
Understanding Obfuscated Code

Matias Madou, Ludo Van Put and Koen De Bosschere
Ghent University

St Pietersnieuwstraat 41
9000 Ghent

{mmadou,lvanput,kdb}@elis.ugent.be

Abstract

Code obfuscation makes it harder for a security analyst
to understand the malicious payload of a program. In most
cases an analyst needs to study the program at the machine
code level, with little or no extra information available,
apart from his experience. An unexperienced analyst is con-
fronted with a steep learning curve, as understanding un-
obfuscated machine code already requires some skills. We
have built LOCO, a graphical, interactive environment to
help a security analyst improving his skills in understand-
ing obfuscated code.

1. Introduction

Code obfuscation can serve two goals. On the one hand,
it can be applied to protect a company’s technology from
being copied. On the other hand, obfuscation can be used
to hide malicious code in a program. For example, an ex-
ploit to hack a Debian server was obfuscated, to make it
difficult for a security analyst to find the malicious code 1.
In this demonstration we present Loco; a tool to speed up
the learning process of a security analyst to understand ob-
fuscated code. The tool can apply a series of obfuscation
transformations to a program, after which it shows a graph-
ical presentation of the obfuscated program. A security an-
alyst can make use of well-known analyses such as domina-
tor analysis, liveness analysis and other predefined analyses
included in the tool to help him deobfuscate the code.

LOCO is an extension of the graphical user interface
LANCET[8], combined with an obfuscation infrastructure
in the underlying link-time program rewriter DIABLO[4]2,
which allows us to do fine-grained code obfuscation[7].
LOCO is freely available from the DIABLO website.

The remainder of this tool presentation is organized as

1http://www.theregister.co.uk/2003/12/02/hackers used unpatched server/
2http://www.elis.ugent.be/diablo

follows. Section 2 presents the underlying structure of
LOCO, one obfuscation transformation and the running ex-
ample. Section 3 describes the deobfuscation features. Sec-
tion 4 gives a brief overview of the demo. In Section 5 we
discuss the limitations of our tool and give directions for
future work. Conclusions are drawn in Section 6.

2 Obfuscation transformations

DIABLO is a multi-platform link-time binary rewriting
framework from which we will use the x86 backend and
ELF object file format. LANCET, a graphical user interface
on top of Diablo, can visualize the call graph of a program
and control flow graphs (CFGs) of the procedures and lets
a user easily navigate through them. Furthermore, LANCET

provides means to edit the graphs. LOCO not only consists
of a library with obfuscation transformations, but contains
also features for deobfuscation.

Figure 1. Control flow flattening

The insertion of opaque predicates [3] and the flatten-
ing of the control flow graph [9] are the most known ob-
fuscation transformations. An opaque predicate such as
∀x, y ∈ Z : 7y

2 − 1 6= x
2 [1] exploits a property which is

known at obfuscation time, but that is hard to derive after-
wards. Insertion of such predicate introduces new (seem-
ingly executable) paths through the program that have the



Figure 2. The obfuscated procedure kill some processes with additional screens to make it easier for a
security analyst to deobfuscate the code.

purpose to mislead the attacker. Another obfuscation trans-
formation which changes the control flow of the program is
control flow flattening. It is the most popular control flow
obfuscation technique and is first described by Wang [9].
As can be seen in Figure1, a CFG is transformed such that
all basic blocks of a procedure appear to have the same set
of predecessors and successors. This obfuscation technique
is the key technology in an industrial obfuscation tool by
Cloakware Inc.[2]. This technique was developed to be ap-
plied on Java programs, but can easily be applied on an
x86 program. Control flow flattening is also used for wa-
termarking [11] and tamper resistance [10].

Using a simple example, we will show how LOCO helps
a security analyst in understanding obfuscated code. We
will obfuscate a simple piece of code containing a mali-
cious content; killing some processes. The assembly code
generated for the source code shown below is rather easy to
understand.

int kill_some_processes(int i)
{
for (;i<=0x12345;i++)

kill(i,9);
}



Obfuscating this code with the standard control flow flat-
tening makes it less comprehensive. The obfuscated x86
assembly code can be seen in Figure 2. A security analyst
could try to understand the obfuscated code as such, or he
could first try to simplify the code. For this simplification
he can use some features of LOCO to assist him. In the next
section, we discuss those features.

