
Hiding Program Slices for Software Security
�

Xiangyu Zhang Rajiv Gupta
Department of Computer Science

The University of Arizona
Tucson, AZ 85721

Abstract

Given the high cost of producing software, development
of technology for prevention of software piracy is important
for the software industry. In this paper we present a novel
approach for preventing the creation of unauthorized copies
of software. Our approach splits software modules into
open and hidden components. The open components are in-
stalled (executed) on an unsecure machine while the hidden
components are installed (executed) on a secure machine.
We assume that while open components can be stolen, to
obtain a fully functioning copy of the software, the hidden
components must be recovered. We describe an algorithm
that constructs hidden components by slicing the original
software components. We argue that recovery of hidden
components constructed through slicing, in order to obtain
a fully functioning copy of the software, is a complex task.
We further develop security analysis to capture the complex-
ity of recovering hidden components. Finally we apply our
technique to several large Java programs to study the com-
plexity of recovering constructed hidden components and
to measure the runtime overhead introduced by splitting of
software into open and hidden components.

1. Introduction

Development of technology for the prevention of soft-
ware piracy is important for the software industry. The ad-
vent of mobile computing will only make the problem of
software piracy worse. In the future it will be common-
place for users to carry applications on a mobile computing
device. However, these applications would often be trans-
ferred and executed on remote compute servers that would
be part of the ubiquitous computing infrastructure in the fu-
ture. In light of the greatly improved computing power of
modern day processors, it is acceptable to expend a fraction
of this computing power on protecting software. The goal

�

Supported by a grant from IBM and National Science Foundation
grants CCR-0220262, CCR-0208756, CCR-0105535, and EIA-0080123
to the University of Arizona.

of this work is to develop an approach to prevent malicious
users of the software from creating fully functioning unau-
thorized copies of protected software.

We propose the development of a novel approach which
splits software modules into open and hidden components.
The open components can be installed and executed on
an unsecure machine while the hidden components are in-
stalled on a secure machine. While open components can be
stolen, they are incomplete (i.e., they only provide a subset
of an applications functionality). The hidden components
are constructed in a manner that causes a great deal of effort
to be required in finding the missing hidden components by
observing the code of the open component and its runtime
interactions with the hidden component. Let us consider a
couple of scenarios in which this approach can be used to
provide software protection.

Untrustworthy User. Consider a very common setting in
which a legally obtained software has been installed on
client machines of an organization so that it can be freely
used by all authorized users of the client machines within
the organization. In this setting our aim is to prevent these
authorized users from transferring the software to other ma-
chines outside the organization for unauthorized use. Typ-
ical solutions to preventing software piracy, namely using
a serial number or an authenticating key, are really not ap-
plicable in this scenario since software is being stolen by
an authorized user who already has access to such informa-
tion. However, our proposed approach is effective in this
scenario. While the open components are installed on the
client machines, the hidden components can be installed
on a secure device. For example, the hidden components
can be installed on a smart card if they are sufficiently light
weight and these secure smart cards can be issued to the
users. If the hidden components are heavy weight, they can
be installed on a secure server. The client machines must
interact with the secure smart card or server to provide fully
functioning software. In this scenario the theft of fully func-
tioning software is clearly prevented as users cannot steal
the hidden components.

Untrustworthy Server. While the above scenario is com-
mon place today, in the future we expect to encounter
the following scenario frequently. Users will carry mo-
bile devices which will host the applications used by the
user. When these applications are used, due to the lim-
ited computing ability, limited battery power, or commu-
nication bandwidth, the applications will be executed on re-
mote servers. The servers will be considered untrustwor-
thy and thus concern for piracy of software transferred to
these servers for execution will arise. To counter these con-
cerns our proposed approach is also effective. The hidden
components will be constructed to be light weight so that
they can be executed on the user’s mobile device while the
heavy weight open components can be transferred to remote
servers for execution. Again while theft of open compo-
nents is possible, the software is protected by preventing
the theft of hidden components.

Given the above overall idea of software splitting, the
key challenge of this work is to design a splitting transfor-
mation that simultaneously addresses two factors: robust-
ness of the partitioning in protecting software and cost of
splitting in terms of the runtime overhead it introduces. An
attack designed to pirate a copy of the split software must
find a way to predict contents of the hidden components
by observing their dynamic input output behavior. Thus,
the robustness of protection will depend upon the nature
of splitting transformation used. For creating hidden com-
ponents through splitting we employ program slicing tech-
niques as slices can be chosen such that they do not perform
a high level function that is easy to predict. The difficulty
of recovering hidden components is measured by the com-
putational complexity of attacks designed to recover hidden
components.

The cost of transformed modules is also an important
issue. There are two kinds of cost issues. The first type
of cost is the communication costs between open and hid-
den modules which are important to consider because the
hidden components will reside on a device that is different
from the machine on which open components execute. The
second cost issue arises due to the nature of the computing
device on which the modules execute. In the ”untrustwor-
thy user” scenario the hidden modules may be executed on
a smart card while in the ”untrustworthy server” scenario
the hidden modules execute on the user’s mobile device.
Thus, in these situations the hidden modules should be light
weight computations that involve light weight communica-
tion with the open modules. Our splitting algorithm restricts
the communication costs by placing restrictions on the type
of code that can be placed in hidden components and the
execution costs of hidden components by selecting a small
subset of modules for splitting.

The remainder of the paper is organized as follows. In
section 2 we motivate and present our splitting transforma-

tion based upon slicing. In section 3 we describe our ap-
proach for characterizing the degree of security provided
by a splitting transformation. In section 4 we present the re-
sults of applying the proposed methods to several large Java
programs. Related work is discussed in section 5. Conclu-
sions are given in section 6.

2. The Splitting Transformation

The basic principle behind our approach is to automat-
ically split critical software into two components for se-
curity: an open component and a hidden component. Let���������

denote the program’s runtime state
�

and code
�

.
The hidden component contains

�	��
��������
������
which

represents part of the program’s state as well as the code
that maintains that state. The open component contains��������
������������
������

which is the remainder of program’s
runtime state and code. The

��������
part represents additional

variables and new code respectively that implement interac-
tions between the components.

