Deobfuscation
Reverse Engineering Obfuscated Code

Sharath K. Udupa,* Saumya K. Debray,” Matias Madou"

Abstract

In recent years, code obfuscation has attracted attention
as a low cost approach to improving software security by
making it difficult for attackers to understand the inner
workings of proprietary software systems. This paper ex-
amines techniques for automatic deobfuscation of obfus-
cated programs, as a step towards reverse engineering such
programs. Our results indicate that much of the effects
of code obfuscation, designed to increase the difficulty of
static analyses, can be defeated using simple combinations
of straightforward static and dynamic analyses. Our results
have applications to both software engineering and software
security. In the context of software engineering, we show
how dynamic analyses can be used to enhance reverse engi-
neering, even for code that has been designed to be difficult
to reverse engineer. For software security, our results serve
as an attack model for code obfuscators, and can help with
the development of obfuscation techniques that are more
resilient to straightforward reverse engineering.

1 Introduction

In recent years, code obfuscation has attracted some atten-
tion as a low cost approach to improving software secu-
rity [3, 5, 6, 7, 14, 15, 24]. The goal of code obfuscation
is to make it difficult for an attacker to reverse engineer
programs. The idea is to prevent an attacker from under-
standing the inner workings of a program by making the
obfuscated program “too difficult” to understand —that is,
by making the task of reverse engineering the program “too
expensive” in terms of the resources or time required to do
so. Obfuscation has also been used to protect “software
watermarks” and fingerprints, which are designed to thwart
software piracy [1, 5, 6]. The presumption is that making
it difficult for attackers to understand the internal workings
of a program prevents them from discovering vulnerabili-
ties in the code, and serves to protect the program owner’s
intellectual property.

*Department of Computer Science, The University of Arizona, Tuc-
son, AZ 85721, USA. Email: {sku, debray}@cs.arizona.edu
Supported in part by the National Science Foundation under grants CNS-
0410918 and CCR-0113633.

"Ghent University, St.-Pietersnieuwstraat 41, B-9000 Ghent, Belgium.
Email: mmadou@elis.ugent.be This research was funded by Ghent
University, by the Fund for Scientific Research-Flanders (FWO-Flanders).

It is important to note, however, that code obfuscation is
merely a technique. Just as it can be used to protect soft-
ware against attackers, so too it can be used to hide mali-
cious content. For example, some newer and more sophis-
ticated computer viruses, e.g., polymorphic viruses, have
resorted to using obfuscation techniques to prevent detec-
tion by virus scanners [20, 26].

This raises two closely related questions. The first ques-
tion, from a software engineering pespective, is: What
sorts of techniques are useful for understanding obfuscated
code? For example, suppose we have downloaded, from a
web site, a file purporting to be a security patch for some ap-
plication. Before applying the patch, we may want to verify
that the file does not contain any malicious payload. How
can we verify this if the contents of the file have been obfus-
cated? The second question, from a security perspective, is:
what are the weaknesses of current code obfuscation tech-
niques, and how can we address them? If our obfuscation
schemes are ineffective in thwarting attackers from reverse
engineering the code, then they are not only useless, but
are in fact worse than useless: they increase the time and
space requirements of the program, and can contribute to a
false sense of security that keeps other security measures
from being deployed. Thus, identifying any weaknesses
in current obfuscation schemes by developing and testing
attack models can lead to better obfuscation schemes and
concomitant improvements in software security.

This paper aims to address the questions raised above, re-
garding techniques for understanding obfuscated code and
the strengths and weaknesses of sophisticated obfuscation
algorithms. We describe a suite of code transformations
and program analyses that can be used to identify and re-
move obfuscation code and thereby help reverse engineer
obfuscated programs. We use these techniques to exam-
ine the resilience of the control flow flattening obfuscation
technique, which has been proposed in the research litera-
ture [2, 24, 25] and used in a commercial code obfuscation
product by Cloakware [4], against attacks based on combi-
nations of static and dynamic analyses. Our results indicate
that from the perspective of reverse engineering, simple dy-
namic techniques can often be very useful in coping with
code obfuscation. From a software security perspective, we
show that many obfuscation techniques can be largely neu-
tralized using combinations of simple and well known static
and dynamic analyses.

int f(int i, int j) f: +

{
int a = 0; A a=0
if (1 < 3) { i<j?
a = j; /N
; B
else j
do {

a *= i-—;
} while (i > 0);

return aj;

Figure 1: An example program and its control flow graph

Init

[t |

return a

Figure 2: Control flow graph after basic flattening
2 Obfuscating Transformations

