
Towards Better Software Tamper Resistance

Hongxia Jin, Ginger Myles, and Jeffery Lotspiech

IBM Almaden Research Center
San Jose, CA, 95120

{jin,gmyles,lotspiech}@us.ibm.com

Abstract. Software protection is an area of active research in which a
variety of techniques have been developed to address the issue. Examples
of such techniques include code obfuscation, software watermarking, and
tamper detection. In this paper we propose a tamper resistance tech-
nique which provides both on and offline tamper detection. In our offline
approach, the software dynamically detects tampering and causes the
program to fail, protecting itself from malicious attacks. Additionally,
during program execution an event log is maintained which is transmit-
ted to a clearing house when the program is back online.

Keywords: Software protection, tamper detection

1 Introduction

The protection of software from hackers is a major concern for many industries.
Foremost are the software developers themselves who are concerned about the
loss of revenue due to piracy. Additionally, the music and movie industries are
worried about the software which protects their copyrighted material. Once the
protection software has been circumvented the content can be freely copied.
Content protection technologies can only work effectively when the software
that implements them is protected. In other words, their implementations are
tamper resistant. The development of tamper resistant technologies, especially
software tamper resistance has become a growth industry.

To illustrate the usage model consider IBM’s Electronic Media Management
System (EMMS) [5] for selling music online. Under this business model, a user
buys a software media player which contains an embedded Digital Rights Man-
agement system. Music is bulk-encrypted and can be downloaded from the Web
to the user’s hard drive. The consumer’s software connects with the clearing
house and gets the decryption key for the music purchased. The music will only
play using the correct decryption key. Similarly, it is conceivable to envision a
movie studio giving away promotional DVDs which include specific usage crite-
ria. Two possible usage scenarios include full movie viewing only after a fee or
allowing complete viewing after a specified time period. The ability to enforce
access rights to the copyrighted content is the key to the success of these types
of business models.

J. Zhou et al. (Eds.): ISC 2005, LNCS 3650, pp. 417–430, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



418 Hongxia Jin, Ginger Myles, and Jeffery Lotspiech

Tampering with the software is usually done through reverse engineering.
Software tamper resistance, which refers to the art and science of protecting
software from unauthorized modification, distribution and misuse, provides a
powerful way to protect software from such activities. In this paper we pro-
pose a software protection technique directed at client-side software running on
a potentially hostile host. Our approach provides both on and offline tamper
detection. In the offline environment the software dynamically, self-detects tam-
pering and causes the program to fail. As the program executes an event log is
maintained. During online execution the log is transmitted to a clearing house
where it is analyzed for evidence of tampering.

2 Background

Many techniques have been developed to solve the problem of protecting the host
against the potentially hostile actions of the software it is running. Relevant work
in this area includes Java Security [2] and Proof-carrying Code [8]. To combat
such an attack requires restricting the actions of the malicious program. Tamper
resistance addresses the opposite concern, running trusted code on untrusted
hosts. It should be noted that it is much more difficult to combat a malicious
host than it is to combat a malicious program. Since the host has full control
over the software’s execution, it is generally believed that given “enough” time,
effort, and/or resources a sufficiently determined attacker can completely break
any piece of software.

The issue of software protection can be addressed from either a software or
hardware-based approach. Hardware-based techniques generally offer a higher
level of protection but at the cost of additional expenses for the developer and
user inconvenience. Additionally, software is purchased and distributed over the
Internet which makes the use of certain hardware-based techniques, such as
dongles or smartcards, infeasible. Tamperproof CPUs are another hardware-
based solution, however this type of hardware is not widely used.

Software-based approaches address the issues of cost and user convenience
but the protection is usually easier for an adversary to circumvent. One tech-
nique to prevent tampering is to increase the difficulty for hackers to attack the
software. Several techniques have been proposed in this direction. Code obfus-
cation [1, 6] attempts to transform a program into an equivalent one that is
more difficult to understand through static and dynamic analysis. The major
drawbacks of all obfuscation approaches are that by necessity they are ad hoc
and often introduce additional overhead.

Another software-based technique, which can provide provable protection
against tampering, is to encrypt programs and execute them without the need
for decryption. Sander and Tschudin proposed one such technique [9]. Their tech-
nique relies on identifying specific classes of functions, namely polynomials and
rational functions. Since not all programs contain such functions the technique
has limited applicability.

