
Informed Recognition in Software Watermarking

William Zhu�

Department of Computer Science,
University of Auckland, Auckland, New Zealand

fzhu009@ec.auckland.ac.nz

Abstract. Software watermarking is a technique to protect programs
from piracy through embedding secret information into the programs.
As software unauthorized use and modification are ubiquitous in the
world, progresses in software watermarking will certainly benefit software
research and industry. In this paper, we study one of core concepts in this
area – informed recognition. To recognize a watermark in a software is
to judge the existence of such a watermark in the corresponding software
code.

1 Introduction

Since the unauthorized use and modification of software are pervasive around
the world, software security becomes an important issue [5,6,7,19,20]. Software
watermarking is a method to protect copyright of programs by inserting secret
messages into the programs. With the rapid development of intelligence and
security informatics [8,15], we find a new potential application area of software
watermarking. Combined with other techniques, software watermarking can also
be used in database protection [2] and information security problems [1].

The basic definitions of software watermarking concepts appeared in the early
papers by Collberg et al. [5,6]. They also defined the extraction and recognition
of software watermarks, but these definitions are not very formal and detailed.
Nagra et al. [12,13] and Thomborson et al. [14] classified software watermarks
from a functional view. Concepts and techniques of software watermarking also
abound in [6,9,11,16].

Zhu and Thomborson formally defined embedding, extraction, and recognition
in papers [19] and [20]. This paper follows the above two papers to define con-
cepts such as positive-partial informed recognitions, negative-partial informed
recognitions, and informed recognitions corresponding to embedding algorithms.

This paper is organized as follows. Section 2 gives the concepts of embed-
ding, extraction and recognition. Section 3 is the focus of this paper. We define
the concepts of informed recognition such as positive-partial informed recogni-
tion, negative-partial informed recognition, and informed recognition. Section 4
concludes our paper.

� Research supported in part by the New Economy Research Fund of New Zealand.

C.C. Yang et al. (Eds.): PAISI 2007, LNCS 4430, pp. 257–261, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



258 W. Zhu

2 Embedding, Extraction and Recognition

A software watermarking system must do two basic things: embed a watermark
into a software object, then extract all bits of the watermark inserted by itself,
or recognize whether or not there exists a watermark embedded by itself. In this
section, we introduce some concepts of embedding a watermark into, extract-
ing a watermark from, and recognizing a watermark from a software program.
These issues were already addressed in our previous paper [19,20]. We need these
concepts to define the concepts of informed recognition.

Informally speaking, to embed a software watermark into a program is to
insert a secret message into this code. We formally define this concept as follows.

Definition 1. (Watermark) A watermark is a message of bits of 0 and 1 with
a finite length ≥ 0. We denote the set of all watermarks as W.

Definition 2. (Embedding) Let P denote the set of programs and W the set of
watermarks. We call a function A : P × W → P an embedder.

If P ′ = A(P, W ) for some P ∈ P and some W ∈ W, then the P ′ is called the
watermarked program and P ∈ P the original program.

After a watermark is inserted in a cover message using an embedder, an impor-
tant consideration is the potential for an algorithm to extract this watermark.
The following definition specifies all potential watermarks an embedder can in-
sert into a program. This set excludes messages which do not change a cover
program.

Definition 3. (Set of candidate watermarks) A W ∈ W is called a candidate
watermark with respect to a program P and an embedder A if A(P, W ) �= P . All
candidate watermarks constitute the set of candidate watermarks of the program
P and the embedder A. This set is denoted as candidate(P, A).

As for the detailed concepts of extraction and recognition in software water-
marking, please refer to papers [19,20].

3 Informed Recognition

For positive-partial recognizers, negative-partial recognizers, and recognizers de-
fined in last section, we provide the original program and the suspected water-
marked program as their inputs to judge whether the suspected watermarked
program has a watermark. In this section, we define a new type of recognition,
informed recognition, in which a recognizer is given an original program, a sus-
pected watermarked program, and a suspect watermark as its inputs.

We divide informed recognition into three classes: positive-partial informed
recognition, the negative-partial informed recognition, and informed recognition.
For a positive-partial informed recognition, if a program really has a specific
watermark, the recognition will detect it. But, such an informed recognition
might say a program has a watermark while this program actually has no such
a watermark.



