
Zero-Knowledge and Code Obfuscation

Satoshi Hada

Tokyo Research Laboratory, IBM Research,
1623-14, Shimotsuruma, Yamato, Kanagawa 242-8502, Japan.

satoshih@jp.ibm.com

Abstract. In this paper, we investigate the gap between auxiliary-input
zero-knowledge (AIZK) and blackbox-simulation zero-knowledge (BSZK).
It is an interesting open problem whether or not there exists a proto-
col which achieves AIZK, but not BSZK. We show that the existence of
such a protocol is closely related to the existence of secure code obfus-
cators. A code obfuscator is used to convert a code into an equivalent
one that is difficult to reverse-engineer. This paper provides security def-
initions of code obfuscation. By their definitions, it is easy to see that
the existence of the gap implies the existence of a cheating verifier such
that it is impossible to obfuscate any code of it. Intuitively, this means
that it is possible to reverse-engineer any code of such a cheating ver-
ifier. Furthermore, we consider the actual behavior of such a cheating
verifier. In order to do so, we focus on two special cases in which the
gap exists: (1) there exists a constant round public-coin AIZK interac-
tive argument for a language outside of BPP. (2) there exists a 3-round
secret-coin AIZK interactive argument for a language outside of BPP.
In the former case, we show that it is impossible to securely obfuscate
a code of a cheating verifier behaving as a pseudorandom function. A
similar result is shown also in the latter case. Our results imply that any
construction of constant round public-coin or 3-round secret-coin AIZK
arguments for non-trivial languages essentially requires a computational
assumption with a reverse-engineering property.

Keywords: Zero-knowledge, code obfuscation, reverse-engineering, interactive
proof, interactive argument.

1 Introduction

In this paper, we investigate the gap between two definitions of zero-knowledge
(ZK): auxiliary-input zero-knowledge and blackbox-simulation zero-knowledge.
We will show that the gap is closely related to code obfuscation.

1.1 Zero-Knowledge

ZK is one of the most important notions in modern cryptography. The original
definition of ZK, which we call GMR-ZK, is given in [GMR85] as follows: For

T. Okamoto (Ed.): ASIACRYPT2000, LNCS 1976, pp. 443–457, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

444 Satoshi Hada

any probabilistic polynomial-time (PPT) cheating verifier, there exists a PPT
machine (called the simulator) which simulates the interaction, i.e., produces
a probability distribution which is computationally indistinguishable from the
distribution of the real interaction between the prover and the cheating veri-
fier. This definition is not suitable for cryptographic applications since it is not
closed under sequential composition [GoKr96]. In cryptographic applications, the
cheating verifier may have some additional a-priori information. However, GMR-
ZK did not deal with this stronger verifier. In order to overcome this problem,
Goldreich and Oren introduced an alternative definition called auxiliary-input
zero-knowledge (AIZK) [GoOr94]. AIZK is a stronger formulation in which the
simulation requirement is extended to deal with stronger (non-uniform) verifiers,
namely, verifiers with some additional a-priori information. They showed that
AIZK is closed under sequential composition.
The above two definitions only require that, for each cheating verifier, there

exists a simulator. That is, in both definitions, the simulator is allowed to ex-
amine the internal state of the cheating verifier. On the other hand, blackbox-
simulation zero-knowledge (BSZK) requires that the existence of a single univer-
sal simulator which uses any non-uniform cheating verifier as a blackbox to sim-
ulate the interaction. That is, the simulator is only allowed to simply observe the
input/output behavior of the cheating verifier. BSZK is most restrictive among
three definitions. Nevertheless, almost all known ZK protocols are BSZK 1. It
is an interesting open problem whether there exists a protocol which achieves
AIZK, but not BSZK.

1.2 Code Obfuscation

Given a code, how can we make it hard to reverse-engineer it ? This is one
of major open problems concerning computer practice. Code obfuscation is the
most viable method for preventing reverse-engineering. There are many heuristic
and ad-hoc obfuscation techniques for particular programming languages such
as C, C++, Java and so on [CTL97]. However, to the best of our knowledge,
no theoretical treatment have been provided so far. In this paper, we provide
the definitions of secure code obfuscators and show that the existence of secure
obfuscators for some code is closely related to the gap between AIZK and BSZK.
Take pseudorandom function ensembles (PRFEs) for example [GGM86].

PRFEs are function ensembles that can not be distinguished from truly ran-
dom functions by any efficient procedure (any adversary) which can get the
value of the function at arguments of its choice, provided its seed is chosen ran-
domly. However, the pseudorandomness is guaranteed only when the randomly
chosen seed is unknown to adversaries. This means that if a code of a PRFE is
given to an adversary and the seed is embedded into the code, it may no longer
satisfy the pseudorandomness. This is because some information about the seed
may be extracted from the given code. A code obfuscator can be used to solve
this problem. It converts the given code into another code that is functionally

1 The one exception appeared in [HT98]. See Section 1.3.

Zero-Knowledge and Code Obfuscation 445

identical to the original code so that the seed remain unknown to the adversary
who is allowed to analyze the obfuscated code.
We sketch a definition of secure code obfuscators from the above point of

view. We consider code obfuscation for a function ensemble F = {Fn}n∈N such
that Fn = {fs}s∈{0,1}ls(n) . s is the seed that we want to remain unknown to an
adversary. A code obfuscator C for F , given a code π(fs), produces another code
denoted by Π(fs) that is functionally identical to π(fs). We want to guarantee
that the adversary should not gain any information about s given Π(fs) when
s is chosen randomly. That is, we say that C is secure against an adversary A
if whatever can be gained by A having access to the code Π(fs), can also be
gained by a PPT machine having only blackbox-access to fs. Roughly speaking,
this guarantees that A can not reverse-engineer the code Π(fs) produced by C.
This is formalized based on the simulation paradigm [GM84][GMR85] [Go99,
Section 1.2.3]. In Section 3, we discuss defining secure code obfuscators in more
detail.