Customization can protect a program from tampering by making different
copies of the software for different users. Distributing alternate versions can



Towards Better Software Tamper Resistance 419

better defend against “break-once, break everywhere” attacks. When one version
of a program is broken and its patch is published, other users cannot exploit the
patch to break their copy.

Software-based techniques also include tamper detection and tamperproofing.
In order to detect tampering, it may be necessary for the software to leave behind
evidence during execution. The evidence is examined later to provide evidence
of tampering and to determine the appropriate course of action. In this paper
we present a scheme that seamlessly combines several of the above described
approaches to provides both on and offline tamper detection.

3 Design Objectives

Most of the research in the area of software protection conducted thus far is ad
hoc without provable security guarantees. The area of tamper resistance is no
different, and is seen more as a black art than a science. Standards to measure the
effectiveness of tamper resistance techniques do not currently exist. In order to
push towards a standardized criteria for tamper resistant algorithms, we outline
our design considerations below.

The goal of any tamper resistance technique is to prevent an adversary from
altering or reverse engineering the program. Overall, a good technique should
be comprehensive, stealthy, flexible and have low overhead. The ideal objective
is to prevent modifications in the program. However, a more realistic objective
is to make modification difficult, detect it and take action against it. Below are
objectives to defend against various attacks.

– The technique should be able to detect small changes, even a single bit, in
essential portions of the program.

– The use of a debugger or similar tools should be detected regardless of
whether or not the debugger relies on modifying the code.

– Tampering should be detected in a timely manner so that temporary modifi-
cations are not missed. A dynamic attack can make temporary modifications
to the program but restore it back to normal after completion.

– The response mechanism should be separate from the detection mechanism.
This will increase the stealth of the entire mechanism and permit flexible
responses based on the type of tampering detected.

– The detection mechanism should be stealthy and obfuscated to limit static
attacks.

– A variety of detection mechanisms should be used throughout the program
to increase the level of analysis required to detect the protection.

– It is preferable that the detection mechanism is customized for different
copies of the program. This aids in defending against automated systematic
attacks.

– The detection mechanism should provide complete and comprehensive cov-
erage.

– The response mechanism should be stealthy and/or obfuscated. Ideally it
should blend in with normal program behavior to make it hard to detect.



420 Hongxia Jin, Ginger Myles, and Jeffery Lotspiech

– The response mechanism should be customized to different copies of the
program. Understanding and disabling one would not disable others.

– If using installation patches, the patch should be stealthy and not reveal
information about the mechanism.

– If the program is customized by user, the scheme must consider defending
against collusive attacks.

– To make it difficult for hackers to understand/disable the scheme, a single
point of failure should be avoided.

4 Design Assumptions

The proposed tamper detection techniques make the assumption that an attacker
will make at least one initial failure before the software is completely understood.
Such an assumption has limitations when dealing with professional hackers who
are equipped with extensive computing resources. Given the proper resources an
attacker can completely or partially replicate the state of the program execution
to another machine. Of course, finding useful information from the large number
of states recorded is no easy job. In fact, it may even be an intractable task.
However, because it is known that attacks are often performed in a simulated
and instrumented environment, the proposed techniques incorporate features
which limit the effectiveness of the attack tools. This has the effect of limiting
the weaknesses associated with our assumption in many attack scenarios.

5 Proposed Tamper Detection Technique

The proposed tamper detection technique consists of two united parts to provide
software protection in both on and offline environments. The two techniques are
based on the central underlying theme of key evolution and integrity checks.
Since the available resources vary in the on and offline environments the two
approaches uniquely build from the common base. The online technique records
execution events in a tamper resistant log thereby producing an audit trail for
anomaly detection. The offline version is able to use the execution events to
self-detect abnormalities.

A key aspect of the scheme is the use of integrity checks. An integrity check
is an inserted section of code used to verify the integrity of the program and
to detect active debugging. Integrity checks are triggered during software execu-
tion. For example, one of the integrity checks could choose a block of code and
calculate its checksum. If the hacker attempts to store breakpoints or to modify
the code, even if the modification is very slight, the checksum will be wrong.
When trying to detect the presence of a debugger, the elapsed time of executing
from one point to another can be used as an integrity check. These simple in-
tegrity checks are just for illustration purpose. In practice a variety of stealthy
integrity checks are used. Often these checks are customized to address the spe-
cific requirements of the application. Due to the nature of integrity checks they
are often regarded as trade secrets. Publishing details of the exact checks used



Towards Better Software Tamper Resistance 421

would decrease the potency. This is true of most techniques aimed at providing
tamper resistance.

