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Abstract. Software watermarking is a new research area that aims at providing 
copyright protection for commercial software. It minimizes software piracy by 
hiding copyright signatures inside the program code or its runtime state. Prior 
proposals hide the watermarks in dummy data structures, e.g., linked lists and 
graphs that are created during the execution of the hosting software for this 
reason. This makes it vulnerable to subtractive attacks, because the attacker can 
remove the data structure without altering the operation or the semantic of the 
software program. In this regard, we argue that hiding watermarks in one or 
more data structures that are used by the program would make the watermark 
more robust because removing the watermark would alter the semantic and the 
operations of the underlying software. However, the challenge is that the 
insertion of the watermark should have a minimal effect on the operations and 
performance of the data structure.  

This paper proposes a novel method for watermarking R-tree data structure 
and its variants. The proposed watermarking scheme takes advantage of the 
redundancy in the way the entries within R-tree nodes are ordered. R-trees do 
not require ordering the entries in a specific way. Node entries are re-ordered in 
a way to map the watermark. The new order is calculated relative to a “secret” 
initial order, known only to the software owner, using a technique based on a 
numbering system that uses variable radix and factorial base. The addition of 
the watermark in the R-tree data structure neither affects the performance nor 
increases the size of the R-tree. The paper provides a threat model and analysis 
to show that the watermarked R-trees are robust and can withstand various 
types of attacks.  

Keywords: Software watermarking, copyright protection, data hiding, 
indexing, multimedia database. 

1   Introduction 

Software piracy is one of the main threats targeting software development. A recent 
study [18] shows that 36% of the software programs used nowadays are pirated. 
Watermarking is a technique used to provide copyright protection for intellectual 
properties. Recently there have been a lot of interests in securing and protecting 
databases [32] [4] [21] [35].  
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Watermarking means the embedding of digital information into the original work 
[27]. Watermarks are commonly known in copyright protection of multimedia 
objects, e.g., images [16] [14], video [20] [23], and audio [11],[29]. In addition to 
copyright protection, watermarking is used in authentication and privacy protection. 
Unlike authentication applications, watermarks in copyright protection and privacy 
applications need to be robust and invisible.  

Recently, there has been a lot of interest in applying watermarking techniques to 
protect the copyrights of the data and the software. Unfortunately, most of the work in 
this area are trade secrets and are not published.   

Technically, most of the software watermarking techniques fall under two 
categories: static watermarking [17] [39] and dynamic watermarking [6][30]. In 
static watermarking the watermark is stored in the source code, either in the data 
section or in the code section. For example, a watermark can be stored in the values 
of the constants or in debugging information. On the other hand, dynamic 
watermarking stores the watermark in the program’s execution state. Static 
watermarking techniques are considered more fragile as they can be easily attacked 
by code optimizers or obfuscators [6]. For example, a static watermark that is saved 
in data strings can be easily attacked by breaking up all strings into substrings 
scattered over the executable. Unlike static watermarking, in dynamic watermarking 
the watermarks are generated during the program execution. Usually the watermark 
is a large integer number1. To make the watermark more credible legally, the large 
integer is chosen to be the multiplication of two large prime numbers [6] [31]. In 
general, dynamic watermarks are more robust than static ones and can withstand 
more sophisticated attacks [7]. Our proposed technique falls under the dynamic 
watermarking category. 

Prior techniques in dynamic watermarking hide the watermark in data structures 
that are built specially for this purpose during the execution of the program. The fact 
that the data structure is built specifically to house the watermark and it is 
independent of the application semantic makes the watermark susceptible to 
subtractive (or removal) attacks. The operation and semantic of the host program will 
not be affected by removing the data structures that hide the watermark. 

We argue that hiding watermarks in data structures, which are used by the 
program, would make them more robust; because tampering with these data structures 
would affect the program correctness and/or performance. Software products usually 
use a number of both memory-based and disk-based data structures e.g., binary trees, 
linked lists, graphs, B-trees, and R-trees.  In general, each data structure requires a 
watermarking technique that is different from the others. The diversity in the 
watermarking techniques used in one program will definitely increase the robustness 
of the whole system and thus, decreases the likelihood of successful attacks.  