1.3 Motivation and Results

As described in Section 1.1, it is an interesting open problem whether it holds
that Cl(BSZK) ⊂ Cl(AIZK), where Cl(def) denotes the class of all interactive
arguments satisfying the requirements of ZK definition def . Hada and Tanaka
have constructed a 3-round secret-coin AIZK argument for an NP-complete
language, that is, they have shown that it holds that Cl(BSZK) ⊂ Cl(AIZK)
unless NP⊆BPP [HT98]. However, their construction requires a non-standard
computational assumption with a strong reverse-engineering property. Roughly,
it requires that given any code of any cheating verifier, one can efficiently extract
the secret-coin used by the cheating verifier while one having only blackbox-
access to the code can not do it. This paper addresses a question of whether
the reverse implication holds, i.e., whether some reverse-engineering property is
essential for the gap between AIZK and BSZK. If it is true then Cl(BSZK) ⊂
Cl(AIZK) implies some negative result for code obfuscation. The purpose of
this paper is to give such negative results.
We discuss the gap between AIZK and BSZK in more detail. We start

by reviewing the definition of universal simulation zero-knowledge (USZK) in-
troduced by Oren [Or87]. Oren showed that it is equivalent to AIZK, i.e.,
Cl(USZK) = Cl(AIZK). In the definition of BSZK, given any cheating ver-
ifier, the simulator is required to output a simulated conversation simply by
observing input/output behavior of the cheating verifier. On the other hand,
the definition of USZK allows the simulator to take as input the code of the
cheating verifier and analyze it. Therefore, we can say that if it holds that
Cl(BSZK) ⊂ Cl(USZK) (equivalent to Cl(BSZK) ⊂ Cl(AIZK)), then there
exists a cheating verifier for which the simulation is possible by analyzing the
code of it, but impossible by simply observing its input/output behavior. This
will imply that it is impossible to obfuscate the code of such a cheating ver-
ifier. Indeed, by our security definition of code obfuscators, if it holds that
Cl(BSZK) ⊂ Cl(USZK) then there exists a cheating verifier (which can be

446 Satoshi Hada

viewed as a function ensemble) for which secure code obfuscation is impossible
(Theorem 3). However, this does not say anything about the actual behavior of
such a cheating verifier.
We focus on the following two statements in order to consider the actual

behavior of such a cheating verifier:

Gappc: There exists a constant round public-coin AIZK argument for a language
outside of BPP .

Gapsc: There exists a 3-round secret-coin AIZK argument for a language outside
of BPP .

If either statement is true then it holds that Cl(BSZK) ⊂ Cl(AIZK). Note
that the analogous statements regarding BSZK are false [GoKr96] 2. For each
statement, we prove impossibility of secure code obfuscation for a specific cheat-
ing verifier (a specific function ensemble):

1. If Gappc is true, then there exists a cheating verifier behaving as a PRFE for
which secure code obfuscators do not exist. In other words, there exists no
secure code obfuscator for PRFEs (Theorem 4).

2. If Gapsc is true, there exists a cheating verifier for which secure code obfusca-
tors do not exist. The cheating verifier is equivalent to the prescribed (honest)
verifier except that it computes its message as a pseudorandom function of
the first message sent by the prover (Theorem 5).

We don’t know whether these non-existence results are reasonable or not.
However, our result is a good reason to believe that any construction of
constant round public-coin or 3-round secret-coin AIZK arguments for non-
trivial languages essentially requires a computational assumption with a reverse-
engineering property. Indeed, the 3-round AIZK argument constructed in [HT98]
required a computational assumption with a reverse-engineering property.

1.4 Related Works

Goldreich and Ostrovsky gave a definition of software-protecting compilers and
an efficient construction of it [GoOs96]. It is quite different from the code ob-
fuscator considered in this paper. In their setting, a code is encrypted and can
be executed by a CPU having the corresponding decryption key and adversaries
try to reconstruct the code from the encrypted one. The adversary is allowed to
execute the program on the random-access machine (RAM) on arbitrary inputs
of its choice and modify the data between the CPU and the memory. On the
other hand, our code obfuscator never encrypts a given code.
In [DNRS99], Dwork et. al. showed the relationships among 3-round public-

coin ZK arguments, selective decommitment and Fiat-Shamir methodology.
They pointed out that the problem they studied is closely related to code obfus-
cation. However, they gave no results.

2 The discussion in [GoKr96] are for ZK interactive proofs. However, their results
extend to ZK interactive arguments. See Remarks 6.4 and 6.5 in that paper.