Unsecure
Machine

Secure
Machine/
Device

State CodeState Code

Component Component
Hidden Open

(a) Static mapping of a split module.

(b) Runtime state of a split module.

C−C’+cC’+cS’+s S−S’+s

Hidden
Component

Software Module

Component
Open

Figure 1. Software splitting.

The open component is installed locally on an unsecure
machine while the hidden component is installed on a se-
cure machine or device. The application is invoked through
an open component; however, the open component must
interact with the hidden component through remote proce-
dure calls to function correctly. While an adversary try-
ing to steal the software can copy the open components of
the software, he has no access to the hidden components.
Thus, to obtain a complete copy of fully functioning soft-
ware, an adversary must study the interactions between the
open and hidden components and attempt to construct the
missing hidden code.

Table 1. Opportunities for constructing hidden components from whole methods.

jfig jess bloat javac jasmin

Number of Methods 2987 1622 3839 1898 645
Self-contained Methods 21 6 35 16 7
Self-contained � 10 6 6 9 8 5
Excluding Initializers 0 0 1 8 3

2.1. Hiding Whole Modules

The most obvious approach for splitting a program into
its hidden and open components is to simply select one
or more complete modules and treat them as hidden com-
ponents. An approach that constructs hidden components
along programmer defined boundaries has a number of
problems. Since a module can be expected to perform a
coherent function, by examining the open part of the pro-
gram, an adversary may be able to guess the function that is
performed by the hidden module. For example, if function
pop() is removed from the implementation of a stack mod-
ule, by examining other functions that remain in the module
the adversary may be able to guess that pop() is missing.
Thus, the adversary may be able to create the functionality
provided by the hidden components.

Let us assume that the adversary cannot guess the func-
tionality of the module. In this case we still need to find
a suitable module for hiding. We examined several large
Java programs and examined the suitability of the methods
present in them for hiding. For this purpose we defined
the notion of a self-contained method. If the execution of
a method on a secure device can be carried out by simply
transferring a set of scalar values between the unsecure ma-
chine and the secure device, then we consider the method to
be self-contained. Note that a self-contained method may
access data that is not local to the method as such data
can be passed to the hidden component in form of addi-
tional parameters. On the other hand any method that in-
vokes other methods or operates on entire aggregates (e.g.,
arrays or other data structures) are considered not to be self-
contained. The motivation of this choice should be clear -
execution of self-contained functions on the secure device
involves simple low cost interaction between the unsecure
machine and the secure device.

As Table 1 shows, while each of the programs contain
a large number of methods, the number of self-contained
methods is quite small. If we further exclude small meth-
ods which contain no more than 10 Java byte code state-
ments, the number falls even further. Finally if we also ex-
clude methods that are simply initializers, as their behavior
can be easily learned by observing their interaction with the
open part of the program, the number of methods remain-
ing is very small. For jfig and jess there is not a single
method that is self-contained, is not an initializer, and is

made up of more than 10 byte codes. Thus, it is clear that
creating hidden components using entire methods is not a
practical strategy.

2.2. Hiding Module Slices

For software splitting to be truly effective, the problem
that must be solved is the splitting of the modules into open
and hidden components in such a way that the functional
behavior of the hidden components cannot be easily un-
derstood by examining the open components and tracing
their runtime interaction with hidden components. We pro-
pose the construction of hidden components out of program
slices such that their behavior cannot be easily understood.
A program slice is composed of three types of entities: vari-
ables, expressions and assignments, and control flow state-
ments. To understand why a program slice is a good can-
didate for forming a hidden component, let us see how the
complexity of the hidden component increases with the in-
clusion of each of the above three types of entities.

Variables. Consider the splitting of function f that takes a
subset of local variables belonging to f and creates a hid-
den component Hf which is responsible for maintaining the
values of these variables. The remainder of the function
performed by f forms the open component Of. We refer
to the variables whose values are maintained by the hidden
component as hidden variables. The variables in f that are
selected to be hidden variables are replaced by single vari-
able during the creation of Of. Interactions between Of and
Hf are introduced to perform two functions. When Of com-
putes a new value for a hidden variable � , the new value of �
is sent to Hf so that the value of � can be correctly updated.
When Of needs to use the value of � it receives the current
value of � from Hf.

By statically examining Of it is hard to determine how
many variables have been hidden in Hf as all references
to hidden variables are replaced by a single variable in Of.
However, through dynamic analysis the hidden components
can be quite easily recovered. The adversary can observe
the values being exchanged by Of and Hf over a period of
time and start relating definitions in Of with uses in Of. The
reason why this is possible is that the useful values returned
by Hf to Of are always sent to Hf by Of at an earlier point in
execution.

Expressions and Assignments. Since hiding variables
alone is not enough, a subset of statements (expressions
and assignments) that are involved in computing the values
of hidden variables are also moved to the hidden compo-
nent. The expressions and statements that are hidden in-
clude all those statements that belong to forward data slices
constructed by following data dependence edges originat-
ing at definitions of hidden variables. Even if a single local
variable from f is selected for hiding in Hf, additional vari-
ables may be fully or partially hidden in Hf.

Since, in addition to a number of variables being hidden,
the computation of their values is also hidden, the useful
values returned by Hf to Of are typically not identical to
the values received by Hf from Of at earlier points in ex-
ecution. Establishing relationship between these values is
difficult since it is not known how many variables are being
maintained by Hf and what is the form of expressions that
relate these values. One can generate guesses for the form
of the relationship and try to recover the precise relation-
ship by observing the values exchanged between Of and Hf.
The difficulty of this task depends upon the complexity of
relationships.

Control Flow. To further increase the complexity of re-
covering hidden components, we can also hide part of the
control flow in f by transferring control flow constructs, par-
tially or fully, to Hf. We propose to achieve such hiding by
moving the control ancestors of selected statements that be-
long to forward data slices of hidden variables. In particular,
control ancestors are hidden if doing so will simultaneously
introduce a control flow construct in the Hf and remove or
alter the control flow in Of. For example, if all the state-
ments that form a loop body are moved to Hf, then the en-
closing looping construct may be moved to Hf. If all state-
ments of an else clause have been moved to Hf, the predicate
can also be moved to introduce control flow in Hf. In addi-
tion, the control flow construct if-then-else is replaced by
construct if-then in Of.