Notice that disk-based data structures are easier to attack than memory-based data 
structures because an adversary does not need to execute the application program to 
attack the watermark. Rather, the adversary can invoke an off-line attack with an 
independent code. With our proposed algorithm the owner can prove his/her claim by 
inserting enough records into the data structure to rebuild the watermark. 

                                                           
1  This does not limit the scope of these techniques because any text watermark can be mapped 

to a numeric watermark. 
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In this paper, we propose a technique for embedding and extracting watermarks in 
R-tree and its variants. Our proposed technique has the following desirable features: 

• Does not interfere with R-tree functionality and operations 
• The watermark does not increase the size of the R-tree  
• Robust: it is resilient to various types of attacks  
• Simple to implement  

The proposed watermarking technique makes use of the redundancy in the order of 
entries in the R-tree node. It carefully reorders the entries inside the R-tree node to 
map the watermark. 

The next section gives a brief description of the R-tree data structure. Section 3 
describes the threat model. In section 0 we discuss some design parameters related to 
the location and the size of the watermark. Section 0 describes our proposed 
watermarking scheme and outlines the embedding and extraction algorithms.  In 
section 0, we provide a threat analysis and evaluation of the proposed techniques. 
Finally, the related works and the conclusions are presented in sections 0 and 0 
respectively.  

2   R-Tree 

The original R-tree [1] was first suggested by Guttman; it is the extension of the B-
tree for multidimensional objects. For simplicity, we describe R-tree data structure in 
the context of the two dimensional space; however, R-tree and its variants work for 
any number of dimensions. A geometric object is represented by its minimum 
bounding rectangle (MBR). Non-leaf nodes contain entries of the form (ptr,R) where 
ptr is a pointer to a child node in the R-tree; R is the MBR that covers all rectangles in 
the child node. Leaf nodes contain entries of the form (obj-id, R) where obj-id is a 
pointer to the object description, and R is the MBR of the object. R-trees allow nodes 
to overlap. This way, the R-tree can guarantee at least 50% space utilization and at the 
same time remain balanced.  

Figure 1 illustrates data rectangles (in black), organized in an R-tree with fanout 3. 
Each node in the tree (except the root) contains between m (minimum number of 
entries per node) and M (maximum number of entries per node) entries, where m = 
M/2. At the same time, each non-leaf node (except the root node) has between m and 
M child nodes.  

R-tree is a balanced data tree; meaning all leaves appear on the same level. The 
maximum height of the tree can be calculated using the following formula: 

h = 1log −Nm        (1) 

Where, N is the number of objects. 
Search, insert, delete, split and merge are the popular R-tree operations. The most 

frequent operation is search. When a node overflows, the split routine is invoked to 
split the node into two. The split operation is the least frequent operation, but at the 
same time it is a slow and costly operation. Many techniques have been developed to 
improve its performance [1]. Contrary to the B-tree, R-trees do not put conditions on 
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the order of entries inside the node.  Thus, the search algorithm inspects all entries in 
the node. Our watermarking algorithm takes advantage of this feature, and hides the 
watermark by changing the order of entries in the tree.  

Our proposed technique works equally on other R-tree variants e.g., packed R-tree 
[28] [15], the R+-tree [41], and the R*-tree [26]. 
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Fig. 1. Example of an R-tree with fan out 3 

3   Threat Model 

Alice is the owner of the software. She added a watermark to the R-tree. She released 
only the binary source of her software. Mallory wants to use Alice software without 
paying intellectual property royalty, thus, he tries to get rid of the watermark that 
Alice inserted to avoid legal actions.  

Before exploring various types of attacks that Mallory can invoke, let us define the 
following terms: 

Robust watermark: Robustness and security are relative measures. There is no 
system that is 100% secure or a watermark that is 100% robust. However, a system is 
considered secure or robust enough  

• if the cost of breaking into the system exceeds the cost of the system or 
benefit from breaking into it, or 

• if the time required to break into the system exceeds the life time of the data. 
Let us assume that Mallory wants to remove the watermark from the code 
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before a certain deadline (like, submission date, inspection or court date). If 
removing the watermark would take more than the available time window, 
then the watermark is considered secure or robust. 