Conceptually, we can distinguish between two broad
classes of obfuscating transformations. The first, surface
obfuscation, focuses on obfuscating the concrete syntax
of the program. An example of this is changing variable
names or renaming different variables in different scopes
to the same identifier , as carried out by the “Dotfuscator”
tool for obfuscating .NET code [18]. The second, deep 0b-
fuscation, attempts to obfuscate the actual structure of the
program, e.g., by changing its control flow or data reference
behavior [3, 6]. While the former may make it harder for
a human to understand the source code, it does nothing to
disguise the semantic structure of the program. It therefore
has no effect on algorithms used for reverse engineering,
such as program slicing, that rely on code structure and se-
mantics rather than the concrete syntax. For example, it is
straightforward to undo most of the effects of Dotfuscator-
style variable renaming simply by using a parser to resolve
variable references using the scope rules of the language
and rename variables accordingly. Deep obfuscation, by
contrast, changes the actual structure of the program, and
therefore affects the efficacy of semantic tools for program
analyses and reverse engineering. Intuitively, therefore,
working around deep obfuscation—which requires reason-
ing about semantic aspects of the program—is fundamen-
tally more difficult than working around surface obfusca-
tion, which is essentially a syntactic issue. This paper is

intAL..J; /* global array of indices */
int w; /* offset into array A */
call_site_1: call_site_2:
w = random, w = random,
Aw] =3 Alw] =3
Alw+1]=1 Alw+1]=1
Alw+2] =2 Aw+2] =2
call (i, j) call f(i, j)
NN .
Init
f =0

A
x=i<j?
Alw+1]
Alw+2]

Figure 3: Enhancing flattening with Interprocedural Data
Flow

concerned primarily with deep obfuscation techniques.

In this section, we look at three variants of control flow
obfuscation techniques taken from Chenxi Wang’s disser-
tation [23, 24, 25]. This approach has been considered by
other researchers as well [2] and is a key component of an
industrial obfuscation tool by Cloakware Inc. [4].

2.1 Basic Control Flow Flattening

Control flow flattening aims to obscure the control flow
logic of a program by “flattening” the control flow graph
so that all basic blocks appear to have the same set of pre-
decessors and successors. The actual control flow during
execution is guided by a dispatcher variable. At runtime,
each basic block assigns to this dispatcher variable a value
indicating which next basic block should be executed next.
A switch block then uses the dispatcher variable to jump in-
directly, through a jump table, to the intended control flow
SUCCESSOT.

As an example, consider the program shown in Figure 1.
Basic control flow flattening of this program results in the
control flow graph shown in Figure 2, where S is the switch
block and X the dispatcher variable.! The initial assignment
to the dispatcher variable X in the block Init is intended to
route control to A, the original entry block of f(), when con-

IStrictly speaking, Figure 2 is slightly inaccurate in that it shows that
the control flow from basic blocks A, B, and C come together into a single
block, at the bottom of the picture, from which it then branches to the top
of the switch block S. In practice, control would go directly from each of
A, B, and C directly to the top of S. We draw it as shown to reduce the
clutter of control flow edges and bring out the essential logic underlyig
the transformation. This becomes especially important when we consider
enhancements to the basic transformation, as illustrated in Figs. 3 and 4.

Init

inta, b, c,’p, *q

switch (x)
0
1
2 3 4 5 6 7 8 9
A B D
p=28b a=0 p=4b p=8b p=8b a=j p=38b p=3a a=ai
0=3 x=i<j?b:c p=4 *p=9 p=3 sw=b =8 =3 i=i-1 return a
q=8&c q=24&c = =5 - x=i>0?3:2
*q=6
sw=1

Figure 4: Enhancing flattening with artificial blocks and pointers

trol first enters the function; after this, control flow is guided
by assignments to X in the various basic blocks.

2.2 Enhancing Flattening I: Interprocedural Data
Flow

In the basic control flow flattening transformation discussed
in Section 2.1, the values assigned to the dispatch variable
are available within the function itself. Because of this,
while the control flow behavior of the obfuscated code is
not obvious, it can be reconstructed by examining the con-
stants being assigned to the dispatch variable. This, in turn,
requires only intra-procedural analysis.

The resilience of the obfuscation technique can be im-
proved using interprocedural information passing. The idea
is to use a global array to pass the dispatch variable values.
At each call site to the function, these values are written
into the global array starting at some random offset within
the array (appropriately adjusted to avoid buffer overflows).
The offset so chosen may be different at different call sites
for the function, and is passed to the obfuscated callee either
as a global or as an argument. The obfuscated code then
assigns values to the dispatch variable from the global ar-
ray. Neither the actual locations accessed, nor the contents
of these locations, are constant values, and are not evident
by examining the obfuscated code of the callee. The code
resulting from applying this obfuscation to the program in
Figure 1 is illustrated in Figure 3.

2.3 Enhancing Flattening II: Artificial Blocks and
Pointers

The obfuscation technique detailed above can be extended
by adding artificial basic blocks to the control flow graph.
Some of these artificial blocks are never be executed, but
this is difficult to determine by a static examination of
the program because of the dynamically computed indirect

branch targets in the obfuscated code. We then add indirect
loads and stores, through pointers, into these unreachable
blocks. These have the effect of confusing static analyses
about the possible values taken on by the dispatch variable.
Figure 4 shows the result of applying this to the program of
Figure 1.

In our implementation, we add two artificial basic blocks
corresponding to each block in the original function: one of
these blocks is actually executed at runtime, while the other
is simply a decoy added to mislead static analysis. Given
a block B in the original program, let the corresponding ar-
tificial block that gets executed be denoted by B’, and the
decoy artificial block be B”. Indirect assignments through
pointers are added to both these artificial blocks. However,
only the assignments in the block B’ set the dispatch vari-
able to the appropriate values so as to give the right control
flow during execution; the decoy block B”, by contrast, sets
the dispatch variable to other values, so as to give a mis-
leading picture of control flow. In the original block B, the
value of the dispatch variable that gets loaded is that previ-
ously assigned in the artificial block B’. Hiding the starting
value of the switch variable makes it harder for a static an-
alyzer to deduce which blocks are executed and hence find
out the valid definitions of the switch variable.