5.1 Online Tamper Detection

The online tamper detection portion of the scheme is based on a technique we
previously developed [4]. In this section we provide a summary of the technique
so that it is clear how the on- and offline schemes are united to form a stronger
tamper detection mechanism. To protect the application using the online scheme,
integrity check code is embedded throughout the original application. As the
program executes the results of the integrity checks are recorded in an event log.
At periodic intervals the log is transmitted back to a clearing house where the
entries are examined for evidence of tampering.

The event log plays an important role in the detection scheme. Ideally, the in-
tegrity check logging process would be accomplished in a stealthy manner which
is undetectable by the attacker. Unfortunately such an event is unlikely in a sce-
nario where the attacker has full access to the software. Therefore, precautions
must be taken to ensure that an attacker cannot damage the entries.

To this end we have developed a tamper resistant method for logging the
integrity check results. The basic idea is that the log entries are dependent on a
key that evolves through a one-way function. Because the evolution is one-way
the attacker is unable to use the current information to forge previously recorded
log entries. Figure 1 illustrates one possible approach for the tamper resistant
log [4].

k0

k1

k2

kn

Key evolution Log entry

f(k0, v0) = k1

f(k1, v1) = k2

f(kn−1, vn−1) = kn

v0

v1

v2

vn

time t

Fig. 1. A way to perform tamper resistant logging



422 Hongxia Jin, Ginger Myles, and Jeffery Lotspiech

To implement the tamper resistant log the one-way function f uses both the
current key ki and the current integrity check value vi to generate a new key
ki+1.

ki+1 = f(ki, vi)

Every time a new key is generated, the previous key is destroyed. This limits
the information available to the attacker at any one instant. As the program
executes the series of integrity check values are recorded. The log together with
the last calculated key kn are transmitted back to clearing house. If the software
is modified some integrity check value vi will differ from what is expected. The
resulting effect is that the key evolution will be incorrect. When kn is trans-
mitted, the key evolution calculated by the clearing house will differ from the
submitted value. If the incorrect integrity check value vi is not modified in the
log, it is clear evidence of the tampering.

The integrity checks can be embedded anywhere in the original application,
however, if the points are chosen such that they are encountered along all execu-
tion paths only the final key kn needs to be transmitted. Using such a placement
the clearing house knows the correct value for each integrity check. With this
knowledge the clearing house can evolve the key using the initial key. If the sub-
mitted key differs from the calculated key tampering has been detected. This
option enables a minimal log size.

After verification, if no tampering is detected, the program can proceed as
usual and the key will continue to evolve. However, if tampering is detected the
clearing house can take appropriate measures, such as warning the user about
such activity, blocking future content, or taking legal action.

The online tamper detection scheme has a few limitations. First to detect
tampering it is required that the attacker contact the clearing house. This will
not occur if the attacker is aware of the tamper detection mechanism. This leaves
the attacker with a functioning piece of software and we have not detected the
tampering. Additionally, there is the chance the log is forged making it impossible
for the clearing house to detect the tampering. The offline scheme addresses these
issues to improve the tamper detection capabilities.

5.2 Offline Tamper Detection

The same key evolving mechanism can be used as a basis for offline tamper
detection. The key evolution can be used in controlling program execution and
ultimately cause the program to fail. There are a multitude of ways key evo-
lution can be utilized to achieve tamper detection/tamperproofing in software.
For example, a key value can be transformed into a valid constant variable that
will be used later in the program. If tampering occurs, the key generated will
be invalid and the transformation will yield an incorrect value for the constant
variable. This will ultimately lead to program failure. Of course, more complex
and obfuscated techniques can be designed around key regulated program exe-
cution. For example, a more expensive tamperproofing approach is to encrypt
portions of the code using a valid key at a particular place in the program. If



Towards Better Software Tamper Resistance 423

tampering occurs an incorrect decryption key is used. We have devised a tam-
per detection technique which is less costly than the use of encryption but still
offers the desired tamper detection benefits. We call this technique branch-based
tamper detection. The branch-based tamper detection is similar to a software
watermarking technique we proposed [3]. Both schemes use key evolution and a
branch function to control execution. However, the watermarking scheme uses
the key as the program’s fingerprint and the tamper detection scheme uses the
key to detect program alterations.

