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Abstract. We describe a dynamic software watermark embedded in the
memory trace of an executing Java program. Our approach is a generali-
sation of the spread–transform watermarking technique developed for use
in the multimedia domain. We show how the spread–transform paradigm
enables the embedding of dither modulation watermarks in a Java pro-
gram and report its robustness to realistic additive noise attacks.

1 Introduction

Recent years have witnessed an hitherto unseen level of concern about the issue
of software piracy and intellectual property (IP) protection, among commercial
and non–commercial software developers alike.

The advent of the Internet has radicalised software business models. It has
now become common practice for vendors to make trial versions of even the most
costly and sophisticated software freely available for download. Although such
trial programs are typically time limited or partially disabled, they necessarily
contain most of the developer’s code and IP. This constitutes a major risk to the
developer as this software is now vulnerable to attack by crackers, who attempt
to disable the protection techniques, and plagiarism by competitors. Further-
more, the Internet has made possible the rapid mass distribution of derived or
cracked software, enabling virtually any computer user to become a significant
threat to even heavyweight developers.

Another related, although distinct, contributing factor has been the remark-
able rise of the Java programming language. One of the principal reasons for
Java’s popular success has been its “write once, run anywhere” paradigm. In at-
taining this goal the language developers devised a compiled Java format (byte-
code), which is effectively isomorphic to the original source code. As a conse-
quence, Java software is easily reverse engineered, which makes it an insecure
medium for algorithms and other IP.
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A final development which is threatening software creators is the marked
increase in interest in decompilation and other reverse engineering tools and
techniques. As reverse engineering becomes ever more sophisticated, software
developers are finding it increasingly difficult to conceal their IP, even by choos-
ing to work in languages that are traditionally more difficult to reverse engineer
than Java, such as C++.

Many tools exist for combating these problems, from the legal to the techni-
cal. One technical solution is remote execution, whereby the most intellectually
valuable sections of a program reside only on secure servers [19]. A registered
client program utilises the server as an oracle; sending input and receiving out-
put, but never being exposed to the internals of the computation. Such an ap-
proach can be highly effective for detecting illegal software use (by an unlicensed
user) and preventing IP theft. However remote execution is generally unattrac-
tive to legitimate customers for efficiency, reliability and privacy reasons.

Other approaches have been based on the use of hardware tokens such as
dongles. These devices were typically plugged into a computer’s serial port. The
correct execution of a program was reliant on the presence of its dongle. More
recently this concept has been advanced through the use of smart cards [10],
which enable small portions of a program’s computation to be performed by
the token. Both techniques complicate piracy since the hardware devices are
not readily reproducible. However this approach is not compatible with modern
lightweight web–based business practices.

The most widely used software based protection technique is obfuscation
[4] — the process of transforming one program into an equivalent one, which is
more difficult to reverse engineer and understand. Obfuscation has the advantage
that it is cheap and non–intrusive and can be quite effective. However it is only
an impediment to theft. Obfuscation is not useful for identifying a theft, nor
resolving the true owner of a given piece of software. These are the functions of
a software watermark.

1.1 Software Watermarking

A software watermark is a piece of information that is embedded within a pro-
gram. The presence of the watermark does not change the functionality of the
program, and, generally, its presence should only be detectable through the use
of an authorised detector. When used to encode ownership information, water-
marking may be employed to both deter and detect theft of the host program,
and in the event of such a theft, help resolve rightful ownership over it. Conse-
quently, a would–be thief is required to destroy any watermarks present in the
code they intend to steal, or risk detection and prosecution. Software watermarks
must be resilient to such deliberate attacks.

Digital watermarking originally evolved in the multimedia domain. It has
been the subject of much research and has become a formal and mature discipline
[12, 14]. Multimedia, such as images and audio, have natural representations
as vectors in numeric spaces. These vectors can be manipulated to encode a
watermark without introducing any humanly perceptible changes.
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The application of watermarking protection techniques to software is a rel-
atively recent development, and although a number of techniques have been
devised, the art remains in its infancy. Despite being conceptually similar, multi-
media and software watermarking are in practice quite different. The smooth and
natural mappings from objects to vectors employed in the multimedia domain,
are not naturally present in the software domain. Instead, software watermarks
tend to be embedded at a more abstract level; for example in the topology of dy-
namically created heap structures [3], or in a program’s control–flow–graph [18].