3 Deobfuscation

This section describes a number of analyses and program
transformations that we have found useful for reverse engi-
neering obfuscated code.

3.1 Cloning

Many obfuscation techniques rely on introducing spurious
execution paths into the program to thwart static program

| []

(a) Original code (b) After cloning

Figure 5: Code Cloning

analyses [3, 6]. These paths that can never be taken at run-
time, but cause bogus information to be propagated along
them during program analyses, thereby reducing the pre-
cision of information so obtained and making it harder to
understand the program logic. This is illustrated in Figure
5(a), where information is propagated between basic blocks
A and B along the “actual” control flow path 1 as well as the
spurious control flow path 2, the latter having been intro-
duced by the obfuscator. The bogus data flow information
propagated along 2 then has the effect of introducing im-
precision in the results of program analyses at points where
execution paths come together. In Figure 5(a), the results of
forward dataflow analyses, such as reaching definitions, are
tainted at the entry to B, while those of backward analyses,
such as liveness analyses, are affected at the exit from A.

One way to address this problem is to clone portions of
the program in such a way that the spurious execution paths
no longer join the original execution paths and taint the in-
formation obtained from analysis. The result of applying
cloning to basic block B in Figure 5(a) is shown in Figure
5(b). In this case, this results in improved forward dataflow
information available at the entry to B. In this example,
however, cloning does not eliminate the spurious control
flow edge A — B’, and so does not improve the backward
dataflow information available at the exit from A.

This transformation obviously has to be applied judi-
ciously, since otherwise it can cause large increases in code
size and further exacerbate the reverse engineering prob-
lem. Moreover, since the goal of deobfuscation is to try to
identify and remove obfuscation code, this means that in
general, cloning has to be applied without knowing, ahead
of time, which execution paths are spurious and which are
not. One possible approach, in such situations, would be to
apply cloning selectively at points where multiple control
flow paths join, and where the dataflow information propa-
gated along some paths is significantly less precise than that
propagated along others. Alternatively, if we know some-
thing about the kind of obfuscation that has been applied, it
may be possible to apply cloning in a way that exploits this
information. For example, it is relatively straightforward to
infer that control flow flattening has been applied, because
of the distinctive control flow graphs it produces.

For the purposes of this paper, we use cloning in the con-
text of one of our deobfuscator implementations (see Sec-
tion 4.1), as illustrated in Figure 6. Consider the obfuscated

(a) Original (obfuscated) code

S
[s1] [s2 | [s3]

A BC A BC A BC

(b) Obfuscated code after cloning

Figure 6: Code Cloning for Control Flow Flattening

program fragment shown in Figure 6(a), where the basic
blocks A, B, and C all transfer control to a switch-block S.
Cloning creates three copies S1, S2, and S3 of the switch-
block S, corresponding to the successors A, B, and C re-
spectively. The control flow successors of each of these
copies is the set of control flow successors of the original
switch-block, i.e., each of the copies S1, S2, and S3 has
an edge to each of the blocks A, B, and C. In the resulting
program, shown in Figure 6(b), the dataflow information
entering the switch-block S1 is not commingled with that
entering the switch-block S2 from B or that entering the
switch-block S3 from C. This segregation of dataflow infor-
mation improves dataflow analysis sufficiently that, when
combined with classical constant propagation, it suffices to
undo the effects of the basic control flow flattening trans-
formation described in Section 2.1 (see Section 4.1 for ex-
perimental data).

3.2 Static Path Feasibility Analysis

We use the term static path feasibility analysis to refer to
constraint-based static analyses to determine whether an
(acyclic) execution path is feasible. Given an acyclic ex-
ecution path st with X the set of variables live at entry to ,
the idea is to construct a constraint C; such that the logical
formula (3%)Cy is unsatisfiable only if, for all possible ex-
ecutions of the program, & is never executed. Cy is thus a
conservative approximation to the effects of the execution
of the instructions along . If (3%)Cy can be shown to be
unsatisfiable, we can conclude that 7 is unfeasible.

In principle, we can imagine many different ways to con-
struct the constraint C; corresponding to a path st. For the
purposes of this paper, our goal is to take into account the
effects of arithmetic operations on the values of variables,

effectively obtaining an analysis that resembles constant
propagation, but propagates information along a single ex-
ecution path rather than along all execution paths. To this
end, we use linear arithmetic constraints to reason about
variable values. The discussion below assumes a low-level
program representation, e.g., as three-address code, RTL,
or even machine instructions.

Assume that each instruction in the program has a unique
name [;. The value of a variable x at the beginning of m is
denoted by xp, while at intermediate points along the path,
the value of x immediately after instruction /;, is denoted by
Xk. An unknown value is denoted by L. The constraint Cy
is constructed as a conjunction of a Constraint Cy, for each
instruction [in 7, as follows:

1. Assignment: Iy = ‘x =7y’. Then, C;y = x; =y;, where
I; refers to the most recent instruction in 7 that defined
y (] = 0 if there is no definition of y in 7 before I}).