Code obfuscation: is a set of transformations on a program that preserve the same 
semantic and specification while making it difficult to reverse-engineer the code. 
Code obfuscation is very similar to code optimization, except that, obfuscation 
maximizes obscurity, whereas, optimization minimizes execution time 

Reverse engineering: Mallory would use reverse engineering (through de-
compilation), to figure out the functionality of the code or identify the watermark and 
remove it. In [5] it has been argued that the time needed to reverse engineer an 
obfuscated code is similar to the time needed to rewrite the code from scratch and 
thus reverse engineering is not a viable attack scenario. If reverse engineering is the 
only attack that an adversary can invoke on the watermark, then, according to the 
above definition, the watermark is considered robust enough.  

Attacks against watermarks fall in three main categories [8][22]: 

1) Subtractive attacks: In this type of attack, Mallory tries to remove the 
watermark from the software program inserted by Alice. However, by doing 
that he might damage parts of the program or some of its functionalities. 
Thus, the attack is considered successful if the software still retains enough 
original content to be of value to Mallory. 

2) Distortion attacks: Mallory might not be able to remove the watermark all 
together but he might be able to damage or distort the watermark in a way 
that Alice can not prove the ownership of the code. Mallory should be 
willing to accept some degradation in quality or the performance of the 
stolen software. 

3) Additive attacks:  Mallory can insert his own watermark to the software. The 
new watermark can either replaces the original watermark or is inserted in 
addition to the original watermark and thus it would be difficult to prove 
which watermark was inserted first.  

4   Design Considerations 

Throughout the paper, the notation in Table 1 will be used. 

Table 1. Notations 

W Watermark 
M Minimum number of entries per node 
M Maximum number of entries per node 
E A set of entries, where entries ordered as: 

E = {E1,E2,E3…Ek} 
ER The set of entries E sorted according to the reference order. 
EW The set of entries E after embedding the watermark. 
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The proposed watermarking technique makes use of the fact that R-trees do not put 
requirements on the order of entries inside the R-tree node and hides the watermark W 
in the order of entries. Thus, the size of watermark (W) that can be hidden depends on 
the size of the node (number of entries).  

4.1   Location of the Watermark 

The actual number of entries (fanout) in the R-tree node varies from one node to 
another depending on the size of the data and the order of insertion. However, R-trees 
guarantee that nodes are at least half full. To avoid frequent and significant update 
overhead, the proposed watermarking algorithm uses only the first M/2 entries that 
are guaranteed by R-trees, to hide the watermark. This way the watermark has 
minimal overhead on the insertion and deletion operations. Typical R-tree node can 
have couple of hundred entries, so W can be a very large number.   Corollary 2.1 
gives a bound on the values of W that can be stored in a given R-tree node.  

R-trees have two types of nodes: leaf nodes and non-leaf nodes. However, the 
structure of the leaf nodes is similar to the structure of the non-leaf node2. The 
proposed watermarking algorithms do not differentiate between leaf and non-leaf 
nodes and treat them similarly.  

There are three possible scenarios for selecting the location of the watermark.  

• Store the watermark in a single node 
• Store carbon copies of the watermark in a selected subset of nodes or  
• Store carbon copies of the watermark in all the nodes.  

Contrary to the common practice in image watermarking, hiding the watermark in 
a single or subset of nodes is easier to detect. Since the code will treat the 
watermarked node(s) differently, this might alert the adversary that those nodes might 
be hosting watermarks. Thus, the proposed scheme stores the watermark in all the 
nodes. 

Typical R-tree consists of thousands of nodes. Since we are using all the nodes, 
one might also hide multiple messages or a large file. This is useful for steganography 
applications. The file can be divided into small messages.  Each message is embedded 
in one node in the R-tree.  

On the other hand, hiding the same watermark (or message) in all nodes offers 
redundancy that makes the watermarking scheme more robust against possible 
subtractive attacks. In this paper, we store the same watermark W in all nodes.  

4.2   The Effect of R-Tree Operations on the Watermark 

The operations that are performed on R-trees can be classified into two main 
categories: retrieval operations and update operations. Examples of retrieval 
operations are range queries, nearest neighbor queries and set theoretic queries. 
Update operations include insertion, split, deletion, and merge. Since the watermark is 
hidden in the order of entries inside the node, we will investigate the effect of these 
operations on the entries order. 