A limited amount of work has been carried out in which a concerted effort is
made to view the software watermarking problem as one to which multimedia
solutions can be adapted [16, 7, 6, 15]. In each of these cases, an additive spread–
spectrum algorithm [5] was applied to a feature vector extracted from the host
program.

In this paper we too seek to exploit results from the multimedia domain to
improve software watermarking, however our approach differs significantly from
the others. We describe a novel approach for watermarking the collective run–
time memory consumption of the set of Java methods comprising a program. In
our case, the feature vector extraction process can be seen as an extension of
the spread–transform technique (a more general method of spreading watermark
information over a host signal than spread–spectrum) that is frequently employed
on multimedia but, to date, has never applied to software. To this feature vector
we apply a quantisation based watermarking algorithm [1]. Again the advantages
of such algorithms over simple additive ones have not yet been exploited by
the software watermarking community. We describe in particular how dither
modulation watermarking is well suited to our problem.

This paper is organised as follows: In Section 2 we introduce the notion of
a memory trace of a Java program, and show how the general process of wa-
termarking a program’s memory consumption may be viewed in terms of the
spread–transform. Section 3 describes dither modulation watermarking, in par-
ticular its application to memory traces, and in Section 4 we present a statistical
attack model against which we evaluate our proposal.

Notation: In this paper we will employ the following notational conventions;

– Lowercase bold roman letters (x) denote vectors. All vectors are assumed to
be column vectors. Row vectors are denoted with the use of a T superscript,
meaning transpose. The ith element of a vector x is denoted by xi.

– Matrices are set in bold uppercase roman letters (A). The (i, j) element of
a matrix A is denoted by aij .

– N, Z, and R represent the set of natural, integer and real numbers respec-
tively. An additional scalar superscript, for example R

N , denotes the N–
dimensional cartesian product of that set. Unless otherwise specified, a +

superscript denotes the subset of positive numbers.
– �·� denotes rounding up to the next integer. ‖ · ‖ denotes a Euclidean norm.

E{·} denotes expectation.
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2 Memory Trace Spread–Transform Watermarking

We define the N–dimensional memory trace (MT) of a Java program as the N–
element vector corresponding to the total dynamic memory allocation performed
during each of the N equal length time intervals T1, . . . , TN , of an execution of
that program;

xST
i = memory allocated during Ti.

This signal is of course inherently keyed upon the program input, or more gen-
erally upon the context of the execution.

If the program is comprised of K methods {m1, . . . , mK}, we can consider
the dynamic trace of the sequence of method invocations, and express xST

i as

xST
i =

K∑

j=1

aijxji,

where aij denotes the number of invocations of method mj during interval Ti,
and xji denotes the average number of bytes consumed over all executions of
mj during interval Ti. Define A = {aij} ∈ N

N,K to be the method execution
frequency matrix and X = {xji} ∈ R

K,N . The preceeding equation then becomes

xST = diag(AX).

Modulating a watermark vector w onto the MT vector xST leads to the
problem of solving

xST
w = xST + w (1)

= diag(A(X + ∆X), (2)

for matrix ∆X, whose (i, j) component represents the amount by which the
average memory consumption of mj during Ti must be modified in order to
embed w.

Note that modifying a method’s memory consumption by an amount that
varies with the current interval of execution requires complicated dynamic con-
trol flow analysis and/or unstealthy modifications (conditional statements per-
taining to the context in which the method is being invoked) to be applied to
the program source. To avoid these problems we seek instead a solution which is
context–free, that is, one in which the overhead added to each method’s memory
consumption is independent of the time interval. Thus we reformulate (2) as

xST
w = diag(AX) + A∆x (3)

where ∆xj represents the constant memory overhead that must be added to
method mj .

From (3) it becomes clear at this point that watermarking the MT vector
xST with watermark vector w, is analogous to Chen and Wornell’s [1] spread–
transform (ST) watermarking of X, in which the ith element of the vector A∆x
is embedded in the linear projection of X onto the ith row of A.
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An important difference between standard ST and our application is the
structure of A. In standard ST, A has the form,

A = block diag(tT ) =

⎛

⎜⎝
tT

. . .
0

0 tT

⎞

⎟⎠ , (4)

for some spreading–vector t ∈ R
�K

N �. In our case, the ST must be generalised
to projection matrices without this particular shape. The significance of this
difference becomes apparent when solving (3) for ∆x.