5.3 Branch Based Tamper Detection

The basic idea of the branch-based tamper detection algorithm is centered
around the use of a branch function similar to the one proposed by Linn and
Debray to disrupt static disassembly of native executables [7]. The original ob-
fuscation technique converted unconditional branch instructions to a call to a
branch function inserted in the program. The sole purpose of the branch function
is to transfer the control of execution to the instruction which was the target
of the unconditional branch. The branch function can be designed to handle
any number of unconditional branches. Figure 2 illustrates the general idea of
the branch function. To increase the versatility of the branch function we have
devised an extension which makes it possible to convert conditional branches as
well. When this idea is applied to the x86 instruction set all jmp, call, and jcc
instructions can be converted to calls to a single branch function. In order to pro-
vide tamper detection for the entire application the branch function is enhanced
to incorporate an integrity check and key evolution. Multiple integrity check
branch functions are incorporated to develop a self-monitoring check system for
the entire program.

j1: jump t1
...
j2: call t2
...
j3: jcc t3

⇒
j1: call b →
...
j2: call b →
...
j3: call b →

branch
function b

→ t1
→ t2
→ t3

Fig. 2. Branch instructions are converted to a call to a branch function which
returns to the instruction which was the target of the branch.

Enhanced Branch Function The original branch function was designed sim-
ply to transfer execution control to the branch target. In addition to the transfer
of control, the integrity check branch function (ICBF) incorporates an integrity
check and key generation into the target computation. The ICBF performs the
following tasks:



424 Hongxia Jin, Ginger Myles, and Jeffery Lotspiech

– An integrity check producing the value vi.
– Computation of the new key ki+1 using vi and the current key ki, ki+1 =

g(ki, vi).
– Identification of the displacement to the target via di+1 = T [h(ki+1)], where

T is a table stored in the data section and h is a hash function.
– Computation of the return location by adding the displacement di to the

return address.

Through the enhancements the ICBFs can provide tamper detection for the
entire program.

Tamper Detection Transformation The tamper detection mechanism is
incorporated into the program by injecting multiple ICBFs into the program
and converting a selection of branch instructions to calls to the ICBFs. The
transformation occurs in four phases. In the first phase the set of to be converted
branches is selected, {b1, ..., bn}. Special care must be taken in selecting which
branch instructions are converted. The branch instructions used in any given
function must reside on a path that will be traversed every time the function
executes. Without imposing this constraint an irregular key evolution will occur
resulting in an incorrect return location and improper program behavior. In
addition, because a new key is generated every time the branch function is
executed the branch instructions cannot be part of a non-deterministic loop.
The usable set of branches can be identified through data-flow analysis.

In the second phase a mapping is constructed between the set of branches
and the ICBFs.

θ : {b1, ..., bn} → {ICBF1, ..., ICBFk}
This mapping is then used in phase three when the branches are replaced by calls
to the appropriate ICBF. In the final phase the displacement table is constructed.
For each branch replaced a mapping is maintained between the calculated value
ki and the branch, target displacement di.

φ = {k1 → d1, ..., kn → dn}

φ is used in this phase to construct the displacement table T . The first step is to
construct a hash function such that each value ki maps to a unique slot in the
table. By using a minimal perfect hash function the table size can be minimized.

h : {k1, ..., kn} → {1, ..., m}, n ≤ m

Based on h the table is created and added to the data section of the binary.

T [h(ki)] = di

Tamper Detection Mechanism Highlights Through the use of multiple
integrity check branch functions a check system can be established which enables



Towards Better Software Tamper Resistance 425

self monitoring of the entire program. The check system could be configured such
that one integrity check verifies that another has not been modified or removed.

In our scheme the software dynamically detects tampering through the com-
putation of ki. If either the key or the integrity check are altered, an incorrect slot
in the table will be accessed. Since the slot is wrong, an incorrect displacement
will be added to the return address. Upon function return an incorrect instruc-
tion will execute eventually leading to program failure which is the desired result
for tamper detecting software.