                                                           
2  Entries in the leaf nodes point to other R-tree nodes while entries in the leaf nodes point to the 

object description. 
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Retrieval Operations: These types of operations do not interfere with the 
watermark because they do not change the data or the structure of the R-tree. On the 
other hand, the update operations affect the data and the structure of the R-tree. The 
problem arises when these operations change the order of the entries inside the node, 
because these changes might corrupt the watermark. 

Split Operations: Splits take place after insertions when nodes overflow. The 
overflowed node is split into two nodes each with at least M/2 entries. The 
watermarking algorithm should be invoked after split is performed to rebuild the 
watermark. 

Insertion Operation: Insertion adds a new entry to an existing R-tree node. 
Entries are stored in a sequence. The new entry is inserted in the first available 
location which will be in the second half of the node3. But since the proposed 
algorithm uses only the first M/2 entries for watermarking so inserting a new entry (or 
object) will not affect the existing watermark. Thus, the watermarking algorithm 
needs not to be invoked after insertion operations.  

Deletion Operations: deletion operations remove entries from anywhere inside the 
node. Thus, deletion might affect the existing watermark. Moreover, a merge 
operation might be needed if number of entries fall below the threshold (M/2). Thus 
the watermarking algorithm should be invoked after the deletion and merge 
operations. 

Since the R-tree is stored on the disk, Mallory might try to change the order of the 
entries and corrupt the watermark even if the program is not running. But since the 
watermarking algorithm is crafted inside the code, Alice can always prove her claim 
by inserting enough objects to the database to cause splits and create new nodes that 
carry the watermark. The following theorem gives the number of objects that one 
needs to insert to guarantee at least one split in each node.  

Theorem 1 
For any R-tree of height h, all leaf nodes are going to split at least once if T entries 
are added, where T is given by: 

T = Mh – m(Mh-2 + 1) + 1 (2) 

Proof 1 
Since each non-leaf node can have a maximum of M entries, then maximum number 
of leaf nodes = Mh-1. Similarly, the minimum number of leaf nodes equal to  Mh-2 + 1 

Therefore, the maximum number of data objects (entries at the leaf level) is given 
by:  

Emax = M * (Mh-1) = Mh 
Minimum number of leaf entries  

Emin =  m (Mh-2 + 1) 
The number of insertions that guarantees at least one split is given by (Emax – Emin 

+ 1).  Where 
Emax – Emin + 1 =  Mh  - [m ( Mh-2 + 1)] + 1                                       □ 

                                                           
3 The first M/2 entries are inserted by the split algorithm not the insertion algorithm. 
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5   Watermarking Algorithm 

This section describes the proposed watermarking technique: the watermark 
embedding algorithm and the watermark extraction algorithm.  

5.1   The Basic Idea 

The proposed watermarking technique mainly rearranges the entries of the node4 in 
such a way to reflect the watermark W that we would like to hide. To achieve that we 
establish a one to one  mapping between all the permutations of the entries at one side 
and all possible values of W at the other side. Then we use circular shift operator to 
move entries to their new positions. After fixing the position of the first entry, we 
apply the circular shift operator on other entries to fix the position of the second entry 
and so on and so forth. 

Basically, there are k! different ways to arrange the entries E1, …, Ek. If W is an 
integer decimal number with d digits, then there are 10d different possible value for 
W. The first problem we faced is that the number of possible values of W represented 
in decimal radix format does not match the number of permutation k!. Moreover, we 
realized the need to use a flexible numbering system that can work with variable radix 
and an alphabet with variable size. Popular numbering systems use fixed radix. For 
example, decimal systems use radix 10, while binary system uses radix 2. 

We worked out the requirement and details of a numbering system that fulfills the 
previous two requirements. Later, we found an unpopular numbering system that was 
dated back to 1800s that is similar to ours, called factorial numbering system [13] 
[12].  Before applying the embedding algorithm we convert W from the decimal 
system to a factorial system. The following subsection gives a brief description of the 
factorial number system, and some of its interesting features. 