2. Arithmetic: Iy = ‘x = y@® 7z’ for some operation &,
where I; and I; refer to the most recent instructions
defining y and z respectively (i = 0 if y has not yet
been defined along =, and similarly with j). Then,
Cr = xx = fa(yi,zj). Here, f5 expresses the seman-
tics of the operation 6. If the semantics of & is not
known to the analyzer, or if either y; = L or z; = L,
thenC, =x= L.

3. Indirection: Pointers can be modelled at different lev-
els of precision, with a concomitant tradeoff in anal-
ysis speed [12]. A full discussion of pointer analysis
is beyond the scope of this paper; we require only that
the treatment of pointers be conservative, i.e., that the
set of possible targets for a pointer during analysis be
a superset of the actual set of targets during any exe-
cution.

4. Branches: Iy = ‘if e goto L’ for some Boolean expres-
sion e. In this case,

Ch = e if I is a taken branch in 7;
k= —e if I} is not taken in 7;

Unconditional branches can be treated as a special
case where e = true, while multi-way branches such
as those arising from switch statements, can be mod-
elled as a semantically equivalent series of conditional
branches.

5. Otherwise, the effects of instruction /; cannot be mod-
elled by the analyzer. The analysis is aborted in this
case, and our system conservatively assumes that 7 is
a feasible path.

Once the constraint C; has been constructed in this way, a
constraint solver is used to determine its satisfiability. Our
current implementation uses the Omega calculator [16] to
test satisfiability.

Figure 7 illustrates the use of constraints for static path
feasibility analysis. The parenthetical figures to the right

BO
x (€]
y =2)
if (u > 0) goto Bl 3)

/\

‘(4) ‘ z=x-y ‘(5)

Bl‘

if (z > 0) goto B5

=

B3‘

B4

Figure 7: An example of static path feasibility analysis

of each basic block serve to identify different instructions.
Consider the path 1 = BO—B2—B3— B5. The only rel-
evant live variable at the entry to this path is u. The corre-
sponding constraint Cy is therefore:

(Huo)[xl =1Ay=2Aup>0Az5=x1—nAZ5 >0].

It is not difficult to see that this constraint is unsatisfiable,
which means that the path & is unfeasible. Note that con-
ventional constant propagation would obtain z = | at entry
to block B3, and thereby conclude that the path m is feasi-
ble.

Note that this example could also have been handled by
cloning block B3, which would have the effect of prevent-
ing the loss of information resulting from the control flow
join of edges B1—B3 and B2—B3, after which constant
propagation would give the expected results. Thus, path
feasibility analysis and cloning can be seen as complemen-
tary techniques.

3.3 Combining Static and Dynamic Analyses

Conventional static analyses, such as that of Section 3.2,
are inherently conservative,? so the set of edges resulting
from purely static deobfuscation techniques are, in general,
a superset of the actual set of edges. Conversely, dynamic
analyses, such as program tracing or edge profiling, cannot
take into account all the possible input values to a program,
and therefore are able to observe only a subset of all its
possible execution paths.

The dual natures of these two approaches to program
analysis suggests that we try to combine them. This can be
done in two ways. We can begin with an underapproxima-
tion to the set of control flow edges obtained via dynamic
analysis, then use static analysis to add back some control
flow edges that could be taken. Alternatively, we can begin

2This follows from soundness considerations, which cause static anal-
yses to propagate information along a superset of the execution paths that
may actually be taken by a program during execution. This observation
need not hold if soundness is sacrificed, as with some recently-proposed
analyses [10, 11].

with an overapproximation to the set of control flow edges
edges obtained via static analysis, then use dynamic anal-
ysis to remove some control flow edges (or paths) that are
not actually taken. In either case, the result may contain ei-
ther more or less edges than the original program, i.e., when
we combine static and dynamic analyses the result cannot
be guaranteed to be either sound or precise. Nevertheless,
from the perspective of reverse engineering and program
understanding, such combined analyses can be very useful
for overcoming the limitations of purely static and purely
dynamic analyses.

For the work described in this paper, we used a static
analysis to improve the results of dynamic analysis by
adding back some control flow edges that could possi-
bly be taken. The essential idea behind our approach is
based on the following gedankenexperiment: suppose we
know, somehow, which control flow edges can actually be
taken during execution. Then, we can simply mark these
edges and propagate dataflow information only along such
marked edges, thereby avoiding the imprecision resulting
from propagating information along edges that can never
be taken at runtime. Conventional static analyses can then
be thought of as the degenerate case where all edges are
marked. We can improve on this situation by using dynamic
analyses to identify edges that are actually taken during
execution and marking only these edges, then propagating
dataflow information along these marked edges, as follows:

1. Initially mark only those edges that are identified as
taken by the dynamic analysis.

2. Carry out constant propagation on the program, prop-
agating information only along marked edges.

If a conditional branch is encountered where only one
the outgoing control flow edges is taken during exe-
cution, but where the outcome of the branch cannot
be uniquely determined from the constant propagation,
add the branch that is not taken during execution into
the set of control flow edges that can be taken, and
mark it.