Zero-Knowledge and Code Obfuscation 447

2 Preliminaries

We say that a function ν(·) : N → R is negligible in n if for every polynomial
poly(·) and all sufficiently large n’s, it holds that ν(n) < 1/poly(n). We often
omit the expression “in n” when the definition of n will be clear by the context.
If S is any probability distribution then x ← S denotes the operation of

selecting an element randomly according to S. If S is a set then we use the same
notation to denote the operation of picking an element x randomly from S. If
A is a probabilistic machine then A(x1, x2, · · · , xk) denotes the output distri-
bution of A on inputs (x1, x2, · · · , xk). Also, {x1 ← S1;x2 ← S2; · · ·xk ← Sk :
A(x1, x2, · · · , xk)} denotes the output distribution of A on inputs (x1, x2, · · · , xk)
when the processes x1 ← S1, x2 ← S2, · · · , xk ← Sk are performed in order. Let
Pr[x ← S1;x2 ← S2; · · · ;xk ← Sk : E] denote the probability of the event E
after the processes x1 ← S1, x2 ← S2, · · · , xk ← Sk are performed in order.
We begin with reviewing the definitions of (non-uniform) computational in-

distinguishability and PRFEs.

Definition 1 (computational indistinguishability). We define two types of
computational indistinguishability.
1. Two distribution ensembles indexed by N and {0, 1}∗, X =
{Xn,w}n∈N,w∈{0,1}∗ and Y = {Yn,w}n∈N,w∈{0,1}∗ are computationally
indistinguishable if for every PPT machine D (the distinguisher), every
polynomial poly(·), all sufficiently large n’s and every string z ∈ {0, 1}∗,

|Pr
[
x← Xn,w;
b← D(1n, w, x, z) : b =1

]
−Pr

[
y ← Yn,w;
b← D(1n, w, y, z) : b =1

]
|< 1

poly(n)
.

2. Two distribution ensembles indexed by a string set S and {0, 1}∗, X =
{Xs,w}s∈S,w∈{0,1}∗ and Y = {Ys,w}s∈S,w∈{0,1}∗ are computationally indistin-
guishable if for every PPT machine D (the distinguisher), every polynomial
poly(·) and all sufficiently long s’s and every string z ∈ {0, 1}∗,

|Pr
[
x← Xs,w;
b← D(s, w, x, z) : b = 1

]
−Pr

[
y ← Ys,w;
b← D(s, w, y, z) : b = 1

]
| < 1

poly(|s|) .

Definition 2 (function ensembles). An (lin, lout, ls)-function ensemble is a
sequence F = {Fn}n∈N of function family Fn = {fs : {0, 1}lin(n) → {0, 1}lout(n)}
s∈{0,1}ls(n) , such that there exists a polynomial-time machine EvalF (called the
evaluator) so that for all s ∈ {0, 1}ls(n) and x ∈ {0, 1}lin(n), EvalF (s, x) = fs(x).
In the sequel, we call s the seed of the function fs. Also, we say that F is non-
uniformly computable if the evaluator EvalF is a non-uniform polynomial-time
machine [Go99, Section A.2.3].

Definition 3 (pseudorandom function ensembles (PRFEs)). Let
Ulin,lout = {Ulin(n),lout(n) : {0, 1}lin(n) → {0, 1}lout(n)}n∈N be a uniform function

448 Satoshi Hada

ensemble, i.e., Ulin(n),lout(n) is uniformly distributed over the set of {0, 1}lin(n) →
{0, 1}lout(n) functions. An (lin, lout, ls)-function ensemble F is called pseudo-
random if for every PPT machine M , the following two distribution ensem-
bles are computationally indistinguishable: {s ← {0, 1}ls(n) : Mfs(1n)}n∈N and
{u← Ulin(n),lout(n) :Mu(1n)}n∈N.

2.1 Interactive Arguments

We consider two probabilistic interactive machines called the prover and the
verifier. The verifier is always a PPT machine. Initially both machines have
access to a common input tape which includes x of length n. The prover and the
verifier send messages to one another through two communication tapes. After
exchanging a polynomial number of messages, the verifier stops in an accept state
or in a reject state. Each machine only sees its own tapes, namely, the common
input tape, the random tape, the auxiliary-input tape and the communication
tapes. We denote by A(x, y,m) the next message of A when x is the common
input, y the auxiliary-input and m the messages exchanged so far. When we
want to make explicit the random coins R used, we denote it by A(x, y,m;R).
Let 〈Px,w, Vx,y〉 denote the distribution of the decision (over {Acc,Rej}) of

the verifier V having an auxiliary-input y when interacting on a common input
x with the prover P having an auxiliary-input w, where the probability is taken
over the random tapes of both machines. When auxiliary inputs w or y are
empty, we omit them from 〈Px,w, Vx,y〉 (e.g. 〈Px,w, Vx〉 and 〈Px, Vx,y〉).
There are two kinds of interactive protocols. One is “interactive proof” and

the other is “interactive argument”. The former requires that even a computa-
tionally unrestricted prover should be unable to make the verifier accept x /∈ L,
except with negligible (in n) probability [GMR85]. On the other hand, the latter
requires that any cheating prover restricted to PPT should be unable to make
the verifier accept x /∈ L, except with negligible (in n) probability [BrCr86]. In
this paper, we deal with interactive arguments.