The embedding algorithm first sorts the entries according to the reference order ER. 
Then, the entries are shuffled in such a way to reflect the factorial form of W. Starting 
from the reference order ER we use circular (left) shift operations to change the order 
of entries. The number of shift operations depends on the value W. Each node entry Ei 
moves a number of positions depending on the values of one of the digits of W.  

This can be better explained by an example. Let us assume that there are four 
entries A, B, C, D in the R-tree node and W = “311”. The reference order ER is 
{A,B,C,D}. Since W has three digits, then the shuffling function will go through three 
rounds, as illustrated in Fig.2.  

Since the first digit in W is 3, during the first round, all entries will be shifted to the 
left three positions as in Fig.2.a a resulting in the new order {D,A,B,C}. In the second 
round, the entries {A, B, C} will be shifted only once, resulting in {D,B,C,A}. The 
third round shifts the entries {C, A} one time. The final order of the entries would be 
{D,B,A,C}. 

The watermark W can be extracted by comparing the watermarked entries to the 
reference order ER. We use a procedure similar to that in Fig.2. We use circular shift 
to align symbols from ER to EW.  The number of shifts needed to align the first entry 
(symbol) is the first digit in W. The extraction algorithm is described in Section 0. 

                                                           
4 Calculated relative to some presumed reference sequence ER of entries. 



 Watermarking Essential Data Structures for Copyright Protection 249 

ER

(c) Round 3 (d) Output

A B C D D A B C

D B C A D B A C

(a) Round 1 (b) Round 2

3   1  1

 3    1    1 3   1  1

A B C D

 

Fig. 2. Example of watermarking embedding 

5.2   Factorial Number System 

In the factorial system the base of each digit is the factorial of that place index, e.g. 
place n is of base n!. Any integer can be represented in the form: 

∑
=

n

k

k ka
1

]!*[  (3) 

For example, the integer 859 can be represented as  
(1*1!) + (0*2!) + (3*3!) + (0*4!) + (1*5!) + (1*6!) which is equivalent to 110301 

in the factorial system.  
Based on the above, we can define a factorial number (FN) as: a number where the 

base of the kth place is k!, and the allowed coefficients are between 0 and k. This 
condition is important to guarantee one-to-one correspondence between the 
permutation of the entries and the value of W. For example, a four digits number in 
the factorial system would have the base and coefficient values presented in Table 3. 

Table 2. The relationship between the base and the allowed coefficients in the factorial number 
system. 

Place Base Coefficient value 
1 1! = 1 0,1 
2 2! = 2 0,1,2 
3 3! = 6 0,1,2,3 
4 4! = 24 0,1,2,3,4 
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The following is an algorithm to convert a number from decimal radix system to 
factorial radix system: 

This algorithm converts from decimal to factorial system 
Input:
   Decimal number (x) 
Output:
   Factorial number (m) 
Algorithm:
   1. //Find number of digits n: 
   Choose largest L such that: L ! < x 
     n = L 
     m = int [n] 
   2.//Find digits: 
     //assume digits are numbered as
     //{ n, n-1, n-2…, 2, 1} 
    for (i = n; i>1;i--){ 
      Find largest k in the range [i, 0] such that

 k* ( i !) < x 
      m [i] = k 
      x = x – (k*(i !)) 
    } 

 //remainder is put in the least significant digit 
   m [i] = x

 

Fig. 3. Conversion from decimal to factorial 

To convert from factorial to decimal we use Equation 2. The following theorem 
and corollary give the largest integer value of W that can be embedded in m entries. 

Theorem 2 
The decimal value of the largest m-digits factorial number equal to: 

(m+1)! - 1 (4) 

Proof 2 
Let xd be the decimal value of the largest factorial number that can be stored in m 
places. 

From equation (3):  xd =  ∑
=

n

k

k ka
1

]!*[   …. (a) 

We know from the definition of factorial numbers that ak can have values in the 
range [0 , k]. 