In our implementation, the effect of this approach is to
prune the dataflow information propagated into switch
blocks. As an example, consider the following control flow
fragment, where solid arrows represent control flow edges
that are taken during execution, while dashed arrows corre-
spond to edges that are never taken:

—> executed edge
- - = non-executed edge

In this example, basic block B is never executed, so the con-
trol flow edges S—B and B—S are not marked and have no

information propagated along them. The assignment ‘x=2’
in block B is therefore not considered for static analysis;
this results in the value 2 not being considered to be a pos-
sible value for the variable x at the switch.

4 Experimental Evaluation

We evaluated our ideas using two different binary rewrit-
ing systems: PLTO [17] and DIABLO [8]. We imple-
mented three control flow flattening obfuscations described
in Chang’s dissertation and discussed in Section 2 in these
tools, and used these to obfuscate ten programs from the
SPECint-2000 benchmark suite.

Each of our benchmarks was compiled using gcc version
3.2.2, at optimization level —03, with additional command-
line flags to produce statically linked relocatable binaries,
and the resulting binaries processed using the obfuscators
mentioned above. Functions containing (indirect jumps
resulting from) switch statements were not obfuscated
because our obfuscators currently are not able to process
the resulting control flow. Library functions were also ex-
cluded, because in most cases such functions contain non-
standard control flow, e.g., where control jumps from one
function into another without using the normal call/return
mechanism for inter-procedural control transfers. Static
characteristics of these benchmarks are shown in Table 1,
which compares the original programs with those resulting
from basic control flow flattening.® Overall, Table 1 shows
that our tools obfuscate most user functions in the program
(on average, about 88%). As expected, obfuscation causes
the number of control flow edges to increase, though the
scale of the increase—a factor of roughly 55x to 60x —is
larger than we had expected.

Control flow deobfuscation involves deleting spurious
control flow edges that have been added by the obfusca-
tor. To evaluate the efficacy of various deobfuscation tech-
niques, therefore, we compare the deobfuscated program
Pyeopr With the original program P, to classify any errors
made by the deobfuscator in deleting control flow edges. In
principle, there are two kinds of such errors that can occur:
first, Pyeopr may contain some edge that does not appear in
P,rig; and second, Py, may not contain some edge that
appears in P,,. We term the first kind of error overesti-
mation errors (written A,,.,), and the second kind of errors
underestimation errors (written Ager):

|{e | ec Pdeobf and e gPorigH
[{e | e & Paeops and € € Pyyig }|

Since the input to the deobfuscator is the obfuscated pro-
gram, we express the overestimation and underestimation
errors relative to the number of edges in the input obfus-
cated program.

Aover =
Aunder =

3The differences in the number of functions, basic blocks, and edges
reported by PLTO and DIABLO arise partly because they linked in different
versions of the standard C library, and partly due to some differences in
code transformations carried out by the two tools, e.g., DIABLO carries
out some tail-call optimization before obfuscation.

Original Obfuscated Effects of Obfuscation
Program | Functions | Edges | Functions Edges
(F, orig) (Eorig) (F, obf) (Eobf) F()bf '/Forig E()bf '/Eorig
bzip2 42 2,655 30 157,192 0.714 59.21
crafty 104 12,172 89 4,309,502 0.855 352.05
gap 825 43,079 768 1,973,980 0.930 45.82
gce 1,792 99,516 1,398 8,816,058 0.780 88.59
8zip 73 2916 59 107,882 0.808 37.00
mcf 19 799 19 16,756 1.000 20.97
parser 180 12,299 174 684,904 0.966 55.69
twolf 165 14,799 157 1,277,410 0.951 86.32
vortex 638 39,229 615 1,969,734 0.963 50.21
vpr 252 8,948 211 310,210 0.837 34.67
[GEOM. MEAN: [0876 | 5943 |
(a) PLTO
Original Obfuscated Effects of Obfuscation
Program | Functions | Edges | Functions Edges
Forig) | Eorig) | (Fopy) | (Egpy) | ForrForis | EotylEori
bzip2 35 2,167 34 168,032 0.971 77.54
crafty 102 11,853 86 2,701,600 0.843 227.92
gap 809 44,431 738 2,963,737 0.912 66.70
gce 1,071 80,168 685 1,801,553 0.639 22.47
8zip 44 1,871 35 99,486 0.795 53.17
mcf 18 605 18 16,908 1.000 27.97
parser 185 10,301 174 714,223 0.940 69.34
twolf 165 12,772 156 1,553,117 0.945 121.60
vortex 620 32,048 599 1,298,439 0.966 40.52
vpr 103 2,305 84 44,288 0.815 19.21
[GEOM. MEAN: | 0876 | 55.1]
(b) DIABLO

Table 1: Static characteristics of original and obfuscated benchmark programs

4.1 Basic Flattening

We first consider programs obfuscated using the basic con-
trol flow flattening technique described in Section 2.1.
This turns out to be straightforward to deobfuscate using
purely static techniques. We considered two different ap-
proaches: the DIABLO implementation used cloning (Sec-
tion 3.1) followed by conventional constant propagation to
disambiguate control flow; the PLTO implementation used
Constraint-based Path Feasibility Analysis (Section 3.2).