When A is of the form in Equation (4), the inversion of the projection onto
A can be performed for each row of (3) independently of the others, making
the computation trivial. In our generalised case however, the projection must be
reversed for all of the rows simultaneously.

∆x = A+(xST
w − diag(AX))

= A+(xST + w − diag(AX))
= A+(diag(AX) + w − diag(AX))
= A+w, (5)

where A+ denotes the Moore–Penrose pseudo–inverse of A, given by A+ �
A(AT A)−1.

2.1 Watermarking Embedding

The above discussion suggests the following general procedure for embedding a
ST watermark in the MT of a Java program;

1. Use some profiling process to extract the memory trace xST and method
execution frequency matrix A from the program as it executes under some
special input (the key)1.

2. Obtain a watermark w for the given information to be embedded, and com-
pute ∆x (5).

3. Modify each of the program’s K methods, so that the new method mj al-
locates, on average, ∆xj more bytes on the heap per execution than the
original method.

Several of the practical issues which arise with this embedding process are
worth noting at this point;

1. Real–valued solutions to (5) are not desirable, since memory cannot be al-
located in fractions of bytes in Java code.

1 Note that (5) is independent of xST, and as such this technique does not strictly
require access to the original memory trace, however in the following section we
exploit access to it for watermark message encoding.
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2. Furthermore, the solution space is made discrete by the target Java Vir-
tual Machine’s (JVM) memory manager. For example, on the Sun JVM
[11], memory is allocated in blocks of 8 bytes with a minimum of 2 blocks,
implying ∆x = 8y,y �= 1 ∈ Z

m.
3. Negative elements in ∆x imply that the corresponding method must be opti-

mised to use a certain number of bytes less memory than before. Performing
such targeted optimisation is a hard problem.

4. Finally, a method’s memory consumption may be affected by its context of
execution, requiring care to be taken to ensure method modifications have
the desired effects.

The first two of these issues can be addressed by reformulating (5) as an opti-
misation problem,

min
∆x

‖A∆x − w‖ s.t. ∆x = 8y, y �= 1 ∈ Z
m, (6)

thus suitably constraining the solution space. Point 4 is most simply dealt with
by making all modifications in the first basic block2 of each method’s bytecode,
thus removing the effects of execution context, although more sophisticated,
stealthy approaches may be developed. We postpone discussion of the remaining
issue of negative solutions until the next section.

2.2 Watermarking Detection

Having developed an embedding process we now turn our attention to decoding.
In ST watermarking, watermark decoding must be performed on the projection
of the received signal X̂, a distorted version (due to attacks or other interference)
of X;

x̂ST = diag(AX̂). (7)

Recall that, in practice, this amounts to extracting the MT x̂ST from the re-
ceived program via profiling of an execution under the key program input. Once
obtained, the MT is subjected to the detection routine counterpart of the wa-
termark message coding method used at the embedder.

Equation (7) fails to highlight another important difference between our ap-
plication of ST to software and its standard use in the multimedia domain; the
projection matrix A is part of the object being transmitted, and as such may
be subjected to distortion. The previous equation should read,

x̂ST = diag(ÂX̂),

where Â denotes the received program’s method execution frequency matrix.
Even an undistorted program is likely to yield mildly differing method execution
frequency matrices from one execution to the next due to chaotic processes such
as IO blocking, or thread interleaving within the JVM. However we assume that
the time interval is suitably large (N is small) so that A � Â.
2 A basic block is a sequence of one or more consecutive instructions having only one

entry point and one exit point.



378 A.J. Larkin et al.

3 Dither–Modulation in the Memory Trace Domain

In Equation (1), a vector w was modulated onto the ST of the host signal. At
this point any watermarking algorithm may be applied to determine the value
of w. Similarly to previous work in the multimedia domain [1], we employ the
Dither Modulation (DM) algorithm. In this section we describe the approach
and discuss its particular merits with respect to Java MT watermarking.