3 Deobfuscation infrastructure

There are two difficulties in analyzing an obfuscated pro-
gram: creating a CFG representation of the code and ex-
tracting the functionality of the code. In our case, we only
focus on the latter and assume that the analyst has been able
to build, at least partially, a CFG of the program under study.

In the case of LOCO, all the necessary information is
available to allow the analyst to modify the CFG, without
the need to take care of adapting address calculations or lin-
earizing the CFG. As such, an analyst can create an exe-
cutable version of the code at every moment and test if the
transformations applied so far are semantics-preserving.

Transformations in LOCO can be applied manually or au-
tomatically. In a basic block, instructions can be inserted,
deleted, moved or changed. Sometimes, changing instruc-
tions will change the control flow as well, so LOCO allows
a user to modify the control flow by adding, removing or
retargeting edges. In case there are obvious side effects of
some actions, the side effects can be applied automatically,
like e.g. removing a fallthrough path when a jump instruc-
tion is made unconditional.

Manual inspection of the code could be a good starting
point for the deobfuscation process. Starting from the en-
try basic block of a function, a security analyst could dig
into the code to reveal superfluous paths, inefficient code or
malicious content. A function has a certain structure and
suspicious paths will be detected much faster after gaining
some experience. For example, it is very uncommon that
the entry basic block of a function does not start with the
two instructions: push %ebp and mov %esp,%ebp, which is
the case in our obfuscated example in Figure 2.

LOCO helps the security analyst by providing useful in-
formation about the program internals. In the current tool,
the security analyst has liveness analysis, constant propaga-
tion and dominator analysis at his disposal to extract infor-
mation from the control flow graph. In our case e.g. a dis-
patcher variable3 is used for control flow flattening. Con-
stant propagation could help the analyst finding the value of
the dispatcher variable when some path in the CFG is taken.

Editing the CFG by changing edges and instructions in
a basic block can make other instructions become superflu-
ous. An analyst can reuse analysis and optimizations orig-

3a variable that is used as an offset in a switch table that will steer the
control flow

inally developed for program compaction to automatically
remove (part of) this superfluous code. Examples of this are
dead code removal, branch forwarding, unreachable code
removal etc.

During the deobfuscation process, a security analyst
might experience some shortcomings in the available analy-
ses and deobfuscation transformations or find himself repet-
itively applying the same set of transformations by hand.
In this case, the security analyst can implement his newly
found transformation into the LOCO framework to further
automate the deobfuscation process.

Besides support for deobfuscation, LOCO can point an
analyst to the interesting parts of the program under study.
A program can contain a lot of functions, which are mostly
not relevant for the analyst. Using some predefined metrics,
the procedures in a program can be sorted by their degree
of suspicion. These metrics can be e.g. the absence of a
procedure prologue or epilogue, overwriting the return ad-
dress, etc. As such, an analyst can find the obscure parts of
a program more efficiently.

4 Demo

In the demo, we will start from an obfuscated procedure,
as shown in Figure 2 and deobfuscate it. During the deob-
fuscation process we will make use of manual graph modi-
fications and instruction edits. Constant propagation will be
used to find the value of the dispatcher variable (although
this is trivial in this oversimplified example). Using dead
code removal, the resulting code will be cleaned. In this
example we will end up with several superfluous stack op-
erations. We will explain how an analyst can add his own
transformation to automate the removal of such instruction
sequences.

After the deobfuscation, the result is compared with the
original procedure. We will then show how this code has
been obfuscated using the built-in obfuscation transforma-
tions in LOCO. We will also show the provided functional-
ity to scan a program for suspicious code fragments.