The robustness of many tamper detection techniques suffer because the de-
tection mechanism relies on a comparison between the calculated value and the
expected value. This is considered a weaker form of detection since it is often
easy for an attacker to remove the check. In the branch-based tamper detection
scheme the calculated value is directly used in controlling the execution of the
program. Thus eliminating an important vulnerability.

Strength Enhancing Feature It is possible to further enhance the strength of
the tamper detection algorithm through the use of indirection. Added levels of
indirection increase the amount of analysis required by an attacker for program
understanding. Further indirection can be incorporated by rerouting all calls to
the ICBFs through a single super branch function which transfers execution to
the proper branch function.

5.4 Key Protection

Both of the proposed techniques suffer from the same vulnerability. In each al-
gorithm an initial key is required to begin the key evolution process. In the
branch-based technique the same initial key is used each time the program exe-
cutes. When the online version is used alone the original initial key is not required
each time the program executes. Instead the key which was generated last can
be used. Without protection for the initial key the additional strength provided
through the one-way function is lost.

One such technique is to use an array of cells. Each cell in this array contains
the key k0 encrypted with a valid key that the program could generate during
execution. More specifically, the key k0 is concatenated with a verification string,
e.g., “DEADBEEF”, and then encrypted with each valid key, including k0 itself.
When the program starts, it first decrypts each encrypted cell. If the last evolved
key is valid, then one of the decryptions will show the verification string in the
decrypted buffer. The decrypted buffer will also reveal the value of k0.

During execution, the key evolves and the new key overrides the old key. If
the program crashes because of innocent customer error, the last key it calculates
should be valid. Using that valid key the initial key can be obtained from the
encrypted cell and the program can be restarted correctly. On the other hand,
if the program crashes because of tampering, it will generate an invalid key.
Using this invalid key, the decryption of the encrypted cells cannot end up with
the correct initial key thus the program cannot restart. In the online protection



426 Hongxia Jin, Ginger Myles, and Jeffery Lotspiech

mechanism, to solve the problem the user can contact the clearing house. The
actions that the clearing house take can vary depending on the business scenario.
It can mark the user and pay more attention to this particular user in the future.
When the occurrence of the same incidence exceeds some threshold, it becomes
more confident that the user is tampering with the software and the user can
be disconnected from the service network. Under the offline technique the user
is left with non-functioning software.

5.5 Uniting the On- and Offline Techniques

The strength of a protection scheme can be improved when multiple protection
techniques can be tightly coupled. We can improve the tamper detection capa-
bilities by making use of the strengths from both the on and offline versions.
The united version will use the branch-based tamper detection as well as the
tamper resistant log. Additionally, because periodic connections will be made to
the clearing house, the initial key used by the branch-based mechanism can be
reset to a new value. This will also require that a patch be applied to update the
values in the displacement table. Such a modification will require an attacker
to restart any analysis conducted thus far. Of course, because we can choose to
weave integrity checks which overlap, it is possible that different integrity checks
are triggered for different executions. For example, the updated new key can be
used to decide what integrity checks will be triggered. Again, such an update
will require an attacker to restart a new analysis.

6 Analysis of the Scheme

The goal of any tamper detection technique is to prevent an adversary from
altering or reverse engineering the program. Based on this criteria we have eval-
uated the robustness of the technique based on its ability to withstand a variety
of automated and manual attacks.

One of the most common forms of automated attack is code obfuscation.
Through the use of the system of integrity check branch functions a program
is able to self-detect semantics-preserving transformations. We applied a variety
of transformations to verify that the tamper detection mechanism behaved as
expected. In each case the protected application failed to function correctly after
the obfuscation had been applied.

A common manual attack is to inspect the code in order to locate and re-
move a license check. When a program has been protected using branch-based
tamper detection, successful removal of the license check requires the attacker to
remove the entire tamper detection system. Such an attack requires unravelling
the table and replacing all of the calls with the correct branch instruction and
displacement, otherwise the alteration will be detected. To unravel the table and
determine the correct instruction requires extensive dynamic analysis which in
many cases may be prevented by the integrity checks. For example, the use of a
debugger could be self-detected and lead to incorrect program behavior. Baring



Towards Better Software Tamper Resistance 427

the use of a completely secure computing device, guaranteed protection against
manual attacks is impossible. All that we can hope is that the analysis required
is extensive enough that an attacker finds it too costly.