Definition 4 (interactive arguments [Go99, page 62]). Let P, V be two
PPT interactive machines. The verifier V does not take any auxiliary-input. We
say that (P, V) is an interactive argument for L if the following two conditions
hold: (1) Efficient Completeness: For every polynomial poly(·), all sufficiently
long x ∈ L, there exists an auxiliary-input w such that Pr[b ← 〈Px,w, Vx〉 : b =
Acc] > 1 − 1/poly(|x|). (2) Computational Soundness: For every PPT machine
P̂ (the polynomial-time bounded cheating prover), every polynomial poly(·), all
sufficiently long x /∈ L and every auxiliary-input w, Pr[b ← 〈Px,w, Vx〉 : b =
Rej] > 1− 1/poly(|x|).

2.2 Zero-Knowledge

We recall the three definitions of AZIK, USZK and BSZK. A view of the verifier
is a distribution ensemble which consists of the common input, the verifier’s aux-
iliary input, the verifier’s random coins and the sequence of messages sent by the

Zero-Knowledge and Code Obfuscation 449

prover and the verifier during the interaction. Let View(Px, Vx,y) = [x, y,m;R]
denote V ’s view after interacting with P , where x is the common input, y
the auxiliary input to V , R the random coins of V and m the sequence of
messages sent by P and V . When the auxiliary input y to V is empty, we
write View(Px, Vx). When the random coins R used by V is fixed, we write
View(Px, V

R
x,y) or View(Px, V

R
x). For simplicity, when we talk about ZK, we omit

the auxiliary-input to the prover P .

Definition 5 (AIZK [GoOr94]). Let P, V be two probabilistic interactive ma-
chines. We say that (P, V) is auxiliary-input zero-knowledge for L if for every PPT
machine V̂ (the cheating verifier), there exists a PPT machine SV̂ (the simu-
lator) such that the following two distribution ensembles are computationally
indistinguishable: {SV̂ (x, y)}x∈L,y∈{0,1}∗ and {View(Px, V̂x,y)}x∈L,y∈{0,1}∗.

Next, we recall the definition of USZK. For every polynomial Q(·), we denote
by VP,Q the set of probabilistic non-uniform polynomial-time machines whose
running time when interacting with the proverP is bounded byQ. It is important
to note that V ∈ VP,Q is allowed to access an infinite advice sequence a1, a2, · · ·
such that |an| < Q(n) 3. V is not allowed to take any auxiliary-input, but instead
allowed to use the advice string a|x| when x is a common input (So the auxiliary-
input in V ’s view is always empty). Note that the encoding of a non-uniform
polynomial-time machine V is an infinite sequence EN1(V), EN2(V), · · ·. Denote
by ENn(V) an encoding of a machine V running on a common input x of length
n, where an is incorporated into the encoding 4. We denote by EN(V) this
sequence.
USZK allows the simulator to take as input the encoding of a cheating verifier.

Definition 6 (USZK [Or87]). Let P, V be two probabilistic interactive ma-
chines. We say that (P, V) is universal simulation zero-knowledge for L if there
exists a PPT machine US (the universal simulator) such that for every poly-
nomial Q(·) and every V̂ ∈ VP,Q, the following two distribution ensembles are
computationally indistinguishable: {US(x,EN|x|(V̂))} x∈L,EN|x|(V̂)∈EN(V̂) and

{View(Px, V̂x)} x∈L,EN|x|(V̂)∈EN(V̂), where EN is an arbitrary encoding.

Finally, we recall the definition of BSZK, where the simulator is only allowed
to use the cheating verifier as a blackbox.

Definition 7 (BSZK [GoOr94]). Let P, V be two probabilistic interactive ma-
chines. We say that (P, V) is blackbox-simulation zero-knowledge for L if there
exists a PPT machine BS (the blackbox-simulator) such that for every polyno-
mial Q(·) and every V̂ ∈ VP,Q, the following two distribution ensembles are com-
putationally indistinguishable even when the distinguishers are allowed blackbox
access to V̂ : {BSV̂ (x)}x∈L and {View(Px, V̂x)}x∈L.

3 Refer to [Go99, Section A.2.3] for more detail of non-uniform polynomial-time ma-
chines.

4 Refer to [HU79, Section 8.3] for an example of the encoding of machines.

450 Satoshi Hada

The following theorem says that USZK is equivalent to AIZK [Or87].

Theorem 1 (Oren [Or87]). Cl(AIZK) = Cl(USZK).

3 Defining Secure Code Obfuscator

In this section, we provide security definitions of code obfuscators. We deal
with the code obfuscators for function ensembles 5. For simplicity, we identify
a function fs with its evaluator, i.e., a (non-uniform) polynomial-time machine
which evaluates it. That is, the encoding of a function means the encoding of
the machine which evaluates it. If the function is non-uniformly computable, the
encoding must be done depending on the input length.

Definition 8 (code obfuscator). Let F be a function ensemble. Let π(·) be
any encoding. A code obfuscator C for F is a PPT machine, which takes as
input a code π(fs) of fs and outputs another code Π(fs) which is also a code of
fs.

As sketched in Section 1.2, we try to define the security of code obfuscators
based on the simulation paradigm. We require that whatever can be gained by
an adversary having access to the code Π(fs) produced by a code obfuscator, can
also be gained by a PPT machine having only blackbox-access to the function
fs.
We first give two unsatisfactory definitions.

