5.3.

〈℘(Σ∝),⊆〉 →−→←−
α∝

γ∝

〈℘(Σ∞),⊆〉

The following theorem proves that the standard finite and
infinite maximal trace semantics is an abstract interpreta-
tion of the non-standard transfinite one.

Theorem 5.4. τ∞ = α∝(τ∝).

6. SEMANTICS BY REDUCED POWER
In this section we systematically construct compositional

(resp. denotational and weakest precondition) semantics by
composing more abstract non-compositional semantics, and
we prove that these semantics are optimal, viz. most ab-
stract with respect to the domain refinement operation given
by reduced power. This proves that these semantics can be
obtained as the most abstract solution of an abstract do-
main equation which involves the reduced power and a ba-
sic non-compositional semantics. Kleene algebras are the
typical algebraic structures to reason about traces [5, 12].
A Kleene algebra is a sixtuple 〈K,≤,>, ·,⊥, 1〉 such that
〈K,≤,∨,∧,>,⊥〉 is a complete lattice, 〈K, ·, 1〉 is a monoid
and · : K × K −→ K is both left and right additive. In
order to apply the reduced relative power operation to de-
sign compositional semantics out of non-compositional ones,
we need a quantale structure on transfinite traces. Kleene
algebras provide this structure.



Proposition 6.1. 〈℘(Σ∝),⊆,Σ∝,_ ,∅,Σ〉 is a Kleene al-
gebra providing a unitary quantale, where for any X,Y ∈
℘(Σ∝) we have X_Y

def
=
{
σδ
∣∣ σ ∈ X ∧ σκ−1δ ∈ Y

}
.

6.1 Potentialλ-termination semantics
In Example 4.1 we have shown a non-compositional se-

mantics observing final terminating states. We generalize
that semantics to transfinite traces.

We know that if α ∈ O then there exist (unique) λ ∈ Ol
and n ∈ ω such that α = λ + n. This corresponds to say
that λ ≤ α < Sl(λ), where Sl(λ) is the limit ordinal which
follows λ. We also note that the limit ordinal λ is such
that ∀γ ∈ Ol . γ ≤ α and γ ≤ λ, namely such λ is the
biggest limit ordinal contained in α. In the following we
denote by 〈s, λ〉 with s ∈ Σ and λ ∈ Ol the state s, in
a possibly transfinite trace σ, located, in σ, in a position
which is after the limit ordinal λ. Hence, 〈σκ−1, λ〉 denotes
the final state of a possibly transfinite trace whose length
overcomes λ and 〈σ0, λ〉 is the initial state of the sub-trace
of σ starting after λ. Clearly, the initial and final states in
a finite trace σ ∈ Σ+ are respectively 〈σ0, 0〉 and 〈σκ−1, 0〉.
This notation allows us to keep trace of states between any
two consecutive limit ordinals, namely states that can be
located after any sequence of divergent computations.
Therefore we define the two functions α` : ℘(Σ∝) −→ ℘(Σ)
and γ` : ℘(Σ) −→ ℘(Σ∝), where we abbreviate with Σ the
set Σ×∝:

α`(X) =
{
〈σκ−1, λ〉

∣∣ σ ∈ X ∧ λ ≤ |σ| < Sl(λ)
}

γ`(Y ) =
{
σ ∈ Σ∝

∣∣ 〈σκ−1, λ〉 ∈ Y ∧ λ ≤ |σ| < Sl(λ)
}

Dually we can define the maps αa : ℘(Σ∝) −→ ℘(Σ) and
γa : ℘(Σ) −→ ℘(Σ∝) as follows

αa(X) =
{
〈σ0, λ〉

∣∣ σ ∈ X ∧ λ ≤ |σ| < Sl(λ)
}

γa(Y ) =
{
σ ∈ Σ∝

∣∣ 〈σ0, λ〉 ∈ Y ∧ λ ≤ |σ| < Sl(λ)
}

Proposition 6.2. Under the previous hypothesis:

• 〈℘(Σ∝),⊆〉 →−→←−
α`

γ`

〈℘(Σ),⊆〉

• 〈℘(Σ∝),⊆〉 →−→←−
αa

γa

〈℘(Σ),⊆〉

The closure operators associated with the, respectively so
called, forward and backward λ-termination semantics are
the following functions:

ρ`(X)
def
= γ`α`(X) =

{
σ ∈ Σ∝

∣∣∣∣ ∃δ ∈ X . σκ−1 = δκ−1

λ ≤ |σ|, |δ| < Sl(λ)

}
ρa(X)

def
= γaαa(X) =

{
σ ∈ Σ∝

∣∣∣∣ ∃δ ∈ X . σ0 = δ0 ∧
λ ≤ |σ|, |δ| < Sl(λ)

}
where the ordinals are all limit and they are the biggest ones
less than the length of the considered traces. We denote with
τ` and τa respectively the domains ρ`(τ∝) and ρa(τ∝).
Note that τa generalizes the potential termination semantics
in [8], here defined for finite traces only.

6.2 Systematic construction ofD semantics
In this section we systematically derive the denotational

semantics D by refining the potential termination seman-
tics with respect to the input/output relations. This is
obtained by considering as refined domain the space of all
monotone functions between sets of states. The idea is to

approximate transfinite traces with input/output relations,
which are functions in the case of denotational semantics. In
this section we prove that this construction can be obtained
as the backward reduced power of the potential forward λ-
termination semantics. In this case the abstraction function
is given by construction: αD(X) = λY. α`(γ`(Y )_X).

Proposition 6.3.

〈℘(Σ∝),⊆〉 −→←−
αD

γD

〈℘(Σ) −→ ℘(Σ),v〉

where:

αD(X) = λY.

{
〈ηκ−1, λ1〉

∣∣∣∣ η ∈ X ∧ 〈η0, λ〉 ∈ Y
∧ λ1 ≤ λ+ |η| < Sl(λ1)

}
γD(f) =

{
σ ∈ Σ∝

∣∣∣∣ ∃λ . 〈σκ−1, λ
′〉 ∈ f(〈σ0, λ〉)

λ′ ≤ λ+ |σ| < Sl(λ
′)

}
The semantics obtained so far by reduced power construc-
tion models the space of functions on ℘(Σ) representing in-
put/output relations of states in transfinite traces. We de-
note by D∝

def
= αD(τ∝). The following theorem proves that

the denotational semantics in [8] corresponds precisely to
backward reduced power of potential forward λ-termination
semantics, by observing input/output functionalities of traces
whose length is at most ω.

Theorem 6.4. D = αD ◦ αR ◦ α∝ ◦ γD(D∝).

6.3 Systematic construction ofgWp semantics
The weakest precondition semantics can be obtained in

a similar way by dualizing the construction of the denota-
tional semantics. Duality here means exchanging the ob-
servation from the final to the initial state and reversing
the relative power operation. In this section we derive the
transfinite weakest precondition semantics as the forward
reduced power of the potential backward λ-termination se-
mantics. As before, the corresponding abstraction function
follows by construction. Let X ⊆ Σ∝, then by construction:
αW (X) = λY. αa(X_γa(Y )).

Proposition 6.5.

〈℘(Σ∝),⊆〉 −→←−
αW

γW

〈℘(Σ) −→ ℘(Σ),v〉

where:

αW (X) = λY.

{
〈η0, λ1〉

∣∣∣∣ η ∈ X ∧ 〈ηκ−1, λ〉 ∈ Y
∧ λ1 ≤ λ+ |η| < Sl(λ1)

}
γW (f) =

{
σ ∈ Σ∝

∣∣∣∣ ∃λ . 〈σ0, λ
′〉 ∈ f(〈σκ−1, λ〉)

λ′ ≤ λ+ |σ| < Sl(λ
′)

}
This semantics models the space of functions on ℘(Σ) rep-
resenting the largest set of states that may lead the possibly
transfinite computation in a given set of output states. We
denote by Wp∝

def
= αW (τ∝). The following theorem proves

that the weakest precondition semantics defined in [8] corre-
sponds precisely to reduced power of potential backward λ-
termination semantics, by observing the largest set of states
that reach a given output state in at most ω steps.

Theorem 6.6. gWp = αgWp ◦αD ◦αR ◦α∝ ◦ γW (Wp∝).