While it may be reasonable to generate guesses for sim-
ple expressions that relate values sent to Hf by Of and val-
ues received by Of from Hf, if these relationships are made
more complex by involving control flow and branch condi-
tions, the task of recovering hidden components becomes
even more difficult.

From the above discussion we see that one can expect
that in general the complexity of recovering hidden com-
ponents can be quite high if they are constructed by tak-
ing slices of original modules. However, additional issue
of controlling the cost of splitting modules in terms of the
runtime overhead they introduce must also be addressed.

Function Selection. The number of functions that are se-
lected for splitting affects the overall cost. In some situa-

tions the software developer may identify the critical mod-
ules that must be protected. If such information is not avail-
able we propose the following strategy for selecting func-
tions for splitting. We construct the call graph for the pro-
gram and find a cut across the call graph. The functions that
are part of the cut are split. This approach guarantees that
during any execution at least some split function would be
executed. We can also give preference to splitting functions
that are not involved in direct or indirect recursion. The con-
sequence of choosing a non-recursive function f is that only
a single instance of Hf will exist at any time and thus the
storage required for execution of Hf can be allocated stati-
cally. If a recursive function is split, then multiple instances
of the function, and hence its hidden component, will exist
simultaneously. To distinguish between these instances, an
instance id is introduced so that only the open and hidden
components that correspond to each other interact.

To further ensure that the overhead of executing split
functions is not high, we restrict the selection of a function
f for splitting and the manner in which it is split as follows.

� In constructing a cut through the call graph we avoid
functions that are called from inside a loop. This re-
striction avoids splitting functions that are called re-
peatedly.

� No function calls made by f are hidden in Hf. If Hf
contains no function calls, then there will be no need to
replicate the environment in which the called functions
must execute.

� Finally only scalar variables local to f are considered
as candidate hidden variables, that is, aggregate data
structures such as arrays are not hidden in Hf. This re-
striction is made to limit the amount of storage needed
by the hidden components and the amount of commu-
nication between the open and hidden components.

Function Splitting Details. Let us assume that we have
selected a function f and a local variable v in f for splitting of
f. The hidden component Hf is constructed such that it con-
sists of a set of code fragments removed from f and each of
these fragments is identified by a unique label. The execu-
tion of statements placed in Hf is triggered by placing calls
in Of at points from where they are removed. The function
Hf has two parameters, a label id that identifies the state-
ments in Hf that needs to be executed and an array which
contains values from Of which are needed by Hf to perform
the computation. Hf also returns a single value which may
be the value needed by Of to continue execution. Below we
summarize the steps of generating Hf and Of from a given
function f.

Step 1 constructs the program slice Slice(f,v) starting from
the statements that define � .

Step 2 examines the statements in f and Slice(f,v) to deter-
mine the set of fully and partially hidden variables.

Step 3 examines each statement in Slice(f,v) and splits it
between Of and Hf. There are several cases that are
considered for a statement

��� ���� �
: (i) both

���
and� �

are placed in Hf; (ii) only the
���

is placed in Hf
because the

� �
is an entity that cannot be placed in Hf

(e.g., a function call); (iii) only the
� �

is placed in Hf
because the

���
variable cannot be placed in Hf (e.g., it

is an array reference); and (iv) neither
���

or
� �

can
be placed in Hf and thus the statement is simply left in
Of. When control flow is being transferred to Hf then
all statements belonging to the control flow construct
that are being transferred are moved as a single unit to
Hf.

Step 4 examines all statements that are not in Slice(f,v),
but contain a reference, definition or use, to a partially
transferred variable. If the variable on the

���
(say �)

is partially hidden, then the expression
� �

is evaluated
in Of and the new value of variable � is sent to Hf so
that it can be updated. If a partially hidden variable �
is referenced by the

� �
, then preceding the statement��� 	�
� �

in Of, a call to Hf is introduced to get the
value of � .

While we have discussed module splitting in context of
splitting a function f by hiding local variables of f in Hf,
our approach is more broadly applicable. Global program
variables can also be hidden in Hf. Simple modifications
to the above algorithm accomplish this task. We can se-
lect a global variable for hiding and then identify all state-
ments in each of the functions that refer to the global vari-
able. If a function meets the characteristics outlined earlier,
then slices starting from statements referring to the selected
global variable are computed for transfer to Hf. Thus, es-
sentially the algorithm described is applied to each of the
functions that refers to the selected global variable. On the
other hand, if the function does not meet the required char-
acteristics, it is not sliced. Instead corresponding to each
reference to the global variable, an appropriate call to a hid-
den function is made either to update the value of the global
variable on the hidden side or fetch its value for use in the
open side.

Our approach is also applicable to object oriented soft-
ware. Consider a class which contains data in form of class
fields and code in form of class methods. If we want to sim-
ply split a selected method, we can select one of its local
variables to initiate splitting. On the other hand, in order
to split the entire class into open and hidden components,
we can view the class fields as globals and class methods as
functions and apply the method for hiding global variables
described above. A simple modification to the above algo-
rithm is needed to handle multiple instances of the class that

may be created by the program. Every time a class instance
is created by the open component, a unique instance id is
assigned to this instance. A call to the server side is made
causing it to create a corresponding class instance which
contains the hidden class fields. In addition, this instance is
associated with the same instance id. Calls to Hm, where �
is a method, include the instance id so that the hidden com-
ponent located on the secure device can apply the hidden
part of the method to the appropriate class instance. Our
implementation of the proposed method, which is used in
experiments described later, has been carried for object ori-
ented programs written in Java.