Definition 9. A code obfuscator C for F is semantically secure if for every
encoding π and every PPT machine A (the adversary), there exists a PPT
machine M (the simulator) such that the following two distribution ensem-
bles are computationally indistinguishable: {s← {0, 1}ls(n);Π(fs)← C(π(fs)) :
A(1n, Π(fs), z)}n∈N,z∈{0,1}∗ and {s← {0, 1}ls(n) :Mfs(1n, z)}n∈N,z∈{0,1}∗.

Consider a simulator which chooses a seed s′ randomly, produces a obfus-
cated codeΠ(fs′) and outputs A(1n, Π(fs′)). Clearly, this simulator can perfectly
simulate the output of any adversary. Therefore, this definition does not make
sense. By adding the obfuscated cod Π(fs) to two distributions, we can prevent
a simulator from taking such a strategy.

Definition 10. A code obfuscator C for F is semantically secure if for ev-
ery encoding π and every PPT machine A (the adversary), there exists a
PPT machine M (the simulator) such that the following two distribution en-
sembles are computationally indistinguishable: {s ← {0, 1}ls(n); Π(fs) ←
C(π(fs)) : (Π(fs), A(1n, Π(fs), z))}n∈N,z∈{0,1}∗ and {s ← {0, 1}ls(n) : (Π(fs),
Mfs(1n, z))}n∈N,z∈{0,1}∗.

5 Although we can define the security for functions rather than function ensembles,
we don’t deal with them in this paper.

Zero-Knowledge and Code Obfuscation 451

Again, this definition does not make sense. Consider an adversary who out-
puts the given obfuscated code as it is. For such an adversary, we can’t ex-
pect the existence of a simulator which outputs some code of fs by accessing
fs in blackbox fashion. Such a simulator exists only for a function ensemble
that can be learned efficiently and such a function ensemble is not interest-
ing here. For example, consider a function ensemble F⊕ = {Fn}n∈N such that
Fn = {fs(x) = x ⊕ s : {0, 1}n → {0, 1}n}s∈{0,1}n . We can easily compute s by
accessing fs in blackbox fashion. Therefore, there is a trivial secure code obfus-
cator C for F⊕, that is, C outputs a given code π(fs) as it is and the simulator
M computes the seed s and outputs π(fs).
Due to the above failure, we restrict our attention to a particular adversary

(rather than every adversary) and define the security only against it. We give
two definitions: one is based on the simulation paradigm like the above and the
other is based on indistinguishability of obfuscations.

Definition 11 (semantic security against an adversary). A code obfusca-
tor C for F is semantically secure against an adversary A (a PPT machine) if
for every encoding π, there exists a PPT machine M (the simulator) such that
the following two distribution ensembles are computationally indistinguishable:
{s ← {0, 1}ls(n);Π(fs) ← C(π(fs)) : (Π(fs), A(1n, Π(fs), z))}n∈N,z∈{0,1}∗ and
{s← {0, 1}ls(n) : (Π(fs), Mfs(1n, z))} n∈N,z∈{0,1}∗.

Another definition is based on indistinguishability of obfuscated codes of a
given pair of functions (fs, fs′).

Definition 12 (indistinguishable security against an adversary). A code
obfuscator C for F is indistinguishably secure against an adversary A (a PPT
machine) if for every encoding π, the following two distribution ensembles are
computationally indistinguishable: {s← {0, 1}ls(n); Π(fs)← C(π(fs)) : (Π(fs),
A(1n, Π(fs), z))}n∈N,z∈{0,1}∗ and {s ← {0, 1}ls(n); s′ ← {0, 1}ls(n); Π(fs′) ←
C(π(fs′)) : (Π(fs), A(1n, Π(fs′), z))} n∈N,z∈{0,1}∗.

Consider an adversary who outputs the size of a given code. Because there is
a code obfuscator such that the size of an obfuscated code is uniquely determined
from the size of the seed. Therefore, there exists a trivial secure code obfuscator
which is indistinguishably secure against such an adversary.
It is easy to see that indistinguishable security implies semantic security.

However, we don’t know whether the reverse implication holds.

Theorem 2. If a code obfuscator C for a function ensemble F is indistinguish-
ably secure against an adversary A then it is semantically secure against A.

We don’t know whether there is a “non-trivial” function ensemble for which
there is a code obfuscator semantically secure against a “non-trivial” adversary.
As shown in the next section, this problem is related to the gap between AIZK
and BSZK.

452 Satoshi Hada

4 Zero-Knowledge and Code Obfuscation

In this section, we present our results. First of all, we show that the gap between
AIZK and BSZK implies the existence of a cheating verifier for which no code
obfuscators is semantically secure against an adversary.
Let (P, V) be an interactive argument in Cl(USZK) but not in Cl(BSZK).