Since we want to find the largest number that can fit in m places, we give ak the 
maximum possible value which is k. Equation (a) can be rewritten as: 

∑
=

=
n

k

d kkx
1

]!*[   ... (b) 

We want to prove that :  

∑
=

−+=
n

k

kkk
1

1)!1(]!*[  … (c) 
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Using induction: 

1) for k = 1, x = 1*1! = 1 = (1+1)!-1  
2) assume equation (c) is true, we want to prove that (c) is valid for k+1: 
 

        1)!2(]!*[
1

1

−+=∑
+

=

nkk
n

k

 … (d) 

∑
+

=

1

1

]!*[
n

k

kk  = ∑
=

n

k

kk
1

]!*[  + (n+1)(n+1)! 

From (c) we substitute ∑
=

n

k

k!k
1

]*[  with (n+1)! – 1: 

(n+1)! – 1 + (n+1)(n+1)! 
=    (n+1)!(n+2) 

                              =  (n+2)! – 1                  □

Corollary 2.1 
The permutation of k items equals to the maximum factorial number that can be saved 
in k-1 places 
 
Proof 2.1 
Suppose we have k items. 

The permutation of k items = k

kP  = k! 

Excluding the initial state, k! -1 ….. (a) 
Let L be a factorial number saved in k-1 places. 
Using theorem 2: the maximum value of L is: 

( (k-1) + 1) ! – 1 = k! – 2 …. (b) 
from (a) and (b) Corollary is proved.                                                                             □ 

The above corollary clarifies the relationship between the size of the node and the size 
of the watermark W that it can hide. For example, if page size is 8 KBytes, then an R-
tree node can store up to 400 entries. Recall that the watermarking algorithm will only 
use the first half of the entries in the watermarking process. Then if the node 
maximum capacity M = 400, then 200 entries can be used for the watermarking 
process. Then using Corollary 1, each node can hide a numerical value of W up to: 

200! =7.89 * 10374. 

5.3   Embedding Algorithm 

The problem that is addressed in this section can be formulated as follow: 
Develop an encoding scheme that takes as an input  

1) a numeric value W; 
2) a set of entries E; and  
3) Reference order ER.   
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The encoding scheme should produce a new order EW such that: 

• EW contains same set of entries in E and ER 
• Given EW and ER one can uniquely extracts W 
• The calculation of EW and the extraction of W are efficient and simple 

The initialization step converts W from decimal radix system to the factorial radix 
system. Recall that the order of entries inside the R-tree node is arbitrary and depends 
on the order of their arrival. To be able to retrieve W from the watermarked node, the 
entries E should be sorted relative to some default order ER. This order should be 
secret and known only to Alice (the owner) to be able to extract W later.  ER can be an 
arbitrary order or a sort according to some index. For example entries can be sorted 
on the x-coordinate of the upper left corner of the Minimum Bounding Rectangle 
(MBR) 28] or sorted according to the Hilbert order [15].  

The shuffling algorithm mainly applies circular-left shift on subsets of entries 
starting with the order ER. The number of location shifted equal to W[i] where W[i] is 
the value of the ith digit in factorial radix system. The following is a description of the 
algorithm. 

Input:
E with k entries ,
Watermark W, number of digits in W is k-1 

Output:
Watermarked set (EW)

Algorithm:
For ( i = k-1 ; i > 0 ; i--) 

   //Circular-left-shift the subset E [x , y] by the value W [i]
        leftCircularShift (W [i] , E[i+1, k ])
Where: E[x , y] is a subset of E that contains entries from x to y
and W[i] is the ith digit in W

 

Fig. 4. Shuffling function 

5.4   Extraction Algorithm 

The extraction algorithm is the reverse of the watermarking algorithm. Given a 
watermarked node and the reference order ER we need to retrieve the value of W. This 
is achieved by applying the circular shifts on ER multiple times in order to make it 
looks like EW. The number of applied shifts is used to construct the watermark W. 
This can be better explained by a counter example. Let us assume E contains four 
entries A,B,C, and D. The watermarked order is EW = {D, B, A, C}. Let us also 
assume that the default order ER is {A,B,C,D}.  