An Example. The example in Fig. 2 illustrates our algo-
rithm. We perform splitting of function f by deciding to
transfer variable � to the hidden component Hf. We com-
pute the forward data slice of � which causes transfer of
several expressions and assignments to Hf. All expressions
and assignments that are moved to Hf must only involve ref-
erences to scalar variables. Thus, when we take a forward
transitive closure over data dependences originating at the
only definition of � , we terminate the slice at definitions of
array elements as we do not transfer array elements to Hf.
Once having identified the expressions and statements in � ’s
forward data slice we observe that all statements in the body
of the while loop have been included in the slice. Therefore,
we include the entire while loop in the slice and thus hide
the control flow associated with the loop. Similarly because
all statements in the then clause of the if-then-else statement
are included in the slice, we also include the branch condi-
tion in the slice.

The open and hidden components are then formed such
that all statements in the slice are moved to Hf and all re-
maining statements remain in Of. It should also be noted
that the transfer of the above statements causes additional
variables (, � , and

�� �) to be completely hidden in Hf as
all their definitions are included in the slice and thus also
moved to Hf. Calls to Hf are introduced in Of so that values
are sent back and forth as needed by the statements in the
two components. Note that in some cases, when Of calls
Hf, no value needs to be returned to Of. Thus, an arbitrary
value denoted as any is returned by Hf in this case.

3. Security Analysis

While the systems characterized in our motivating sce-
narios can be threatened in a number of ways and compro-
mised at a number of points, our objective is to address the
following threat. We would like to prevent an adversary
from obtaining a complete copy of the software by recover-
ing hidden components through observation of the runtime
behavior of the open components. While in general it can-
not be guaranteed that recovery of hidden components is

function f(�����)
int a, b, c, i, sum;

int w, x, y, z ����� ;
int[] A,[] B, ����� ;����������
	�����
������ ���������
�������� ������� � ����� ������
if (� ��!) then"#��� � 	������

else"#��$
	������
endif�����% � !&� �'"�� � �
�����(���)�
�����*�+�,-� ! �
while (

(/.'0
) do*�+),1��*�+),2� ((� (� � �

endwhile3)4 *�+),65
�����

endfunction

function Of(�����)
int c, t;

int w, x, y, z ����� ;
int[] A,[] B, ����� ;�����7 ��8:9 4 � 	<;= � ;?>A@�5B�
�����7 ��8:9 4 � � � ;C>ED
5B�
�������� 8:9 4 � � ;C>GFH5 � � ����� � I ������7 ��8:9 4 �);?	<;=� � ;=>GJH5B� I $
if (
7�K�K �

) then"#��$
	������7 ��8L9 4 � " � ;C>EMN5O�
endif�����% � !&� �P8L9 4 � � ;C>EQH5B� I �
�����7 ��8:9 4 � � ;C>ERN5O�
�����*�+),-� ! �7 ��8:9 4 � *�+), � ;C>ESH5
�����7 ��8:9 4 � 0 � ;C>ETH53U4 8L9 4 � � ;C>A@=VH5B� I W
�����

endfunction

int function Hf (int[] t, id)
static int a, b, c, i, sum;
switch id�����>A@ : �X��� 7 � !&� � 7 � �O� �YNZ 7 +)Y
[(�H[\);>ED : � ����� 7 � !&� ;YNZ 7 +)Y
[(�H[\);>GF : YNZ 7 +)Y
[(

���P�
);>GJ : if (

7 � !&� � ��!) then"#��� � 7 � �O� � 7 � $ � �
endifYNZ 7 +)Y
[(

4 7 � !&� � ��! 5=] !X^_�);>EM : "`� 7 � !&� �YNZ 7 +)Y
[(�H[\);> Q : YNZ 7 +)Y
[("�� �);>ER : (��� ;YNZ 7 +)Y
[(�H[\);>GS : *�+),-� 7 � !&� �YNZ 7 +)Y
[(�H[\);>GT : while (
(a. 7 � !&�

)*�+),b��*�+),2� (�(� (� � �
endwhileYNZ 7 +)Y
[(�H[\);>A@=V : YNZ 7 +)Y
[(*�+�,);�����

endswitch
endfunction

Figure 2. Splitting of function c initiated with slicing of variable � . The boxed statements in c form
the slice. The execution of statements in the slice is partially or fully performed by dec .

impossible to achieve, we can characterize the complexity
of the effort required to recover hidden components.

We present a characterization of the complexity of hid-
den components which directly effects the complexity of
the task of recovering hidden components. The recovery of
a hidden component amounts to recovery of individual code
fragments that make up the hidden component. To under-
stand how these code fragments may be recovered, we first
identify the information that can be collected to character-
ize their dynamic behavior. Each time the hidden compo-
nent returns a value to the open component, it potentially
provides some information on its behavior. In particular, if
the hidden component returns a value that is used by the
open component in its computations, the value should be
collected for use in a procedure for recovering the hidden
code. For example, if the hidden code that computes the re-
turned value is a linear expression, linear regression may be
employed to identify the code using the colleced values.

We define the notion of information leak point (ILP) to
collect dynamic information on a hidden component. An

ILP is a point in the open component at which part of the
state of the hidden component is revealed. Thus, ILPs cor-
respond to points in a open component at which values are
returned by the hidden component for use in future com-
putations by the open component. Such values are referred
to as leaked values. The example in Fig. 2 contains four
ILPs marked as fhg , fji , fGk , and fGl in the open component.
Note that at all other calls to hidden component return use-
less values. The values returned at ILPs are dependent upon
values of variables whose values are passed from the open
to hidden components. Thus, identifying the hidden code
that computes values leaked at a specfic ILP requires relat-
ing the values of the above mentioned variables with the
values returned at the ILP point. If each of the ILPs are bro-
ken, i.e. the computations that they represent are recovered,
we consider the hidden component as being recovered.

The complexity of recovering the code corresponding to
each ILP can be characterized in terms of the complexity
of the code itself. We characterize the code complexity in
terms of its arithmetic and control flow complexities.