The results of deobfuscation are shown in Table 2(a).
For each of our implementations, we consider two metrics:
the extent of deobfuscation, i.e., the number of obfuscation
edges that we were able to remove via the deobfuscation
process; and precision, which gives the number of over-
estimated and underestimated edges, as discussed above. It
can be seen that the PLTO implementation, using constraint-
based path feasibility analysis, is able to recover the origi-
nal programs completely, without any error. The DIABLO
implementation, which uses code cloning followed by con-
stant propagation, is able to remove over 99% of the ob-

fuscation edges. The resulting programs still have a small
amount of overestimation errors (0.72% on average), due
to edges that did not appear in the original programs. This
is to a great extent an artifact of the program transforma-
tion used: the cloning process introduces a number of ad-
ditional control flow edges into the program, and these are
not all eliminated by the constant propagation. It turns out
that most of them could be eliminated quite easily by an
additional phase of liveness analysis and jump-chain col-
lapsing (i.e., where a jump to a jump is replaced by a single
jump to the final target). However, we did not do this for
the purposes of this paper.

4.2 Flattening with Interprocedural Data Flow

For flattening with interprocedural data flow (Section 2.2),
we used only the PLTO implementation, using static path
feasibility analysis by itself as well as in combination with
dynamic execution tracing (Section 3.3).

In this case, because our path feasibility analysis is
purely intra-procedural in nature, it is unable to achieve any
deobfuscation.

PLTO DIABLO
Program Added | Removed | % Over [% Under Added | Removed | % Over | % Under
bzip2 154,537 154,537 0.00 0.00 165,865 164,657 0.73 0.00
crafty 4,297,330 | 4,297,330 0.00 0.00 2,689,747 | 2,685,374 0.16 0.00
gap 1,930,901 | 1,930,901 0.00 0.00 2,919,306 | 2,900,564 0.64 0.00
gcce 8,716,542 | 8,716,542 0.00 0.00 1,801,553 90,893 0.60 0.00
gzip 104,996 104,996 0.00 0.00 97,615 96,821 0.81 0.00
mcf 15,957 15,957 0.00 0.00 16,303 15,944 2.20 0.00
parser 672,605 672,605 0.00 0.00 703,922 698,700 0.74 0.00
twolf 1,262,611 | 1,262,611 0.00 0.00 1,540,345 | 1,533,774 0.43 0.00
vortex 1,930,505 | 1,930,505 0.00 0.00 1266,391 | 1,255,663 0.85 0.00
vpr 301,262 301,262 0.00 0.00 41,983 41,226 1.80 0.00
[GEOM. MEAN: [000 [000] [072] 000]

(a) Basic Flattening

[Program | Added | Removed | % Over | % Under |
bzip2 154,537 116,896 23.95 0.00
crafty 4,297,330 | 3,051,105 28.92 0.00
gap 1,930,901 1,177,850 38.15 0.00
gcc 8,716,542 | 4,936,993 42.87 0.00
gzip 104,996 74,111 28.63 0.00
mcf 15,957 15,198 4.50 0.00
parser 672,605 464,098 30.44 0.00
twolf 1,262,611 820,698 34.59 0.00
vortex 1,930,505 | 1,351,354 29.40 0.00
vpr 301,262 165,695 43.70 0.00

[GEOM. MEAN: [2689 | 000 |

(b) Flattening with Interprocedural Data Flow

[Program | Added | Removed | % Over | % Under |
bzip2 165639 130743 21.76 0.56
crafty 4403750 3169697 28.21 0.01
gap 2365955 1655983 31.23 0.03
gcc 9609646 5830097 39.94 0.01
szip 125508 | 97539 | 23.69 036
mcf 22335 22375 1.60 1.69
parser 786423 590215 26.09 0.02
twolf 1401063 973949 31.18 0.03
vortex 2275709 1735787 25.00 0.02
vpr 386508 259889 34.21 0.08

[GEOM. MEAN: [2140 | 0.06 |

(c) Flattening with Artificial Blocks and Pointers

= E opy — Eorig (see Table 1).

Overestimation error relative to number of edges in obfuscated program = A ./ Eopp.

Key:
Added: Number of edges added due to obfuscation
Removed: Number of edges removed by the deobfuscator.
% Over:
% Under:

Aovers Aynder are defined in Section 4.

Underestimation error relative to number of edges in obfuscated program = A ,4¢r / Eopy-

Table 2: Deobfuscation results

We do somewhat better when the static analysis is com-
bined with dynamic tracing. The results are shown in Table
2(b). The resulting deobfuscated programs have some over-
estimation errors, ranging from 4.5% for the mcf bench-
mark to 43.7% for vpr, with an overall mean of 26.9%.
There is no underestimation error for any of the bench-
marks. It is significant that even though the underlying
static analysis is purely intra-procedural, and has no deob-
fuscation effect by itself, the effect of combining it with dy-
namic analysis is to remove 100 —26.9 o~ about 73% of the
obfuscation edges. Note that the combination of static and
dynamic analyses makes a difference only for functions that
are actually executed: for functions that are not executed on
our test inputs, we do not consider any edges to be removed,
and all of their obfuscation edges are counted towards the
overestimation error in Table 2(b).

4.3 Flattening with Artificial Blocks and Pointers

For flattening with dummy blocks and pointers (Section
2.3), we again used only the PLTO implementation, using
static path feasibility analysis by itself as well as in combi-
nation with dynamic execution tracing (Section 3.3).