The algorithm mainly tries to align each element from ER with the corresponding 
element from EW. The first element in EW is “D”; therefore, we need to apply 3 left-
circular shifts on ER in order to achieve this alignment as shown in Figure 5. The 
value “3” is the most significant digit in W (in factorial radix system). Now ER = 
{D,A,B,C}. The entry “D” is in its final position and will not be included in the 
subsequent circular shift operations. Then apply the same procedure to the next entry 
“B”. Shift the entries {A, B, C} one position to the left. Thus, second digit of W is 1 
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Ew

Ew

W

W

ER

3 1 1

3   1

W

(b) Round 2

(a) Round 1

D B A C

A B C D

D B A C

D A B C

(c) Round 3

D B A C

D B C A

3W

3

1

Ew
W

1

 

Fig. 5. Example of extracting W from ER and EW 

and the resulting ER is {D, B, C, A}. Now “D” and “B” are in their final positions and 
will not be included in future shift operations. Finally, to align the last two entries in 
ER, A and C should be shifted one position. The final result of W would be “311”.  

The extraction algorithm is described in pseudo-code in Figure 5.  

Input:
Watermarked node NW
Reference node NR
Output:
WF: watermark in the factorial format.

Algorithm:
Node temp = NR    //copy reference node 
int k = NW.size   
int  W [ k-1]   // W has k-1 places 

for (i = k-1;  i > 0 ; i--){ 
//find the distance of the entry Ei+1 between the subnode N-Si and temp 

W [i] = CalculateDistance (NW -Si ; temp ; NW [ i + 1] ) 
temp = left CircularShift ( temp , W [i] ) 
temp = temp-Si-1

}
 

Fig. 6. Extraction Algorithm 

In Fig.5 the function CalculateDistance() calculates the number of circular shift 
operations that needed to align an element from ER with the corresponding element 
from EW. 
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6   Watermark Evaluation 

A watermark is considered robust if it stands various attacks and distortion attempts. 
This section presents threat analysis for the proposed watermarking technique and 
discusses the effect of the watermark addition on the performance of the R-tree. 

6.1   Threat Analysis 

From among the three types of attacks that were discussed in Section 3, the additive 
attack is the easiest attack to invoke because it requires zero knowledge about the 
watermark used in the program. Mallory does not even need to know whether the 
program is watermarked or not. On the other hand, the subtractive attack requires 
more knowledge about the location of the watermark and how it is stored. Distortion 
attack is easier than subtractive attack because the adversary does need to know much 
accurate information about the exact location of the watermark.    

Subtractive attack: Subtractive attacks as defined in Section 3 can not be invoked 
against the proposed watermarking technique because the watermark is not occupying 
physical space in the R-tree data structure; rather, it is encoded in the relative order of 
the entries inside the R-tree node. However, the adversary might try to invoke 
subtractive attack by deleting the whole R-tree. In this case, the performance of the 
code will be affected significantly or it might not work properly. Since R-tree is a 
secondary storage index structure, Mallory might create a new R-tree that does not 
contain (Alice) watermark, yet it is similar to Alice R-tree and uses it with Alice’s 
code.  The dynamic nature of the proposed watermark provides the solution. Although 
removing the current R-tree and embedding another one would remove the watermark 
from pre-watermarked nodes, it can not stop the software from watermarking new 
nodes. If any split or delete operation is invoked, the watermarking algorithm would 
be executed. So by inserting enough new objects in the new R-tree, Alice watermark 
will be created again. Theorem 1 gives the number of objects needed to be inserted to 
force all the nodes in the R-tree to split at least once.  

Distortion attack: If Mallory suspects that there is a watermark hidden in the 
order of entries, he can access the R-tree, using external code and randomly shuffle all 
entries in the R-tree node. Again by doing that, the adversary has only corrupted the 
current watermarks; however, he will not be able to block future watermarks. 
Therefore, Alice can prove to the judge that she is the owner of the code after 
inserting T new objects (as defined in Theorem 1) in the R-tree to build the watermark 
again.  

Additive attack: Here Mallory would blindly add his watermark to the software or 
the R-tree, making it difficult to recognize which watermark is the authentic one. This 
problem is called the “false claim of ownership”. In practice, no watermarking 
technique is immune to this type of attack 6.  One possible solution is to register the 
watermarks with a third party and time stamp them [30] [38] [37].  In this way the 
real owner can show that his/her watermark is the original because it has older 
timestamp. 