Arithmetic Complexity. Let us consider a path � in an
open component along which an ILP is encountered. The
arithmetic complexity of the function that relates the value
returned at ILP point with variable values that are observ-
able in the open component is one measure of the complex-
ity of the code in the hidden component. A value is observ-
able in the open component either because it is the result of
a computation in the open component or it is leaked to the
open component by the hidden component. Thus, given a
leaked value

�
��� c ������ �	� �
�� � � �
 � � � ��
 � �
� �

we characterize the arithmetic complexity of c ������ , denoted
by � ��� c ������ � , by a triple of the form

�������
 ����� � ��� �����
 � �!
�
#"%$

In the above triple �#���
 is one of the following: Constant ifc ������ is a compile-time constant; Linear if c ������ is a linear
expression; Polynomial if c ����&� is a polynomial; Rational
if c ������ is a rational whose quotients are polynomials; and
Arbitrary if c ����&� involves arithmetically more complex op-
erators (e.g., exponential, log, mod) or non-arithmetic oper-
ators (e.g., boolean, relational). The

��� � ��� is the number
of variables in the open component whose values are used
by c ����&� and

�'
(� �!
�

is the highest degree polynomial in-

volved in c ����&� in case the �#���
 is not arbitrary.
Above we have defined the arithmetic complexity for an

ILP with respect to a single path. We define the overall
complexity of an ILP across all paths as the maximum arith-
metic complexity observed across all paths, i.e.

� ��� c ���&� � �*)+�#,-!� � � ��� c ������ � �
where the)+�#, is defined according to the partial order�.��� � � �/��021 � �3
 � �40 � � � � �3� � � � � 065 � � � ��� � � 0
� � � � � � � � .

Control Flow Complexity. Control flow is also a major
contributor to the complexity of the code corresponding to
an ILP. Code involving multiple paths is more complicated
to recover than straight line code. If the predicates that
distinguish between the paths are hidden and/or the con-
trol flow itself is hidden (i.e., they are present in the hidden
component but not in the open component) it makes the task
of recovery even more complex. Thus, we characterize the
control flow complexity of an ILP, denoted as

����� c ����� �
by the following triple:

� � � � � �� � ��
� � � � �7
 ���8 � ��9:"

where � � � � is the number of paths specified as constant
or a runtime variable, � �!
� � � � �7
 may be all open or some
may be hidden, and

8 � ��9
may be entirely open or par-

tially/fully hidden.

Example of ILP Complexity Characterization. Given the
above characterization of ILP complexity, the complexities
of the three ILPs in Fig.2 are as follows:

fhgc ����� � � g;� � �<9 � g;� k � � � �<9 � g
� ��� c ���&� � � � 1 � �3
 � � � k � g "

����� c ����� � � � � ��� � � �/� � �����*"

fjic ����� � � " g�=
� ��� c ����� � � � � � � � � � � � � g ���+"
����� c ����� � � � � ��� � � �/� � �����*"

fEkc�>@?BA�C����� � ��� g;� � � �D9 � k ��E � � �D9
c�F3G �&H C����� � ��� g

� ��� c ����� � � � � � � � �3� � � � � � k � i "
����� c ����� � � � �I��� (� � �/� � � � JK
���� � � KK
(�L"

fGl
c ����� � �� � � M(N/OP

QSR3T�U�V3W �
� ��� c ����� � � � � � � � �3� � � � � � l � i "

����� c ����� � � �
� � � � � �
 � � � JK
���� � � JK
��X"

Algorithm for Estimating ILP Complexity. An algo-
rithm for automatically computing the complexities of ILPs
should be useful for choosing between splitting alternatives.
While the computation of control flow complexity for an
ILP is straightforward, the computation of arithmetic com-
plexity requires some discussion. In our definition of arith-
metic complexity we consider each relevant path � and de-
rive precise arithmetic expression for an c ����� along the
path. In practice, due to the presence of loops and con-
ditionals, considering each path is not realistic. Therefore
we develop a simple algorithm which, under the assump-
tion that no symbolic evaluation is performed to derive pre-
cise expressions, computes a conservative estimate (lower
bound) for � ��� c ����� � without deriving precise expressions
for c ����� along different paths.

The detailed algorithm and an example illustrating it is
given in Fig. 3. The example is a slightly modified version
of the example in Fig. 2. The algorithm operates by prop-
agating arithmetic complexities along def-use edges. Itera-
tive analysis is needed due to loops in the data dependence
graph created by loop carried data dependences. Given a
statement �Y�
 � � , the arithmetic complexity of � is com-
puted by function Z\[\� 1

that examines

 � � . The propa-

gated arithmetic complexity of � to its uses varies. First if
� ’s value is observable constant or variable, the propagated
arithmetic complexity is set to Constant or Linear respec-
tively. This value is further adjusted if � ’s value is prop-

Definitions:�
is observable at ��� � �����
	 iff either

�
is assigned in the open component or � is hidden but

�
’s

value at � is definitely leaked at a later use of
�

at � (we set � �������������� �����������! � �)."�# � � � ���! - arithmetic complexity of definition of variable
�

by statement � ."�# ��� � ���$ - arithmetic complexity of use of variable
�

by statement � .%'& " �(� ���
	 - computes arithmetic complexity of expression ���
	 based upon the operator used by ���
	
and arithmetic complexities of operands used by ���
	 .) # � � � ����*,+-� � ���! - arithmetic complexity of variable

�
’s value propagated along def-use edge �!*�./� .0
1 ��2 �3�4 - arithmetic expression for number of loop iterations of loop nest � in terms of observable values.5 " 0�67% �) # + 0
1 ��2 �3�8 9 - adjusts

) #
, the propagated complexity of a variable, when its value is propagated

from inside a loop nest � to a use outside the loop nest � . This adjustment is made based upon
the arithmetic complexity of

"�# � 0
1 ��2 �3�4 9 .
Iteratively Compute:

Given statement �:� ;��<8=>	�?"�# � �A@ ���! � %B& " �C� <D=E	�? "�# ���GFE���! � H 0�IJAKMLON9PRQTS,U VTN9P�Q
W) # � � FE���R*,+9�GF>���!
) # � � FE��� * +-�GFE���$ � XZY # = �$� 1 � 1 +\[]+\[� ^ ��< * � � �_ � �(1 � * ^`� =�< � ��2 � �<O_a�(� �b?O= �!� 1 � 1Y ��^,� ���2 +\[]+O[� �c_ � � ^ ��< * � � �_ � �(1 � * ^`� =�< � ��2 � �<_d�(< � 1 � �2�e ^3�Gf"�# � � F>��� * = 19g ��2�h ^`� �) # � � FE����*`+-�GFE���$ � 5 " 0�67% �) # � � F9����*3+i�GFE���$ >+ 0
1 ��2 �3�4 9 , if loop nest � must be exited for flow of

of value along def-use edge � � FE��� * +-�GFO���!
Output:

Given an ILP at statement � , 0 �)kj , where value of ���
	 is leaked
if ���
	 is

�
st � �������������� ����� � �]�c is � � � �����
	 *

then
"�# � 0 �) � "�# � �c��	 *

else
"�# � 0 �) � "�# � ���
	 endif

function f(l\l\l)
int a, b, sum, i;

int w, x, y, l\l\l ;
int[] A,[] B, l\l\l ;l\l\l;monT�BpqeGrl\l\l<(ms��Bpthbrl\l\l"Bu

b-1 v m l\l\l r wMxl\l\ly u z v mq{|r w }l\l\l�\��~ ms��'pqeGrl\l\l^ m z r
while (^ Y e)�\��~ m �\��~ p ^^ m ^ p�x
endwhilef�� sum w nl\l\l

endfunction

������

������

	
����

��������

��������

���������

�����

����������

������

��� � � �

�������� !"#

�� �$���� ����$%�&&���$���� %�� &��$����

�

'

�

���(��$��)�

&�����

Inputs:
"�# � e � "�# � � � "�# � h � Y ��^3� ���2 + x + x �

Statements:
"�# � ��� ��^ � z � Y ?O= �$� 1 � 1 +�[]+O[� ;"�# � ��� ��^ � ^ p�x � Y ?>= �!� 1 � 1 +O[]+\[� ;"�# � �A@ � ;��n��Bp�e � Y ��^3� ���2 + } + x � ;"�# � � j VT� �]����~ ����'pqe � Y) =�_de � = ~�^ �_ + n + } � ;"�# � � j VT� �]����~ � ����~ p ^` � Y) =�_�e � = ~�^ �_ + n + } � ;"�# � � FE� <(����'pqh � Y) =�_�e � = ~�^ �_ + n + } � ;

ILPs: w x "�# � ���E���A� � Y) =T_de � = ~�^ �_ + n + } �w } "�# � ���E����� � "�# � n��'p�e � Y ��^3� ���2 + } + x �w n "�# � � �E����� � Y) =T_de � = ~�^ �_ + n + } �

Figure 3. Estimating arithmetic complexity.

agated from inside a loop to outside the loop by
5 � � � Z

based upon the arithmetic complexity of expression corre-
sponding to number of loop iterations. Thus, only if the
value of � is not observable, and it is not being propagated
along an edge from the inside of a loop to the outside, the
propagated arithmetic complexity is same as the arithmetic
complexity of � .

It should be noted that sometimes the value of � can be
observable even though �L�
 � � is hidden because it may
be leaked at a use of � . If there is a use of � , say

� �
��
, in the

open component such that every time this use is executed,
we can conclude with certainty that the value of � at

� (
 �
came from a specific hidden definition of � , say � �
 � � ,
then we say that

� �
 �
definitely leaks the hidden definition

�X�
 � � . In the example shown in Fig. 3, the hidden def-
inition of � by statement � � k � � � is definitely leaked
by the use of � in

��� =��/� � . Finally, although not shown in
the algorithm, in addition to arithmetic complexity Type, the
identities of the variables and their degrees are also propa-
gated along the edges. The latter are needed to compute the
number of Inputs and the Degree components of arithmetic
complexity.

Practical Limitations of Automated Recovery. Let us as-
sume that no control flow is involved and thus breaking
an ILP strictly requires recovery of a straightline code seg-
ment. Linear regression [12], polynomial interpolation [17],
and rational interpolation [10] are known techniques that
can be applied to recover a c ����� of the corresponding arith-
metic complexity. However, as far as we know, there are no
automatic methods that can recover an arbitrary type c ����� .
Even when existing techniques are applicable the following
difficulties must be overcome to recover c ����� . First the ad-
versary does not know the complexity of hidden code and
hence he must try all of the above techniques. Second de-
pending upon the number of inputs involved and the degree
of the polynomials, a large number of input output pairs
for the c ����� may be needed to recover the code. Third,
even though c ����� may actually be dependent upon a small
number of variables, the adversary must assume that it is
dependent upon all the variables whose values are sent to
the hidden component from the open component.

If control flow is present, the application of above tech-
niques becomes much more complex. While a large num-
ber of input output pairs may be available, these pairs must
be divided into subgroups corresponding to different paths
as different paths may correspond to different computations
[16]. Since the adversary does not know how many paths
must be considered, as some of the predicates and the con-
trol flow they form may be hidden, it is not known how
many categories are there. Thus, it is unclear how this path
based categorization can be achieved.

4. Experimental Results

We have implemented our technique in context of Java
programs. To implement our technique we have made use
of the bloat [19] facility from Purdue which provides
the basic infrastructure for analyzing and transforming Java
programs. Our experiments are based upon the following
Java programs:

jess - Rule engine and scripting environment [18].
bloat - Java optimizer written entirely in Java [19].
javac - Java compiler J2SDK 1.4.0 01 [20].
jasmin - Java assembler interface [21].
jfig - 2D graphics editor [22].

For the purpose of these experiments, we initiate the pro-
posed splitting algorithm with respect to a single local vari-
able belonging to each method selected for splitting. This
variable is selected to be the one which creates an ILP with
the highest maximum arithmetic complexity across all ILPs
created by different local variables. The characteristics of
the splitting performed in terms of the number of methods
chosen for splitting, total number of statements in the con-
structed slices, and the number of ILPs present after split-
ting are given in Table. 2. Next we characterize the com-
plexities of ILPs and measure the runtime overhead intro-
duced by our approach.