We consider a cheating verifier V̂ ∈ VP,Q. Denote by lr(·), lm(·) and ls(·) the poly-
nomials bounding the number of rounds, the length of a message and the number
of random coins used by V̂ , respectively. We can identify V̂ with a non-uniformly
computable function ensemble V̂ = {V̂n}n∈N, V̂n = {v̂s : {0, 1}n+lr(n)lm(n) →
{0, 1}lm(n)}s∈ls(n) such that v̂s(x,m) = V̂ (x,−,m; s).
Since (P, V) achieves USZK, for every code obfuscator C for V̂ , every

encoding π and every cheating verifier V̂ ∈ VP,Q, there exists a universal
simulator US such that for every polynomial Q, the distribution ensemble
{s ← {0, 1}ls(|x|);Π|x|(v̂s) ← C(π|x|(v̂s)) : (Π|x|(v̂s), US(x,Π|x|(v̂s)))}x∈L is
computationally indistinguishable from a view of V̂ interacting with P , that is,
{s ← {0, 1}ls(|x|); Π|x|(v̂s) ← C(π|x|(v̂s)) : (Π|x|(v̂s),View(Px, V̂

s
x)) }x∈L. We

consider the universal simulator US as an adversary.
On the other hand, since (P, V) does not achieve BSZK, there exists a poly-

nomial Q and a non-uniform cheating verifier V̂ ∈ VP,Q such that for every
blackbox-simulator BS, the distribution ensemble {s← {0, 1}ls(|x|);Π|x|(v̂s)←
C(π|x|(v̂s)) : (Π|x|(v̂s), BS v̂s(x))}x∈L isNOT computationally indistinguishable
from {s← {0, 1}ls(|x|);Π|x|(v̂s)← C(π|x|(v̂s)) : (Π|x|(v̂s),View(Px, V̂

s
x))}x∈L.

From the above, the theorem follows:

Theorem 3. Assume that it holds that Cl(BSZK) ⊂ Cl(AIZK). Then no code
obfuscator for V̂ is semantically secure against US.

Now we know that Cl(BSZK) ⊂ Cl(AIZK) implies the existence of a func-
tion ensemble for which no code obfuscator is semantically secure against an
adversary. However, we don’t know the actual behavior of such a function en-
semble. In the rest of this section, we focus on two cases Gappc and Gapsc to
prove non-existence of secure code obfuscators for specific function ensembles.

4.1 The Case of Gappc

Theorem 4. Assume that Gappc is true. Let F be any PRFE (both input and
output length functions are specified in the proof). Then, no code obfuscator for
F is semantically secure against an adversary (The behavior of the adversary is
specified in the proof).

Proof. Let (P0, V0) be a constant round public-coin AIZK argument for a lan-
guage L outside of BPP . We use the following notations for (P0, V0). Denote by
x the common input and by n the length of x. For simplicity of the exposition we
make some assumptions on the form of the protocol without loss of generality.
We assume both the first and last messages are sent by P0. By adding dummy

Zero-Knowledge and Code Obfuscation 453

message any protocol can be converted into one of this form. Note that in such
a protocol, the number of rounds is always an odd number 2m+ 1, where m is
a constant. The messages sent by P0 are denoted by α1, α2, · · · , αm and γ (αi is
ith message and γ is m+1th message). The messages sent by V0 are denoted by
β1, β2, · · · , βm (βi is ith message). We assume that for every i, αi and βi have
length lα(n) and lβ(n), respectively. We also assume that for every i, V0 chooses
βi randomly in {0, 1}lβ(n). The predicate computed by V0 in order to decide
whether to accept or reject is denoted by ρ(x, α1, β1, · · · , αm, βm, γ). That is, V0

accepts x if and only if ρ(x, α1, β1, · · · , αm, βm, γ) = Acc. This predicate may be
a randomized function.
Let F be an (lα, lβ , ls)-PRFE. We transform (P0, V0) into another interactive

argument (P1, V1) using F . P1 is same as P0. For every i (1 ≤ i ≤ m), V1

computes βi = fs(αi) instead of choosing it randomly, where s is randomly
chosen from {0, 1}ls(n) at the beginning of the protocol only at once. From the
pseudorandomness of F , it follows that (P1, V1) is also a (2m+1)-round public-
coin AIZK interactive argument for L.
Let C be a code obfuscator C for F . We further transform (P1, V1) into a

2-round protocol (P2, V2) using C. The idea behind this transformation is that
V2 sends to the prover P2 a code required for the computation of V1 and makes
P2 compute the messages of V1. Let π be any encoding.

Protocol: (P2, V2), where x is a common input of length n and w is an auxiliary
input to P2.
R1: V2 randomly chooses s from {0, 1}ls(n) to get π(fs). Then V2 use the code
obfuscator C to produce a code Π(fs) and send it to P2.
R2: Using the code Π(fs), P2 computes α1 ← P0(x,w,−), β1 = fs(α1), α2 ←
P0(x,w, α1β1), β2 = fs(α2), α3 ← P0(x,w, α1β1α2β2), · · ·, βm = fs(αm), γ ←
P0(x,w, α1β1 · · ·αmβm). Then P2 sends (α1, · · · , αm, γ) to V2.
Decision: V2 outputs ρ(x, α1,fs(α1),· · · ,αm,fs(αm),γ).

Claim. (P2, V2) achieves AIZK. (P2, V2) satisfies the efficient completeness, but
doesn’t satisfy the computational soundness.