DM is a form of Quantisation Index Modulating (QIM) watermark [1], a class
of algorithms in which information is embedded via the choice of one quantiser
from a set, and the application of that quantiser to the original signal.

A scalar quantiser Q is a mapping from a one dimensional space, to a discrete
subset of that space. For example,

Q : R → {ci : ci ∈ Z}.

Normally, a minimum–distance mapping is employed.
In QIM, a set of quantisers Q = {Q1, . . . , Ql} is defined. At the embedder, the

watermark message b ∈ {0, . . . , l−1}N is chosen. The ith element of the original
signal, in our case xST, is then quantised using the quantiser in Q indexed by bi;

xST
wi

= Qbi (xST
i ) .

In conjunction with Equation (1) this implies that

wi = Qbi (xST
i ) − xST

i . (8)

This encoding of the watermark message is then added to the projected signal
in (1).

During the (blind) watermark extraction phase, the elements of the signal
received at the decoder x̂ST

w , are quantised using each quantiser in Q. The received
message b̂ is reconstructed from the indices of the sequence of quantisers which
contain the reconstruction points closest (in a Euclidean sense) to the elements
of x̂ST

w ;
b̂i = argmin

k

∥∥Qk

(
x̂ST

wi

)
− x̂ST

wi

∥∥ .

The Binary DM (Fig. 1) algorithm which we utilise in the remainder of this
paper is a specialisation of QIM, in which two uniform quantisers Q = {Q0, Q1}
are employed. Q0 and Q1 are both of step size ∆ ∈ R and are mutually shifted,
or dithered, by ∆/2.

Our motivation for selecting the DM algorithm over spread–spectrum (as
has been the trend in the software domain) is two–fold. The first is an inherent
property of QIM watermarking termed host signal interference rejection. QIM’s
exploitation of knowledge of the host signal xST at the encoder (c.f. footnote 3),
prevents the host signal from acting as interference in the transmission of the
watermark message from the embedder to the detector, thus improving the wa-
termark’s robustness to distortion/capacity. The second is a practical advantage
which we contrive from the properties of the MT domain.
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Fig. 1. Binary Dither Modulation in the ith dimension. The ith element of the original
signal xST (upper line) is quantised to either a • or a ◦ (lower line) if bi = 0 or bi = 1,
respectively. With a quantiser step size of ∆, the maximum distortion that it will be
necessary to introduce per dimension of xST is ∆

2 . After embedding, the maximum
tolerable amplitude distortion per dimension before an error is introduced is ∆

4 .

First we note that quantising to any reconstruction point in the appropriate
quantiser is enough to encode a given watermark element. For image and audio
data, relatively low limits on the acceptable level of distortion introduced due to
watermarking and attacking alike, are naturally defined by the human sensory
systems. Consequently, quantising to the nearest quantisation point is important
in order to preserve the imperceptibility of the watermark. In the MT domain
however, the imperceptibility of the embedded information is not of overrid-
ing importance. Although it may be considered undesirable for a watermark to
significantly increase the memory footprint of a given piece of software, the prin-
cipal concern and only strict requirement is the preservation of the functionality
of the program.

This realisation enables us to address the outstanding practical issue raised
in the previous section; that of negative values in ∆x. By always quantising up
to the nearest quantisation point, we can ensure that non–negative solutions to
Equation (6) can be generated. Thus our DM quantisers are of the form;

Q0(x) =
⌈

x
∆

⌉
∆ and Q1(x) =

(⌈
x−∆

2
∆

⌉
+ 1

2

)
∆. (9)

Additionally we note that when ∆ is chosen to be divisible by 16, simple
manipulation of (6) using (8) and (9) reduces the problem to an optimisation of
a natural number linear system, thus permitting natural solutions.