In Fig. 2 we show the transfinite semantics, here called
non-standard semantics, with respect to Cousot’s hierarchy
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Figure 2: Symmetrical standard and non-standard
semantics.

of standard semantics. The standard natural semantics is
here the “projection”, specified as an abstraction, of the
natural transfinite level through the pair of adjoint func-
tions α∝ and γ∝. With each natural transfinite semantics
τ∝, D∝, and Wp∝ and a given ordinal β ∈ O, it is possible
to specify symmetric approximate semantics observing com-
putations up to β (τ<β etc.) and observing computations
longer than β (τ<∝rτ<β etc.). It is easy to observe that
the standard angelic and infinite semantics can be obtained
by abstract interpretation and in particular:

τ<β = γ<β ◦ α<β(τ∝) and τ∝rτ<β = γ≥β ◦ α≥β(τ∝)

where

α<β(X) = X ∩ Σ<β α≥β(X) = X ∩ (Σ∝ r Σ<β)
γ<β(Y ) = Y ∪ (Σ∝ r Σ<β) γ≥β(Y ) = Y ∪ Σ<β .

Note that if β = ω, then τ<ω = τ+ and α∝(τ∝rτ<ω) = τω.
The remaining abstractions from the non-standard to the
standard hierarchy in Fig. 2, can be derived in a similar way
for all the semantics.

The equivalence between denotational and weakest pre-
condition semantics proved in [8] can be generalized to the
transfinite case. This follows directly by construction and
can be emphasized by considering the corresponding closure
operators. It is immediate to observe that the standard de-
notational semantics viewed as a closure operation on max-
imal traces is:

Den(X) = gWp(X) =

{
σ ∈ Σ+

∣∣∣∣ ∃δ ∈ X+ . δ0 = σ0

∧ δn−1 = σn−1

}
∪{

σ ∈ Σω
∣∣ ∃δ ∈ X r Σ+ . σ0 = δ0

}
As a consequence of Theorem 6.4 and 6.6, this semantics can
be obtained by applying the abstraction α∝ to the domains
τ`

_←− τ` and τa
_−→ τa, where γD ◦ αD def

= τ`
_←− τ` and

γW ◦ αW def
= τa

_−→ τa.

Proposition 6.7.

τ`
_←− τ` = τa

_−→ τa =

λX.

 σ ∈ Σ∝

∣∣∣∣∣∣
∃η ∈ X . ηκ−1 = σκ−1

η0 = σ0

∃λ′ . λ′ ≤ |η|, |σ| < Sl(λ
′)


Corollary 6.8.

Den = gWp = α∝ ◦ (τ`
_←− τ`) = α∝ ◦ (τa

_−→ τa).

Remark 6.9. It can be easily verified that, by inverting
the direction of the arrow in τ`

_←− τ`, we obtain the iden-
tity, namely it is immediate to prove that τ`

_−→ τ` = ι℘(Σ).
Intuitively this happens because the forward reduced power
of the forward λ-termination semantics encodes how a given
set X of concrete traces behaves when these are extended
with any possible trace ending in a given set of observable
states Y . Hence by observing the final states of these ex-
tended traces we get back Y . Instead, if we consider the
initial states in this construction we can observe the set of
initial states of concrete traces that will have final states in
Y . This is precisely Dijkstra’s weakest precondition seman-
tics gWp, as proved in Theorem 6.6. A similar reasoning
holds if we dualize τa

_−→ τa.

6.4 Optimal natural denotational semantics
Now we can prove that the transfinite denotational and

weakest precondition semantics obtained so far are respec-
tively the most abstract solutions of the abstract domain
equations:

X = τ` u (X
_←− X) and X = τa u (X

_−→ X)

This allows us to prove an optimality result for τ`
_←− τ`

and τa
_−→ τa with respect to the capability of observing

input/output relations of transfinite traces, namely we prove
that these semantics are the most abstract ones observing
τ` (resp. τa) and which are closed under

_←− (resp.
_−→).

Theorem 6.10.

• (τ`
_←− τ`)

_←− (τ`
_←− τ`) = τ`

_←− τ`

• (τa
_−→ τa)

_−→ (τa
_−→ τa) = τa

_−→ τa

We can conclude that the domain τ`
_←− τ` is the most

abstract solution of the equation X = τ`uX _←− X because
it is immediate that τ` v τ` _←− τ`. A similar result holds
for τa

_−→ τa with respect to X = τa u (X
_−→ X).