The static path feasibility analysis is unable to deobfus-
cate this case, because it currently does not handle indirect
memory accesses through pointers.

Deobfuscation improves when static and dynamic analy-
ses are combined. The results are shown in Table 2(c). In
this table, the values in the column labelled ‘Added’ dif-
fer from the corresponding values in Table 2(b) because
the addition of artificial blocks introduces some additional
control flow edges in this case. As in the case of flatten-
ing with interprocedural data flow, all of the obfuscation
edges for functions that are not executed are counted to-

wards the overestimation error. Overestimation error ranges
from 1.6% for mcfto just under 40% for gcc, with an overall
mean of 21.4%. There is a small amount of underestima-
tion error as well in this case, ranging from 0.01% for crafty
and gcc to 1.7% for mcf, with an overall mean of 0.06%. In
other words, deobfuscation removes 100 — (21.4+0.06) ~
78% of the obfuscation edges.

4.4 Discussion

Our results indicate that automated techniques can be used
to remove much of the effects of a nontrivial control flow
obfuscation technique.

Basic control flow flattening turns out to be relatively
straightforward to deobfuscate using purely static tech-
niques: the PLTO implementation is able to reconstruct the
original control flow graphs completely in this case, while
the DIABLO implementation incurrs a mean overestima-
tion error of about 0.7% (much of which can be easily re-
moved using straightforward off-the-shelf techniques such
as liveness analysis and jump-chain collapsing). The to-
tal time taken by the PLTO-based deobfuscator ranges from
about 7 seconds for mcf (constraint generation: 2.5 sec;
constraint solution: 4.5 sec) to about 21 minutes for gcc
(constraint generation: 631.5 sec; constraint solution: 640.1
sec). The DIABLO-based implementation uses an interpro-
cedural constant propagation algorithm, originally written
for code optimization purposes, without any deobfuscation-
oriented modifications. In this case, interprocedural con-
stant propagation across the huge number of control flow
edges in the obfuscated programs —a number that increases
quadratically during deobfuscation due to the cloning trans-
formation described in Section 3.1 —turns out to be rela-
tively expensive, with deobfuscation times of several hours.
We believe this can be reduced somewhat by applying
constant propagation intra-procedurally rather than inter-
procedurally: this would reduce the memory requirements
for constant propagation, and thereby reduce the overhead
due to paging in the virtual memory system.

The two enhancements to the basic control flow flatten-
ing technique we studied, using interprocedural data flow
and memory indirection, turn out to be harder to deobfus-
cate. Purely static techniques, at the level of sophistication
of the static analyses we used, turn out to be inadequate
for these obfuscations. However, when they are combined
with dynamic analyses, we are able to eliminate about 73%
of the spurious edges introduced by obfuscation with inter-
procedural data flow, and about 78% of those introduced by
obfuscation with artificial blocks and memory indirection.
The total time required for constraint generation and solu-
tion in these cases is similar to those for basic control flow
flattening, ranging from 7 sec to 22 mins for the case of in-
terprocedural data flow, and from 8.5 sec to 24 mins for the
case of artificial blocks and indirection.

These results represent an encouraging first step in au-
tomated deobfuscation of obfuscated programs. There are
many directions in which this work can be extended, e.g.,
by improving the sophistication of our static analyses to in-

corporate interprocedural analysis or pointer alias analysis,
or by using more sophisticated test case generation to im-
prove code coverage for dynamic analysis. At the same
time, it is likely that an obfuscator would use many differ-
ent kinds of code obfuscation in concert, and interactions
between these different obfuscations would be likely to af-
fect the quality of deobfuscation. A study of these topics
remains work for the future.

5 Related Work

We are not aware of any prior work on reverse engineer-
ing obfuscated code. A number of researchers have con-
sidered the use of dynamic analysis—either by itself, or
in conjunction with static analysis—for reverse engineer-
ing [13, 19, 21, 22]; Stroulia and Systd give an overview
[19]. Much of this work focuses on dealing with legacy
software, e.g., for determining modularization and semantic
clustering or understanding high level design patterns, and
for visualizing dynamic system behavior. All of this is fun-
damentally different from the work described here, which
has the dual aims of identifying techniques to help reverse
engineer obfuscated code, and for evaluating the strengths
and weaknesses of code obfuscation techniques. In partic-
ular, our work focuses on using simple static and dynamic
analyses to reverse engineer programs that have specifically
been engineered to make reverse engineering difficult.

The idea of combining static and dynamic analyses is dis-
cussed by Ernst [9].

6 Conclusions

Code obfuscation has been proposed by a number of re-
searchers as a means to make it difficult to reverse engineer
software. Obfuscating transformations typically rely on the
theoretical difficulty of reasoning statically about certain
kinds of program properties. This paper shows, however,
that it may be possible to bypass much of the effects of
some obfuscations by a combination of static and dynamic
analyses. In particular, we examine the problem of deob-
fuscating the effects of control flow flattening, a control ob-
fuscation technique proposed in the research literature and
used in commercial code obfuscation tools. Our results
show that basic control flow flattening can be removed in
a relatively straightforward way using purely static tech-
niques, while enhancements to the basic technique can be
largely deobfuscated using a combination of static and dy-
namic techniques.