Proof. Firstly, we show that (P2, V2) achieves AIZK. We have a universal simula-
tor US guaranteed by the USZK or AIZK property of (P1, V1). For every cheating
verifier V̂2 ∈ VP2,Q, we can use US to simulate the conversation between P2 and
V̂2. The simulation is as follows: (i) Simulate V̂2 to get a code Π(fs). (ii) Pro-
duce the code of V1 using fs from Π(fs). We denote it by Π(V

fs

1). (iii) Output
US(x,Π(V fs

1)). It is easy to see that this output distribution is computationally
indistinguishable from the real interaction between P2 and V̂2.
The efficient completeness is clearly satisfied. From the triviality result re-

garding AIZK [GoOr94], it follows that if (P2, V2) satisfies the computational
soundness, then L ∈BPP . This contradicts our assumption. Therefore, the com-
putational soundness is not satisfied. ��
Now we return to the proof of Theorem 4. We construct an adversary A

for which any simulator fails to satisfy the requirement in Definition 11. Recall

454 Satoshi Hada

that (P2, V2) does not satisfy the computational soundness (Claim 4.1). Let P̂2

be a cheating prover who can violate the computational soundness. Let x be a
string of length n such that x /∈ L. Let w be an auxiliary-input to P̂2. Given
a code of a function fs, A tries to output an accepting conversation. Given an
input (1n, Π(fs), (x,w)), A simply outputs P̂2(x,w,Π(fs)), i.e., the messages
(α1, α2, · · · , γ). Since P̂2 violates the computational soundness, it follows that
for every code obfuscator C for F ,

Pr

s← {0, 1}

ls(n);Π(fs)← C(π(fs));
(α1, α2, · · · , αm, γ)← A(1n, Π(fs), (x,w));
b← ρ(x, α1, fs(α1), · · · , αm, fs(αm), γ)

: b = Acc

is NOT negligible in n.
On the other hand, from the argument in [GoKr96, Proof of Lemma 6.4], it

follows that for every PPT machine M (simulator), every auxiliary-input w and
every code obfuscator C for F ,

Pr
[
u← Ulα(n),lβ(n); (α1, α2, · · · , αm, γ)←Mu(1n, (x,w));
b← ρ(x, α1, fs(α1), · · · , αm, fs(αm), γ)

: b = Acc
]

is negligible in n. By the pseudorandomness of F , we can replace the uniform
function u by the function fs. It follows that for every PPT machine M , every
auxiliary-input w and every code obfuscator C,

Pr
[
s← {0, 1}ls(n); (α1, α2, · · · , αm, γ)←Mfs(1n, (x,w));
b← ρ(x, α1, fs(α1), · · · , αm, fs(αm), γ)

: b = Acc
]

is negligible in n. Since any simulator fails to simulate A, no code obfuscator C
for F can be semantically secure against A. ��
The theorem does not extend to the case of non-constant rounds since we

use the argument in [GoKr96, Proof of Lemma 6.4].

4.2 The Case of Gapsc

In this section, we consider the second case. The argument here is essentially
equivalent to the one in the previous section.
Let (P0, V0) be a 3-round secret-coin AIZK argument for a language L outside

of BPP . We denote by α and γ the messages sent by P0. We denote by β
the message sent by V0. Denote by Rsc the secret-coin used by V0 to compute
β ← V0(x,−, α). The length functions of α, β,Rsc are denoted by lα(·), lβ(·) and
lRsc(·), respectively. The predicate computed by V0 in order to decide whether
to accept or reject is denoted by ρ(x, α, γ,Rsc).
Let F be an (lα, lRsc , ls)-PRFE. We transform (P0, V0) into another in-

teractive argument (P1, V1) using F . P1 is same as P0. V1 computes β as
follows: Chooses s randomly from {0, 1}ls(n), computes Rsc = fs(αi) and
β = V0(x,−, α;Rsc). We denote by CV = {CVn}n∈N a function ensemble such

Zero-Knowledge and Code Obfuscation 455

that CVn = {CVs : CVs(x, α) = V0(x,−, α; fs(α))}s∈{0,1}ls(n) . From the pseudo-
randomness of F , it follows that (P1, V1) is a 3-round secret-coin AIZK interac-
tive argument for L.
Now we prove our second theorem.

Theorem 5. Assume that Gapsc is true. Let CV be a function ensemble specified
as the above. Then, no code obfuscator for CV is semantically secure against an
adversary (The behavior of the adversary is specified in the proof).

Proof. Let C be a code obfuscator C for CV . We further transform (P1, V1) into
a 2-round protocol (P2, V2) using C. Let π be any encoding.

Protocol: (P2, V2), where x is a common input of length n and w is an auxiliary
input to P2.
R1: V2 randomly chooses s from {0, 1}ls(n) to get π(CVs). Then V2 use the code
obfuscator C to produce a code Π(CVs) and send it to P2.
R2: Using the code Π(CVs), P2 computes α ← P0(x,w,−), β = CVs(x, α) =
V0(x,−, α; fs(α)) and γ ← P0(x,w, αβ). Then P2 sends (α, γ) to V2.
Decision: V2 outputs ρ(x, α, γ, fs(α)).

Claim. (P2, V2) achieves AIZK. (P2, V2) satisfies the efficient completeness, but
doesn’t satisfy the computational soundness.

Proof. The proof is essentially equivalent to the one of Claim 4.1. ��
The rest of the proof is equivalent to the corresponding one of Theorem 4

except that we use the argument in [GoKr96, Section 6.3] instead of the one in
[GoKr96, Proof of Lemma 6.4]. The detail is omitted. ��
The theorem does not extend to the case of more than 3 rounds since we use

the argument in [GoKr96, Section 6.3].