7. ANGELIC SEMANTICS
In this section we follow the construction given above in

order to systematically derive the angelic denotational and
Dijkstra’s weakest liberal precondition semantics by the for-
ward (resp. backward) reduced relative power of the back-
ward potential 0-termination semantics (resp. the forward
potential 0-termination semantics). It is worth noting that
the backward potential 0-termination semantics is the po-
tential termination semantics in [8]. The forward potential
0-termination semantics observes the final states of finite
traces. This semantics is built as abstraction of the natural
trace semantics, by using the functions α`? : ℘(Σ∞)→ ℘(Σ)
and γ`? : ℘(Σ)→ ℘(Σ∞) defined as follows:

α`?(X) =
{
σn−1

∣∣ σ ∈ X+
}

γ`?(Y ) =
{
σ ∈ Σ+

∣∣ σn−1 ∈ Y
}
∪ Σω



and constitute a Galois insertion. The corresponding closure
is given as follows:

ρ`?(X)
def
= γ`?α`?(X) =

{
σ ∈ Σ+

∣∣∣∣ ∃δ ∈ X+ .
δn−1 = σn−1

}
∪ Σω

In the following we will denote τ`? def
= ρ`?(τ∞).

Let αD
+

: ℘(Σ∞) −→ (℘(Σ) −→ ℘(Σ)) be the function

build by reduced power as αD
+

(X) = λY. α`?(γ`?(Y )_X)
which is λY.

{
σn−1

∣∣ σ ∈ X+ ∧ σ0 ∈ Y
}

.

Lemma 7.1. D+ ∼= αD
+

(τ∞).

We can characterize the angelic denotational semantics as
upper closure operator on the domain of finite and infinite
traces (see [8]):

AngD(X) =

{
σ ∈ Σ+

∣∣∣∣ ∃δ ∈ X+ . σ0 = δ0
∧ σn−1 = δn−1

}
∪ Σω

Theorem 7.2. AngD = τ`? _←− τ`?.

Similar results can be obtained for the weakest-liberal pre-
condition semantics by means of Cousot’s backward poten-
tial 0-termination semantics, i.e. Wlp = τa? _−→ τa?, where
τa? is the backward potential 0-termination semantics [8].
Due to the equivalence of angelic denotational and weakest-
liberal precondition semantics, we have:

τa? _−→ τa? = τ`? _←− τ`?

Similar results for optimality can be proved also in the an-
gelic case.

Theorem 7.3.

• (τ`? _←− τ`?)
_←− (τ`? _←− τ`?) = τ`? _←− τ`?

• (τa? _−→ τa?)
_−→ (τa? _−→ τa?) = τa? _−→ τa?

This fact says us that the denotational angelic (resp. weak-
est liberal precondition) semantics is the fixed point of a

refining process starting from τ`? (resp. τa?) by using
_←−

(resp.
_−→). So this semantics is the most abstract one which

observe the final states of finite traces and which is closed
as regards the functional relations between these states.

Remark 7.4. We wonder if τ`? _←− τ`? = τ`? u τa?

namely, if τ`? _←− τ`? is the most abstract closure opera-
tor which observe both the input and output states of finite
traces. It is easy to verify that τ`? _←− τ`? 6= τ`? u τa? and
in particular:

τ`? u τa? = (ρ`? u ρa?)(X) =

=

{
σ ∈ Σ+

∣∣∣∣ ∃δ, η ∈ X . σ0 = δ0
∧ σn−1 = ηn−1

}
∪ Σω

In this semantics we can note that the relation between input
and output of traces is not expressed. Indeed there are also
traces that don’t necessarily have the initial and final state
bounded by the fact that they belong to the same trace. In
τ`?u τa? we take the product of all the possible initial states
with all the possible final states of traces in X. It is clear
that τ`? _←− τ`? v τ`?u τa? namely that τ`? _←− τ`? is not
the most abstract semantics more concrete then both of τ`?

and of τa?.

8. COMPOSITIONALITY
The aim of this section is that of proving that both the

denotational semantics and the weakest precondition seman-
tics, seen as closures on the transfinite trace semantics, sat-
isfy the compositionality relation, namely they are both so-
lutions of the equation (Comp). Moreover we will see that
these semantics are optimal, namely they are the most ab-
stract semantics on ℘(Σ∝) for which this property holds.
For proving this fact we will use a result in [20].