References

[1] G. Arboit. A method for watermarking java pro-
grams via opaque predicates. In Proc. 5th. Interna-
tional Conference on Electronic Commerce Research
(ICECR-5),2002.

[2] L. Badger, L. D’Anna, D. Kilpatrick, B. Matt,
A. Reisse, and T. Van Vleck. Self-protecting mo-

(3]

(4]

(3]

(6]

(7]

(8]

[9]

[10]

[11]

[12]

[13]

bile agents obfuscation techniques evaluation report.
Technical Report Report No. #01-036, NAI Labs,
March 2002.

W. Cho, L. Lee, and S. Park. Against intelligent tam-
pering: Software tamper resistance by extended con-
trol flow obfuscation. In Proc. World Multiconference
on Systems, Cybernetics, and Informatics, 2001.

S. Chow, Y. Gu, H. Johnson, and V. A. Zakharov. An
approach to the obfuscation of control-flow of sequen-
tial computer programs. In Proc. 4th. Information
Security Conference (ISC 2001), Springer LNCS vol.
2000, pages 144—155, 2001.

C. Collberg and C. Thomborson. Software water-
marking: Models and dynamic embeddings. In Proc.
26th. ACM Symposium on Principles of Programming
Languages, pages 311-324, January 1999.

C. Collberg and C. Thomborson. Watermarking,
tamper-proofing, and obfuscation — tools for software
protection. IEEE Transactions on Software Engineer-
ing, 28(8), August 2002.

C. Collberg, C. Thomborson, and D. Low. Break-
ing abstractions and unstructuring data structures. In
Proc. 1998 IEEE International Conference on Com-
puter Languages, pages 28-38.

B. De Bus, B. De Sutter, L. Van Put, D. Chanet, and
K. De Bosschere. Link-time optimization of arm bi-
naries. In Proc. 2004 ACM Conf. on Languages, Com-
pilers, and Tools for Embedded Systems (LCTES’04),
pages 211-220, 7 2004.

Michael D. Ernst. Static and dynamic analysis: Syn-
ergy and duality. In WODA 2003: ICSE Workshop on
Dynamic Analysis, Portland, OR, pages 24-27, May
2003.

D. Evans and D. Larochelle. Improving security using
extensible lightweight static analysis. IEEE Software,
19(1):42-51, January/February 2002.

S. Guyer and K. McKinley. Finding your cronies:
Static analysis for dynamic object colocation. In Proc.
ACM Conference on Object-Oriented Systems, Lan-
guages and Applications (OOPSLA’04), pages 237—
250, October 2004.

M. Hind and A. Pioli. Which pointer analysis should
I use? In Proc. 2000 ACM SIGSOFT International
Symposium on Software Testing and Analysis, pages
113-123, 2000.

R. Kazman and S. J. Carriére. Playing detective: Re-
constructing software architecture from available evi-
dence. Automated Software Engineering: An Interna-
tional Journal, 6(2):107-138, April 1999.

10

[14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

C. Linn and S.K. Debray. Obfuscation of executable
code to improve resistance to static disassembly. In
Proc. 10th. ACM Conference on Computer and Com-
munications Security (CCS 2003), pages 290-299,
October 2003.

T. Ogiso, Y. Sakabe, M. Soshi, and A. Miyaji. Soft-
ware obfuscation on a theoretical basis and its im-
plementation. IEEE Trans. Fundamentals, E86-A(1),
January 2003.

W. Pugh. The Omega test: a fast and practical inte-
ger programming algorithm for dependence analysis.
Comm. ACM, 35:102—-114, August 1992.

B. Schwarz, S. K. Debray, and G. R. Andrews. Plto:
A link-time optimizer for the Intel IA-32 architecture.
In Proc. 2001 Workshop on Binary Translation (WBT-
2001),2001.

Preemptive Solutions. Dotfuscator.

www.preemptive.com/products/dotfuscator.

E. Stroulia and T. Systd. Dynamic analysis for re-
verse engineering and program understanding. ACM
SIGAPP Applied Computing Review, 10(1):8-17,
2002.

Symantec Corp. Understanding and managing poly-
morphic viruses. Technical report, 1996.

T. Systd. Static and Dynamic Reverse Engineering
Techniques for Java Software Systems. PhD thesis,
Dept. of Computer and Information Sciences, Univer-
sity of Tampere, Finland, 2000.

P. Tonella and A. Potrich. Static and dynamic C++
code analysis for the recovery of the object diagram.
In Proc. International Conference on Software Main-
tenance (ICSM), October 2002.

C. Wang. A Security Architecture for Survivable Sys-
tems. PhD thesis, Department of Computer Science,
University of Virginia, January.

C. Wang, J. Davidson, J. Hill, and J. Knight. Pro-
tection of software-based survivability mechanisms.
In Proc. International Conference of Dependable Sys-
tems and Networks, July 2001.

C. Wang, J. Hill, J. Knight, and J. Davidson. Software
tamper resistance: Obstructing static analysis of pro-
grams. Technical Report CS-2000-12, Dept. of Com-
puter Science, University of Virginia, 12 2000.

T. Yetiser. Polymorphic viruses: Implementation,
detection, and protection. Technical report, VDS
Advanced Research Group, 1993.
http://www.virusview.net/info/virus/
j&a/polymorf.html.