4 Experimental Results

4.1 Experimental Framework

Implementation of a system illustrated in Fig. 2 has been undertaken in order to
facilitate experimentation and analysis of the proposed watermark. The embed-
ding process consists of three principle stages; 1) feature extraction or profiling,
2) formulation and solution of Equation (6), and 3) realisation of the required
program modifications.
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Fig. 2. Memory Trace Watermarking Framework

Table 1. Test Program

Name: Java Tree Builder (JTB) [17]
Description: JavaCC Grammar annotater, composed of 1447 methods
Input: Java1.2-a.jj

1. The extraction of the MT vector and method execution frequency matrix is
achieved through the use of a purpose built profiling tool. Constructed as
client–server pair, our Java profiler is built upon the Java Virtual Machine
Profiling Interface (JVMPI) [9]. The profiling client resides in the same pro-
cess as the JVM. User–specified statistics of interest are gathered on a per–
thread basis, and with minimal client–side processing are sent to the server.
This minimal processing, per–thread profiling ensures the least possible dis-
tortion of the extracted signals due to the presence of the profiler. The server
receives the raw data, re–synchronises it, and processes it in a user–specified
manner into a database describing the execution of the program. Generating
such a database enables the user to create many different views of a single
execution.
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2. For the MT watermarking application, the features of interest are the MT it-
self and the method execution frequency matrix. These are extracted during
stage 2, and are used to formulate a representation of Equation (6). This op-
timisation problem is non–trivial, and so we employ the NEOS Server [8] to
generate solutions. NEOS is a free web–server which offers access to a large
number of mathematical optimisation suites. Specifically, we send our prob-
lem to NEOS for solution using the XPRESS–MP Mixed Integer Linear Pro-
grammer [13]. (Note that we are restricted to solving Equation (6) as an L1–
norm minimisation problem, rather than the more desirable L2–norm). Fre-
quently, exact solutions to our problems do not exist, and so there is normally
some embedding error inherent in our process. Indeed, on occasion, no solu-
tions are found or the problem is determined to be infeasible. In such cases
we have no recourse other than to re–profile under a different program input.

3. Assuming an acceptable solution can be computed, we proceed with the final
step, modifying the program’s methods so that they allocate extra memory
as dictated by NEOS. This can be as trivial as the insertion of superflu-
ous byte array allocation instructions at the start of each method, although
more sophisticated approaches involving the use of opaque predicates could
and should be used. In what follows this last step is simulated.

We now report results from simulated embedding and attacking of the wa-
termarking scheme. Our early results are restricted to simulations on a single
Java program shown in Table 1. Experiments were performed on the Sun JVM
(version 1.4.2–02), running under GNU Linux on a dual Intel Xeon 2.8 GHz
machine, with 2.5 Gb RAM.

4.2 Attack Model

Proper analysis of a watermarking scheme’s robustness requires a model of the
attacks to which the watermarked signal may be subjected. In this paper we em-
ploy an additive noise model derived from experimentation on a set of automated
attacks from the SandMark system [2] (Table 2).

The amplitude distortions introduced into the watermark channel (the aver-
age method memory consumptions, X) by application of these attacks to the test
program were measured. Under the assumption that these noise samples are in-
dependent and identically distributed, the Central Limit Theorem predicts that
they should follow Normal distributions. Empirical evidence in fact shows that
they are drawn from peaked distributions. We conclude that the independence
assumption does not hold, due to correlations existing amongst both the rows
of the execution frequency matrix (as a result of the principle of locality), and
its columns (as a result of inter–method dependencies).

Using maximum likelihood estimation, the noise signals due to the consid-
ered attacks were in fact all found to be well approximated by the Laplacian
distribution;

fX(x; µ, λ) =
λ

2
e−λ|x−µ|.

The estimated parameters for each attack are listed in Fig. 4.
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Table 2. Considered Attacks from the SandMark System

Name Description
Array Folder “Folds” a 1–dimensional array into a

multi–dimensional array.
Array Splitter Splits 1–dimensional array fields into

2 array fields.
Block Marker Randomly marks all basic blocks in a

program with either a 0 or 1.
Constant Pool Reorderer Reorders the constants in the constant

pool and assigns random indices to
them.

False Refactor Two classes C1 and C2 that have no
common behavior are refactored form-
ing a class C3.

Field Assignment Inserts bogus fields into a class and
makes assignments to that field in spe-
cific locations throughout the code.

Insert Opaque Predicates Inserts an opaque predicate into every
boolean expression.

Integer Array Splitter Splits a local variable array into two
arrays.

Overload Names Renames methods so that as many as
possible have the same name.