5 Concluding Remarks

In this paper, we have shown the gap between Cl(AIZK) and Cl(BSZK) is
closely related to code obfuscation. We have focused on the following two state-
ments: (1) There exists a constant round public-coin AIZK argument for a lan-
guage outside of BPP . (2) There exists a 3-round secret-coin AIZK argument
for a language outside of BPP . We have shown that if these statements are true,
it implies negative results for code obfuscation. If the former is true, there exists
no semantically secure code obfuscator for a PRFE. A similar negative result
regarding the latter statement has also been shown. We don’t know whether
these non-existence results are reasonable or not. However, our result is a good
reason to believe that any construction of constant round public-coin or 3-round
secret-coin AIZK arguments for non-trivial languages essentially requires a com-
putational assumption with a reverse-engineering property. Indeed, the 3-round
AIZK argument constructed in [HT98] requires a computational assumption with
a reverse-engineering property.

456 Satoshi Hada

Dwork et al. showed that if there exits a secure bit commitment function
resilient to selective decommitment then there exist 3-round public-coin ZK ar-
guments for anyNP language [DNRS99]. It is an open problem whether there ex-
ists a bit commitment function resilient to selective decommitment. They showed
that in several special cases, such a bit commitment function exists in a weaker
sense. However, the weaker resilience seems to be insufficient for the existence
of 3-round public-coin ZK arguments for an NP language. Combining their re-
sult with Theorem 4, we can easily obtain the following relationship: Under
the assumption that it does not hold that NP ⊆BPP , if there exits a secure
bit commitment function resilient to selective decommitment, then there is no
semantically secure code obfuscator for PRFEs6.
We considered only the setting of ZK arguments, but the problem studied in

this paper really applies to any setting where we need a simulator [GM84][Ca00].
It is interesting to investigate what could be proven in other settings.

References

[BrCr86] G. Brassard and C. Crépeau, “Non-Transitive Transfer of Confidence :
A Perfect Zero-Knowledge Interactive Protocol for SAT and Beyond, ”
Proceedings of 27th FOCS, 1986.

[Ca00] R. Canetti, “Security and Composition of Multiparty Cryptographic Pro-
tocols,” Journal of Cryptology, Vol.13, No. 1, pp.143-202, 2000.

[CTL97] C. Collberg, C. Thomborson and D. Low, “A Taxonomy of Obfuscat-
ing Transformations,” Technical Report 148, Department of Computer
Science, University of Auckland, 1997.

[DNRS99] C. Dwork, M. Naor, O. Reingold and L. Stockmeyer, “Magic Functions,
” Proceedings of 40th FOCS, 1999.

[Go99] O. Goldreich, “Modern Cryptography, Probabilistic Proofs and Pseudo-
randomness,” Algorithms and Combinatorics Vol.17, Springer, 1999.

[GGM86] O. Goldreich, S. Goldwasser, and S. Micali, “How to Construct Random
Functions,” Journal of the ACM, Vol.33, No.4, pp.792-807, 1986.

[GoKr96] O. Goldreich and H. Krawczyk, “On the Composition of Zero-Knowledge
Proof Systems,” SIAM Journal on Computing, Vol.25, No.1, pp.169-192,
1996.

[GoOr94] O. Goldreich and Y. Oren, “Definitions and Properties of Zero-Knowledge
Proof Systems,” Journal of Cryptology, Vol.7, No. 1, pp.1-32, 1994.

[GoOs96] O. Goldreich and R. Ostrovsky, “Software Protection and Simulation on
Oblivious RAMs,” Journal of the ACM, Vol.43, No.3, pp.431-473, 1996.

[GM84] S. Goldwasser and S. Micali, “Probabilistic Encryption,” J. Comput. Sys-
tem Sci., 28, pp.270-299, 1984.

[GMR85] S. Goldwasser, S. Micali, and C. Rackoff, “The Knowledge Complexity
of Interactive Proofs,” Proceedings of 17th STOC, pp.291-304, 1985.

[HT98] S. Hada and T. Tanaka, “On the Existence of 3-Round Zero-Knowledge
Protocols, ” Proceedings of CRYPTO’98, pp. 408-423, 1998. A revised
version is available as Theory of Cryptography Library: Record 99-9.

6 This requires the assumption regarding the BPP v.s. NP problem. We can remove
it by directly observing the definitions of secure bit commitment functions resilient
to selective decommitment and secure code obfuscator.

Zero-Knowledge and Code Obfuscation 457

[HU79] J. E. Hopcroft and J. D. Ullman, “Introduction to Automata Theory,
Languages, and Computation,” Addison-Wesley, 1979.

[Or87] Y. Oren, “On the Cunning Power of Cheating Verifiers: Some Obser-
vations about Zero-Knowledge Proofs,” Proceedings of 28th FOCS, pp.
462-471, 1987.

	Introduction
	Zero-Knowledge
	Code Obfuscation
	Motivation and Results
	Related Works

	Preliminaries
	Interactive Arguments
	Zero-Knowledge

	Defining Secure Code Obfuscator
	Zero-Knowledge and Code Obfuscation
	The Case of {sf Gap$_{pc}$}
	The Case of {sf Gap$_{sc}$}

	Concluding Remarks