The above analysis is based on the common assumption that the software is 
protected and can not be reverse-engineered. Many current software uses obfuscation 
and other techniques to render the process of reverse-engineering. However, if 
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Mallory succeeds in obtaining the original code, then applying subtractive and 
distortion attacks would be much easier. In our algorithm, if Mallory was able to 
reverse engineer then he can replace the watermarking algorithm with a code that 
shuffles the R-tree nodes randomly causing meaningless extraction of watermark. 
However, the accuracy of the current reverse-engineering tools [24], and the size of 
code would normally make the cost of reverse engineering an obfuscated code more 
than the cost of building it from scratch [5]. 

6.2   Effect on the R-Tree Performance 

The addition of the watermark to the R-tree has minimal effect on its performance. 
The most frequent and critical operation in the R-tree is the data retrieval, e.g., range 
query, nearest neighbor query, join query, etc. Neither the watermark itself nor the 
watermark embedding algorithms affects R-tree retrieval operations.  

The watermarking algorithm is dynamically called after each split/merge or delete 
request. In practice, split and delete operations are less frequent than insertion and 
data retrieval operations. Moreover, the watermarking algorithm is a memory-based 
and it uses simple operations, like, circular shift; therefore, the execution time is 
negligible. 

With respect to the space, the insertion of a watermark in the R-tree does not affect 
the size of the tree because it is does not occupy physical space on the disk. It is rather 
encoded in the order of the entries inside the node (relative to a secrete order that is 
known to the owner only). 

7   Related Work 

Security research attracted a lot of interest in the research community in areas like 
databases [35] [32] [4], data mining [9], and Internet transaction [21][ 3].  

The first dynamic software watermark was presented in [6]. The scheme embeds 
the watermark in the topology of a dummy graph that is built on the heap at runtime.  
This scheme can be attacked by modifying the pointer topology of the program’s 
fundamental data types, which in turn would change any data structure built at run 
time. This scheme has been implemented in [19]. The paper provides a detailed 
discussion on the possible attacks. Khanna and Zane [40] describe a scheme for 
encoding information in the weights of a graph representing a map so as to preserve 
shortest paths. 

Similar technique was presented in [36], where a watermark is embedded in a 
control-flow graph that is never executed. Likewise, [2] suggested embedding the 
watermark in a dummy method that is never executed.  

A different approach is presented in [30]. The watermark is embedded in values 
assigned to designated integer local variables during program execution. The main 
feature of this scheme is that the watermark can be recovered even if only small part 
of the code is present. This scheme has been analyzed in [7]. The scheme can be 
attacked by obfuscating the program such that local variables representing the 
watermark cannot be located. 
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Database watermarking technique was introduced in [33] which slightly degrades 
the data. The main idea is to insert the watermark in the least significant bits in the 
data values. The authors suggest choosing data that are not sensitive to small changes, 
e.g., temperature. [25] proposed a technique for data forensics of main memory data 
structures. The technique is based on a new reduced-randomness construction for 
non-adaptive combinatorial group testing and it hides information in main memory 
data structures e.g., arrays, linked list, binary search tree and hash tables to enable 
them to detect any alteration in the data stored.  

Watermarking XML documents was studied by Gross-Amblard [10] and Sion et 
al. [34]. The idea is to hide the watermark in certain values in a way that preserve the 
answers to certain queries.  

8   Conclusions and Future Work 

In this paper we presented a novel technique for hiding watermarks in R-tree data 
structure. We utilized the fact that R-trees do not put requirements on the order of 
entries inside the node. The entries are carefully re-ordered according to the value of 
the watermark. The new order is calculated relative to a secret order ER using a 
numbering system with variable radix and factorial base. We presented detailed 
algorithms for embedding and extraction watermarks and an algorithm that provides a 
one to one correspondence between a numerical value of the watermark (W) and the 
permutation of a set of entries. Moreover, the watermark does not increase the size of 
the R-tree. We provided a threat model for software watermarking and a threat 
analysis for our proposed method.  

Since data structures are essential part of the program logic and their removal 
would affect manifestly the functionality of the program, we argue that hiding the 
watermark inside data structures that are used by the software makes the watermark 
more robust. In the future, we will extend our technique to hide watermarks in other 
data structures like, B-trees, Binary trees, K-D tree etc.  
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