Theorem 8.1. The most abstract solution on uco(C) of
the equation ρ(X_Y ) = ρ(ρ(X)_ρ(Y )) is

ρ = ρ u (ρ
_−→ ιC) u (ιC

_←− ρ) u ((ιC
_−→ ρ)

_←− ιC).

We prove that the closure τ`
_←− τ` = τa

_−→ τa is the
most abstract compositional semantics definable on the set
of transfinite traces, which includes respectively τ` and τa

as an abstract interpretation. In the following we will denote
simply with ι the closure ι℘(Σ∝), identity on ℘(Σ∝).

Lemma 8.2. Let ρ
def
= τ`

_←− τ`. Then ι
_−→ ρ = ρ =

ρ
_←− ι.

Hence, we can conclude that the desired result holds triv-
ially.

Theorem 8.3. The closure ρ
def
= τ`

_←− τ` is the most

abstract one defined on the domain ℘(Σ∝), solution of the
equation ρ(X_Y ) = ρ(ρ(X)_ρ(Y )).

The same result holds for the angelic semantics. In this case
we have:

Lemma 8.4. Let ρ
def
= τ`? _←− τ`? = τa? _−→ τa?. Then

ι
_−→ ρ = ρ = ρ

_←− ι.

The closure τ`? _←− τ`? = τa? _−→ τa? is therefore the most
abstract semantics defined on the domain ℘(Σ∞), which is
solution of the equation (Comp).

The fact that the equation (Comp) has solution on the
transfinite semantics says that we can slice programs with-
out loosing informations about the semantics and without
loosing consistency between the semantics of the hole pro-
gram and the semantics of its parts. Hence the fact that the
transfinite denotational semantics satisfies the equation

ρ(X_Y ) = ρ(ρ(X)_ρ(Y ))

says that this semantics is consistent with the relation vsl
described in Example 4.2 and therefore it is adequate for
program slicing.

Example 8.5. Consider the programs defined in Exam-
ple 4.2. Now we can define the transfinite denotational se-
mantics which observe the final state even after infinite com-
putations, denoted as [[·]].

[[P1]] :
x 7→ 0
i 7→ ω
y 7→ 0

[[P2]] :
x 7→ 0
w 7→ 1
y 7→ 0

[[P3]] :
x 7→ 0
y 7→ 0

In this way it is clear that the relations between the programs
semantics are:

[[P3]] vsem [[P1]] and [[P3]] vsem [[P2]]

exactly as we wanted, namely they are consistent with the ex-
isting “is-slice-of” relation between programs vsl, described
in Example 4.2.
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Figure 3: Semantics as abstract domain equations

9. CONCLUSION
We have shown a strong connection between the struc-

ture of relational abstract domains for program analysis and
compositionality of the underlying semantics. Both can be
systematically designed by solving the same abstract domain
equation by means of the same domain refinement: the re-
duced power operation (see [28] for an example of relational
abstract domains for program analysis as solutions of re-
cursive domain equations). These results provide an equa-
tional presentation of semantics and abstract domains for
program analysis in a unique formal setting. Fig. 3 shows
the structure of Cousot’s hierarchy of semantics as a hi-
erarchy of abstract domain equations. Here 	 is abstract
domain complementation [6], and it is applied to character-
ize the complementary nature of angelic and infinite seman-
tics as shown in [16]. Moreover both finite and transfinite
compositional semantics share the same structure, and this
allows us to provide consistent models for program manip-
ulation. It is worth noting that the algebraic properties of
program integration techniques (and therefore of program
slicing) are similar to the properties of reduced power which,
as we proved in this paper, is the basic operation to re-
fine any non-compositional semantics in order to make it
compositional. Therefore similar algebraic operators can be
used to model both syntactic manipulation techniques and
the corresponding compositional semantics. As observed in
[25], well-known algorithms for program integration, like the
Horowitz, Prins, and Reps’s algorithm (HPR), can be for-

mulated in terms of intuitionistic implication on the com-
plete Heyting algebra constructed on dependency graphs.
On the other side the reduced relative power operation ex-
ploits linear implications on a given quantale [20], which is
a generalization of complete Heyting algebras [21, 27]. The
analogy and the relation between these two constructions
deserves further research.
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