4.1. Complexity of ILPs

Tables 3 and 4 respectively summarize the arithmetic and
control flow complexities of the ILPs present. As we can
see, most of the ILPs are classified as linear or arbitrary.
Due to the nature of the first four programs, most of the hid-
den computations were linear in nature. Since jfig con-
tains many more arithmetic computations, it does contain
many polynomial and rational hidden computations. More-
over, since many predicates were hidden in all programs,
a significant number of ILPs were classified as arbitrary.
The number of inputs on which ILPs depend was found to
be small and so were the degree of the polynomials. In case
of the javac program, entire loops were hidden. Thus,
the number of inputs is listed as varying as it was depen-
dent upon number of loop iterations – in each iteration a
different array element was being sent to the hidden side.
For the same reason the number of paths in the hidden code
corresponding to some ILPs was variable. In general from
Table 4 we can see that the control flow complexity is quite
high as numerous ILPs depend upon hidden predicates and
hidden control flow.

4.2. Runtime Overhead

We conducted an experiment to measure the runtime
overhead of using splitting. The splitting was performed

Table 2. Split characteristics.

Benchmark Number of
Methods Sliced Statements in Slice ILPs

javac 7 168 67
jess 11 192 57

jasmin 6 47 31
bloat 16 161 99
jfig 17 583 160

Table 3. Arithmetic complexity of ILPs.

Benchmark Number of ILPs with Type Inputs Degree
Constant Linear Polynomial Rational Arbitrary (maximum) (maximum)

javac 5 38 1 0 23 varying 2
jess 8 13 2 0 34 4 2

jasmin 3 15 1 0 12 4 2
bloat 25 22 12 0 40 5 2
jfig 8 62 23 31 36 7 6

Table 4. Control flow complexity of ILPs.

Benchmark Number of ILPs with
Paths = variable Predicates = hidden Flow = hidden

javac 3 42 35
jess 0 28 16

jasmin 0 16 12
bloat 0 63 49
jfig 15 105 63

Table 5. Runtime overhead caused by software splitting.

Benchmark Input Size Component Runtime % Increase
Interactions Before . After

javac 33K 875 2.13 . 3.37 sec 58%
355K 4642 7.91 . 11.27 sec 43%

jess dilemma (5K) 51 0.82 . 1.07 sec 31%
fullmab (12K) 813 5.39 . 6.11 sec 13%

hard (.5K) 11 5.53 . 5.67 sec 3%
stack (2K) 63 0.78 . 1.05 sec 35%

wordgame (5K) 48 8.55 . 8.83 sec 3%
zebra (7K) 143 2.67 . 3.16 sec 18%

jasmin small (124K) 117 1.14 . 1.27 sec 14%
bloat

K @ W
161smin.jar (149k) 73 22.93 . 23.87 sec 4%

jess.jar(290k) 41 79.29 . 82.53 sec 4%
(1) Since bloat is a library, an optimizer based upon bloat was used to carry out the experiments.

under the guidelines and restrictions described earlier in the
paper. We generated the open and hidden components and
ran them on two separate linux based machines that commu-
nicated over the local area network. The results of executing
the programs after splitting on various inputs are summa-
rized in Table 5. No data was collected for jfig as it is an
interactive application and thus small changes in execution
time have little consequence. While there were many inter-
actions between the open and hidden components, the run-
time overhead is reasonable and comparable to overheads
reported for other techniques by researchers. For example,
guards introduced in [2] for making software tamper resis-
tant increase execution times by 6% to 32.2%. The obfusca-
tion transformations introduced in [8] for flattening existing
control flow and introduce new control flow when applied to
50% of the program can increase execution time by a factor
of 4 (of course, the overhead would be lower if the transfor-
mations are applied less frequently). Other works that we
have studied do not report overhead costs.

5. Related Work
The techniques for software protection can be broadly

classified as follows. First we have techniques that prevent
or discourage software piracy, i.e. they are aimed at pre-
venting the creation of illegal copies of the software. Sec-
ond there are techniques for making software tamper re-
sistant. Assuming that a user has access to the software,
even legally, he or she may try to tamper with it to remove
authentication code so that it can be freely distributed for
illegal use. Third, assuming that the software has been tam-
pered with, modified, and distributed illegally to users, wa-
termarking is used by the producer of the software to iden-
tify illegal copies of the software. Code obfuscation trans-
formations are employed to hide a watermark or tamper re-
sistance code embedded in the software so that it cannot be
easily detected and removed from the software.

This work is aimed at preventing software piracy, i.e.
preventing creation of illegal copies of the software. While
a legal user can make copies of the open components and
tamper with them, security comes from not being able to
supply hidden components, i.e. while tampering is possible
it does not lead to obtaining a working copy of the software
that can be distributed for illegal use. Below we describe
some specific related works.

Software piracy. Our approach for prevention of soft-
ware piracy through application splitting appears to be clos-
est to work being pursued at Netquatrz [1]. However, their
work is not publicly available and thus a detailed compari-
son is not possible. In [6] an approach is described that uses
values generated by an Electronic Security Device (ESD)
that is attached to the serial port of the machine to encrypt
and/or decrypt user data. Pseudocode is used to implement
protection functions including encryption and decryption of

user data. Together with the pseudocode, a corresponding
pseudocode interpreter is also embedded within the appli-
cation. An obfuscation tool is used to hide the interpreter.
It is claimed that it can take months of effort to break this
method. In [11] software updates are exploited to carry out
the function of protection against software piracy. User is
forced to obtain upgrades which alter the format of the re-
sult data produced by the software. If the user does not ob-
tain these upgrades, the data produced by the updated soft-
ware cannot be read by the outdated copies of the software.
Thus, sharing of data among the users is no longer possible.
The weakness of this approach is that users that do not want
to share data can continue to use the software.

Tamper resistant software. In [2] a network of security
units, called guards, work together to detect changes to the
binary. The guards essentially perform checksums on parts
of the binary to detect if the software has been modified.
By including multiple guards the task of detecting and re-
moving the guards is made complex and hence protection
against code modification is provided. The guards intro-
duced are small and thus the runtime cost and code size
increase due to them is very small. Another approach de-
scribed in [7] provides a mechanism that redundantly tests
for changes in the executable code, as it is running, and re-
ports modifications. The above methods do not provide pro-
tection against software piracy to the extent that the method
we have proposed does.