5 Limitations and Future Work

LOCO is developed as an experimental environment to
help a security analyst in understanding obfuscated code
and is not yet able to deobfuscate or reverse engineer real-
world malicious software such as obfuscated viruses. The
infrastructure currently assumes the existence of a control
flow graph derived from the malicious program. Disassem-
bling an obfuscated malicious program and deriving a con-
trol flow graph from it is not in the scope of this paper, al-
though we are currently working on this. We are developing
a new frontend which will produce first of all a disassembly



from an obfuscated binary, based on the novel binary anal-
ysis technique proposed by Kruegel et al. [5]. Afterwards,
a control flow graph will be derived from the disassembled
instructions. The resulting CFG might be overly conserva-
tive and contain a lot of unrealizable paths. However, even
with extra information available, it is nearly impossible to
construct the most accurate CFG. More details on the con-
struction of a CFG without information external to the bi-
nary can be found in Madou et al. [6].

We think that LOCO is an ideal tool to develop new
(de)obfuscation transformations and we think that it can be
easily extended to be applicable for other (de)obfuscation
scenarios. The tool is the first and currently the only x86
(de)obfuscator and is free to use and modify. This enables
other security analysts to extend the tool with their own
analysis and transformations.

6 Conclusion

We will demonstrate LOCO, a graphical, interactive,
easy-to-use experimental environment to help a security an-
alyst in understanding obfuscated code. With LOCO it is
possible to interactively deobfuscate a program using un-
derlying analysis. The program modifications during de-
obfuscation can be tested on correctness by producing an
executable version of the code and verifying the function-
ality. LOCO reduces the learning effort for unexperienced
program analysts and is a good experimentation platform to
test obfuscation and deobfuscation techniques.

Acknowledgments

The authors would like to thank the Institute for the Pro-
motion of Innovation by Science and Technology in Flan-
ders (IWT) and the Fund for Scientific Research Flanders
(FWO) for their financial support. This research is also par-
tially supported by Ghent University and by the HiPEAC
network

References

[1] G. Arboit. A method for watermarking java programs via
opaque predicates. In Proceedings of ICECR-5, October
2002.

[2] S. Chow, Y. Gu, H. Johnson, and V. Zakharov. An approach
to the obfuscation of control-flow of sequential computer
programs. In G. Davida and Y. Frankel, editors, Informa-
tion Security, ISC 2001, volume 2200 of Lectures Notes in
Computer Science (LNCS):Springer–Verlag, 2001. 68.

[3] C. Collberg, C. Thomborson, and D. Low. Manufacturing
cheap, resilient, and stealthy opaque constructs. In Prin-
ciples of Programming Languages (POPL’98), pages 184–
196.

[4] B. De Bus, B. De Sutter, L. Van Put, D. Chanet, and
K. De Bosschere. Link-time optimization of ARM bina-
ries. In Proc. of the ACM SIGPLAN/SIGBED Conference
on Languages, Compilers, and Tools for Embedded Systems
(LCTES’04).

[5] C. Kruegel, W. Robertson, F. Valeur, and G. Vigna. Static
disassembly of obfuscated binaries. In Proceedings of
USENIX Security, pages 255–270, San Diego, CA, August
2004.

[6] M. Madou, B. Anckaert, B. De Sutter, and K. De Bosschere.
Hybrid static-dynamic attacks against software protection
mechanisms. In Proceedings of the 5th ACM Workshop
on Digital Rights Management, pages 75–82. ACM Press,
2005.

[7] M. Madou, L. Van Put, and K. De Bosschere. Loco: An
interactive code (de)obfuscation tool. In Proceedings of
ACM SIGPLAN Workshop on Partial Evaluation and Pro-
gram Manipulation (PEPM’06).

[8] L. Van Put, B. De Sutter, M. Madou, B. De Bus, D. Chanet,
K. Smits, and K. De Bosschere. Lancet: A nifty code edit-
ing tool. In Proc. 6th ACM SIGPLAN/SIGSOFT Workshop
on Program Analysis for Software Tools and Engineering.
ACM Press, 2005.

[9] C. Wang. A Security Architecture for Survivability Mecha-
nisms. PhD thesis, Department of Computer Science, Uni-
versity of Virginia, October 2000.

[10] C. Wang, J. Hill, J. Knight, and J. Davidson. Software
tamper resistance: Obstructing static analysis of programs.
Technical Report CS-2000-12, University of Virginia, 12
2000.

[11] K. S. Wilson and J. D. Sattler. Software control flow wa-
termarking, Aug 2004. Baker and Botts, US2005/0055312
A1.