Informed Recognition in Software Watermarking 259

Definition 4. (Positive-partial informed recognition) Let A : P × W → P be
an embedder, PIR : P×P×W → {TRUE, FALSE} a function. If PIR satisfies
that ∀P, P ′ ∈ P, if there is a W ∈ candidate(A, P ) such that P ′ = A(P, W ), then
PIR(P ′, P, W ) = TRUE, we call PIR a positive-partial informed recognition
function corresponding to the embedder A, or simply a positive-partial informed
recognizer.

The partial recognition concepts are very flexible. The following is an example
of positive-partial informed recognition.

Example 1. (Trivial positive-partial informed recognizers) For an embedder A :
P × W → P, define a function S : P × P × W → {TRUE, FALSE}, as follows:

∀P ′, P ∈ P, W ∈ W, S(P ′, P ) = TRUE.

This is a positive-partial informed recognition corresponding to A. We call such
a function a trivial positive-partial informed recognizer corresponding to A and
denote it as TPIR(A).

For a negative-partial informed recognizer, if it says a program has a watermark,
this program really has a watermark. But, such a recognizer might say a pro-
gram do not have a specific watermark while this program actually has such a
watermark.

Definition 5. (Negative-partial informed recognition) Let A : P × W → P be
an embedder, NIR : P×P×W → {TRUE, FALSE} a function. If NIR satisfies
that ∀P, P ′ ∈ P, NIR(P ′, P ) = TRUE =⇒ P ′ = A(P, W ) for some W ∈ W,
we call NIR a negative-partial informed recognition function corresponding to
the embedder A, or simply a negative-partial informed recognizer.

We present an example of negative-partial informed recognition.

Example 2. (Trivial negative-partial informed recognizers) For an embedder A :
P × W → P, define a function S : P × P × W → {TRUE, FALSE} as follows:

∀P ′, P ∈ P, W ∈ W, S(P ′, P, W ) = FALSE.

This is a negative-partial informed recognizer corresponding to A. We call such a
function a trivial negative-partial informed recognizer and denote it as TNIR(A).

For a complete informed recognizer, if a program has a watermark, the recognizer
will say that this program has a watermark; if a program has no watermarks,
the recognizer will say that this program has no watermarks.

Definition 6. (Informed recognizer) For an embedder A : P × W → P, if
a function R : P × P → {TRUE, FALSE} satisfies ∀P, P ′ ∈ P, W ∈ P,
R(P ′, P, W ) = TRUE ⇐⇒ P ′ = A(P, W ) for some W ∈ candidate(A, P ),
we call R a complete informed recognition function for the embedder A, or sim-
ply an informed recognizer. We say that A is informed recognizable if there exists
a recognizer for A.



260 W. Zhu

Theorem 1. For every embedder A, there exists one and only one informed
recognizer corresponding to A. We denote the unique recognizer corresponding
to A as IR(A).

Proof. ∀P, P ′ ∈ P, W ∈ P, define IR(P ′, P, W ) as follows:
IR(P ′, P, W ) = TRUE, if there is some W ∈ candidate(A, P ) such that

P ′ = A(P, W ).
IR(P ′, P, W ) = FALSE, otherwise.
It is easy to see IR is a recognizer corresponding to A. 	


From Theorem 1 and Example 8 in [19], not all embedders are extractable, but
every embedder is informed recognizable.

Theorem 1 shows there is one and only abstract informed recognizer, but there
might be several concrete recognition algorithms to realize such an informed
recognizer.

Property 1. For every embedder A, IR(A) is both the positive-partial and the
negative-partial informed recognizers corresponding to A.

An extreme positive partial informed recognizer will always say a program has
a watermark while an extreme negative partial informed recognizer will always
say a program has no watermarks. These two informed recognizers are not useful
in practice. Now we consider the relative strength of two informed recognizers.

Definition 7. (Strength of partial informed recognizers) Let PIR1 and PIR2
be two positive-partial informed recognizers corresponding to an embedder A. If
∀P, P ′ ∈ P, W ∈ W, PIR2 (P ′, P, W ) = TRUE =⇒ PIR1 (P ′, P, W ) = TRUE,
we say PIR2 is at least as strong as PIR1 .

Let NIR1 and NIR2 be two negative-partial informed recognizers correspond-
ing to an embedder A. If ∀P, P ′ ∈ P, W ∈ W, NIR1 (P ′,P , W )= TRUE =⇒
NIR2 (P ′, P, W ) = TRUE, we say NIR2 is at least as strong as NIR1 .

Property 2. For an embedder A, TPIR(A) is the weakest positive-partial in-
formed recognizer and IR(A)) is the strongest positive-partial informed recog-
nizer corresponding to A.