Software watermarking and code obfuscation. Software
watermarks [5] can be introduced in the software and ren-
dered highly undetectable through code obfuscation trans-
formations [3, 4, 8]. Code obfuscation can also be used to
prevent reverse engineering of the software. In [8] the trans-
formations employed flatten the control flow that is present
in the original program and introduce new control flow in
code segments that were originally straightline code seg-
ments. Aliases are also introduced systematically. For ex-
ample, control flow transfers are performed through indirect
addressing carried out through aliased pointers. The over-
head of obfuscation techniques can be significant both in
terms of code size increase and execution time overhead.
While our approach does more than obfuscation, as it pre-
vents illegal copying of software, we argue that hiding part
of the software is an effective way to obfuscate the software.

Encryption Function. Sander and Tschudin [14, 15, 13]
proposed the concept of an encrypted function. They apply
a homomorphic cryptosystem to protect the mobile code.
This method protects computations of polynomials by en-
crypting constants and transforming code to produce output
in encrypted form. In contrast our approach is applicable to
more general computations such as non-polynomial compu-
tations involving complex control flow.

6. Conclusions

We presented a novel approach for protecting software
from being stolen. By splitting software modules into
open and hidden components, we ensure that an adversary
cannot steal the entire software. Given that the adversary
cannot steal the hidden components, he or she must
construct these components by observing their runtime
interaction with open components. Only by constructing
the hidden components can a working pirated copy of the
software be constructed. However, we construct the hidden
components such that they are hard to identify because they
are formed through program slices whose function is hard
to determine. The hidden components contain both a part
of original program’s runtime state and part of its code. The
number of variables that form the hidden state and the re-
lationships among the values as defined by the hidden code
are both unknown to an adversary. Thus, it is not possible
to easily determine the functions performed by the hidden
functions so constructed. We demonstrated that while a
simple approach to splitting that hides entire modules is
not practical, our approach based upon hiding slices is very
effective. Moreover by carefully forming and selecting the
hidden components we keep the runtime overhead interac-
tions between open and hidden components reasonably low.

Acknowledgements. We are grateful to Michael Smith and
anonymous reviewers for their feedback. Their comments
were very helpful in revising the contents and presentation
of the material.

References

[1] Asymmetric Application Segmentation: A New Technology
Paradigm for Software Licensing - http://www.netquartz.com.

[2] H. Chang and M.J. Atallah, “Protecting Software Code By
Guards,” ACM Workshop on Security and Privacy in Digi-
tal Rights Management, Philadelphia, Pennsylvania, November
2001

[3] C. Collberg, C. Thomborson, and D. Low, “Breaking Abstrac-
tions and Unstructuring Data Structures,” IEEE International
Conference on Computer Languages, Chicago, IL, 1998.

[4] C. Collberg, C. Thomborson, and D. Low, “Manufactur-
ing Cheap, Resilient, and Stealthy Opaque Constructs,” ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, San Diego, CA, 1998.

[5] C. Collberg and C. Thomborson, “Software Watermarking:
Models and Dynamic Embeddings,” ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, San An-
tonio, TX, 1999.

[6] M.J. Granger, C.E. Smith, and M.I. Hoffman, “Use of Pseu-
docode to Protect Software from Unauthorized Use,” United
States Patent 6,334,189 B1 12/25/2001.

[7] B. Horne, L. Matheson, C. Sheehan, and R. Tarjan, “Dynamic
Self-Checking Techniques for Improved Tamper Resistance,”
ACM Workshop on Security and Privacy in Digital Rights Man-
agement, Philadelphia, Pennsylvania, November 2001

[8] C. Wang, J. Davidson, J. Hill, and J. Knight, “Protection
of Software-based Survivability Mechanisms,” International
Conference of Dependable Systems and Networks, Goteborg,
Sweden, July 2001.

[9] M.J. Granger, C.E. Smith, and M.I. Hoffman, “Use of Pseu-
docode to Protect Software from Unauthorized Use,” United
States Patent 6,334,189 B1 12/25/2001.

[10] D. Grigoriev, M. Karpinski, and M. Singer, “Computational
Complexity of Sparse Rational Interpolation,” SIAM Journal
on Computing, Vol. 23, No. 1, pages 1-11, 1994.

[11] M. Jakobsson and M. Reiter, “Discouraging Software Piracy
Using Software Aging,” ACM Workshop on Security and Pri-
vacy in Digital Rights Management, Philadelphia, Pennsylva-
nia, November 2001.

[12] D.C. Montgomery et al., Introduction to Linear Regression
Analysis, Wiley, New York, 2001.

[13] T. Sander and C.F. Tschudin, “On Software Protection
Via Function Hiding”, Proceedings of Information Hiding,
Springer-Verlag, LNCS 1525, pages 111-123. Berkeley, CA,
1998.

[14] T. Sander and C. Tschudin, “Protecting Mobile Agents
Against Malicious Hosts”, In G. Vigna (ed.) Mobile Agents and
Security, LNCS, Feb. 1998.

[15] T. Sander and Christian F. Tschudin, “Towards Mobile Cryp-
tography”, IEEE Symposium on Security and Privacy, pages
215-224, May 1998.

[16] A. Sigal, R. Lipton, R. Rubinfield, and M. Sudan, “Recon-
structing Algebraic Functions From Mixed Data,” SIAM Jour-
nal on Computing, Vol. 28, No. 2, pages 488-511, 1999.

[17] R.E. Zippel, “Interpolating Polynomials From Their Values,”
Journal of Symbolic Computation, Vol. 9, pages 375-403, 1990.

[18] jess - http://herzberg.ca.sandia.gov/jess.

[19] bloat - http://www.cs.purdue.edu/s3/projects/bloat.

[20] javac - http://java.sun.com.

[21] jasmin - http://mrl.nyu.edu/ � meyer/jasmin.

[22] jfig-http://tech-www.informatik.uni-
hamburg.de/applets/javafig/index.html.