Publicize Fields Makes the fields of a class public.
Rename Registers Renames local variables to random

identifiers.
Reorder Parameters Shuffles the argument orders for all

methods.

Fig. 3. Laplacian Model of Array Splitter
Attack

Attack µ λ

Array Splitter 81.1735 0.0020650

Constant Pool Reorderer 51.3785 0.0026051

Overload Names -23.1289 0.0030382

Array Folder 48.5469 0.0030583

Integer Array Splitter 58.8219 0.0036680

False Refactor 57.0828 0.0037142

Block Marker 56.2616 0.0037221

Insert Opaque Predicates 74.3434 0.0041431

Publicize Fields 60.3178 0.0045263

Field Assignment 64.1785 0.0046936

Reorder Parameters 57.2756 0.0047845

Rename Registers 57.9861 0.0048702

Fig. 4. Parameters of Laplacian Model of
SandMark Attacks
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4.3 Robustness

–4 Hamming error–correction–coded (ECC) watermarks were embedded in the
N = 32–dimensional MT of the test program3. At this dimension, the cor-
relation between the original matrix A and each of the attacked frequency
matrices Â, bar one4, was found to be in the range [0.899, 0.993]. In these
experiments N = 32 was thus considered sufficiently small so that A � Â
(Section 2.2).

We measure the robustness of the transmission of the watermark message
from the embedder to the detector as the proportion of erroneously transmitted
bits, or the bit–error–rate (BER). Fig. 5 shows the simulated BER against the
watermark–to–noise–ratio (WNR) for JTB under attack with Laplacian noise.
The WNR in decibels is defined as,

WNR = 10 log10
E{‖A∆x‖2}
E{‖Ad‖2}

,

where d is the noise vector, and provides a fair measure of the strength of
a watermark in relation to an attack. Note that we compute the WNR in the
projection domain (the runtime memory consumption per interval), arguing that
for our application it is in this domain that the presence of the watermark may
become apparent.

0 5 10 15 20 25 30

10
−2

10
−1

WNR (dB)

B
E

R

Insert Opaque Predicates
Array Splitter
Array Folder

Fig. 5. Bit–Error–Rate vs. WNR for JTB Attacked with Laplacian Noise

It is clear from Fig. 5 that our scheme requires significantly greater WNR
than classical ST–DM. This fact can be attributed to the difficulty of satisfying
3 For these experiments, N = 32 implied interval widths of 485 ms, real time.
4 Correlation after the Array Splitter attack was found to be 0.795.
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all the constraints of Equation (6). As noted earlier however, notions of percep-
tibility are not clearly defined in the MT domain, and as long as the presence
of the watermark does not render the program unusable, in this case by grossly
over inflating the program’s memory footprint, the watermark may be considered
acceptable.

5 Summary and Conclusions

In this paper we have described a new form of dynamic Java watermarking,
which is unique both in terms of the feature vector used to carry the watermark,
and in its application of ST–DM principles. The watermark has a high degree of
stealth, with simple and isolated pieces of watermark generating code pervading
the entire program. We have also seen that with appropriate embedding strength
the watermark is robust to a number of realistic attacks.

Additionally, we have modelled of a set of attacks to which this watermark
may be subjected. Within the software watermarking community the term attack
model is frequently used in an informal manner, often being applied to what are
little more than lists of program transformations. Such models are of poor use
for forecasting the performance of a watermarking system. Our model on the
other hand, is mathematical, and has enabled us to make predictions about the
robustness of our watermark.

This model does however remain modest. As yet we have considered only a
narrow band of the full spectrum of automated transformations to which software
may be subjected. Further experimentation may expose the additive noise model
to be unsuitable for describing processes such as optimisation, decompilation, or
multiple obfuscations applied in series. These attacks may prove to be more
desynchronsing than additive in nature.

Future work must focus on expansion of our attack model, and more complete
evaluation of this watermark’s robustness. Beyond this, an interesting direction
for future research is the embedding of the watermark in a frequency domain,
such as the Fourier Transform, of the MT. Again such techniques have long
been employed on multimedia, but are yet to make the crossover to software.
We hypothesise that embedding in the low frequency components (correspond-
ing to the global shape of the MT) of such a transformed signal, will improve
resilience to attacks, which appear to introduce noise primarily at the local
level.
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