TNIR(A) is the weakest negative-partial informed recognizer and IR(A) is
the strongest negative-partial informed recognizer corresponding to A.

4 Conclusions

Recognition is a very complicated concept in software watermarking. In this
paper we define the concepts involved in informed recognition. We have not
considered the attack issue in this paper. How to recognize watermarks from
attacked programs is challenging research topic in software watermarking. We
will also study how to combine software obfuscation [3,4,17,18] and software
watermarking to develop more secure software watermarks.



Informed Recognition in Software Watermarking 261

References

1. Aleman-Meza, B., Burns, P., Eavenson, M., Palaniswami, D., Sheth, A.: On onto-
logical approach to the document access problem of insider threat. In: ISI 2005.
Volume 3495 of LNCS. (2005) 486–491

2. Chen, Y., Chu, W.W.: Databases security protection via inference detection. In:
IEEE ISI 2006. Volume 3975 of LNCS. (2006) 452–458

3. Collberg, C., Thomborson, C., Low, D.: A taxonomy of obfuscating transforma-
tions. In: Tech. Report, No.148, Dept. of Computer Sciences, Univ. of Auckland.
(1997)

4. Collberg, C., Thomborson, C., Low, D.: Manufacturing cheap, resilient, and
stealthy opaque constructs. In: POPL’98. (1998) 184–196

5. Collberg, C., Thomborson, C., Low, D.: On the limits of software watermarking.
In: Technical Report #164, Department of Computer Science, The University of
Auckland. (1998)

6. Collberg, C., Thomborson, C.: Software watermarking: Models and dynamic em-
beddings. In: Proceedings of Symposium on Principles of Programming Languages,
POPL’99. (1999) 311–324

7. Collberg, C., Thomborson, C.: Watermarking, tamper-proofing, and obfuscation
- tools for software protection. IEEE Transactions on Software Engineering 28
(2002) 735–746

8. Mehrotra, S., Zeng, D.D., Chen, H., Thuraisingham, B.M., Wang, F.Y.: Intelligence
and security informatics. In: ISI 2006. Volume 3975 of LNCS. (2006)

9. Monden, A., Iida, H., ichi Matsumoto, K., Inoue, K., Torii, K.: Watermarking java
programs. In: International Symposium on Future Software Technology ’99. (1999)
119–124

10. Moulin, P., O’Sullivan, J.: Information–theoretic analysis of information hiding.
IEEE Transactions on Information Theory 49 (2003) 563–593

11. Myles, G., Collberg, C.: Software watermarking through register allocation: Im-
plementation, analysis, and attacks. In: LNCS 2971. (2004) 274–293

12. Nagra, J., Thomborson, C., Collberg, C.: A functional taxonomy for software wa-
termarking. In Oudshoorn, M.J., ed.: Twenty-Fifth Australasian Computer Science
Conference (ACSC2002), Melbourne, Australia, ACS (2002)

13. Nagra, J., Thomborson, C.: Threading software watermarks. In: IH’04. (2004)
14. Thomborson, C., Nagra, J., Somaraju, He, Y.: Tamper-proofing software water-

marks. In: Proc. Second Australasian Information Security Workshop(AISW2004).
(2004) 27–36

15. Xia, Z., Jiang, Y., Zhong, Y., , Zhang, S.: A novel policy and information flow
security model for active network. In: ISI 2004, LNCS. Volume 3073. (2004) 42–55

16. Zhu, W., Thomborson, C., Wang, F.Y.: A survey of software watermarking. In:
IEEE ISI 2005. Volume 3495 of LNCS. (2005) 454–458

17. Zhu, W., Thomborson, C.: A provable scheme for homomorphic obfuscationin in
software security. In: The IASTED International Conference on Communication,
Network and Information Security, CNIS’05, Phoenix, USA (2005) 208–212

18. Zhu, W., Thomborson, C., Wang, F.Y.: Application of homomorphic function to
software obfuscation. In: WISI 2006. Volume 3917 of LNCS. (2006) 152–153

19. Zhu, W., Thomborson, C.: Extraction in software watermarking. In: ACM
MM&Sec’06, Geneva, Switzerland. (2006) 175–181

20. Zhu, W., Thomborson, C.: Recognition in software watermarking. In: 1st ACM
Workshop on Content Protection and Security, in conjuction with ACM Multimedia
2006, October 27th, 2006, Santa Barbara, CA, USA. (2006) 29–36


	Introduction
	Embedding, Extraction and Recognition
	Informed Recognition
	Conclusions
	References