The robustness against reverse engineering is partially based on the number
of converted branches. Since the algorithm requires the branches to be on a
deterministic path the number of usable branches is being limited. Through
analysis of a variety of different applications, we found a satisfactory number of
conditional and unconditional branch instructions. To illustrate Table 1 shows
the total number of branches and the number of usable branches in the SPECint-
2000 benchmark applications. By additionally using conditional branches we are
able to significantly increase the number of usable branches. While the removal of
the tamper detection capabilities is not impossible, the manual analysis required
to accomplish the task is extensive.

Program Total Branches Usable including Usable excluding
conditionals conditionals

gzip 2843 464 170
vpr 5814 1153 674
gcc 28136 4886 3056
mcf 2028 290 89
crafty 3340 496 178
parser 5628 864 522
gap 18999 1942 1027
vortex 16144 3462 1049
bzip2 2354 457 211
twolf 4397 729 429

Table 1. Total number of branches versus the number of usable branches in the
SPECint-2000 benchmark suite applications.

The tamper detection technique also inhibits the adversary’s ability to reverse
engineer the program. By replacing conditional and unconditional jumps the
obvious control flow of the program has been removed. The tamper detection is
based on information only available at runtime. This eliminates the use of static
analysis tools. In order to completely reverse engineer the program the attacker
will have to dynamically analyze the program which will be significantly inhibited
by the integrity checks.

In our scheme, the software can be distributed in a traditional manner. If
customization at the user level is required the software will be non-functional
until the user registers it with the company. At that time a patch file is dis-
tributed which will create a fully functional program. The patch will contain the
initial key in the form of an array of encrypted cells and the displacement table.

The most crucial attack on a customized application is the collusive attack.
This occurs when an adversary obtains multiple differently customized programs
and is able to compare them. The branch-based tamper detection scheme is
highly resistant to the collusive attack. The only difference between two cus-



428 Hongxia Jin, Ginger Myles, and Jeffery Lotspiech

tomized programs is the order of the values in the table. Thus, an attacker
would have to examine the data section in order to even notice a difference.

The algorithm is still susceptible to dynamic collusive attacks but some of
those attacks can be warded off through the use of integrity checks which recog-
nize the use of a debugger and cause the program to fail. In a dynamic attack
the only difference the adversary is going to notice is the value of the key that
is generated at each stage which will ultimately yield a different table slot. In
order for an adversary to launch a successful collusive attack extensive manual
analysis will be required to remove the detection mechanism.

The detection and response mechanisms are stealthy. Once the tampering is
detected the program will behave improperly and ultimately fail. Even though
the detection is immediate, the response is separated and delayed. This increases
the stealthiness and makes it difficult for the attacker to identify the point of
failure.

7 Experimental Results

It is not hard to imagine that when using our scheme the size of the program will
increase and that there will be a degradation in performance. Even though we
suggest that it is desirable to apply a variety of tamper detection mechanisms, we
have only performed an experimental evaluation on the branch-based technique

We have created a prototype implementation for Windows executable files.
The tamper detection capabilities are incorporated by disassembling a statically
linked binary, modifying the instructions, and then rewriting the instructions to
a new executable file. To evaluate the overhead we used the SPECint-2000 bench-
mark suite applications. We were unable to use eon and perlbmk because they
would not build. Our experiments were run on a 1.8 GHz Pentium 4 System with
512 MB of main memory running Windows XP Professional. The programs were
compiled using Microsoft’s VisualStudio C++ 6.0 with optimizations disabled.
The execution times reported were obtained through five runs. The highest and
lowest values were discarded and the average was computed for the remaining
three runs.

As can be seen in Table 2 very little performance overhead is incurred by the
additional calls and integrity checks. The unprotected benchmark application
gcc did not execute properly on the reference inputs so we were unable to obtain
performance information suitable for comparison with the other result. However,
when run using the test data no significant slowdown was observed.

The majority of the space cost incurred by the branch-based scheme is based
on the size of the integrity check branch functions and the displacement table.
Additionally, any difference between the converted branch and the call instruc-
tion sizes will contribute to the size of the protected application. Table 3 shows
the effect incorporation of branch-based tamper detection had on the size of
the benchmark applications. For most of the applications the size increase was
minimal. gcc was most significantly impacted but it was also the application in
which the greatest number of branches were converted. A technique to minimize



Towards Better Software Tamper Resistance 429

Execution Time (sec)
Program Original Protected Slowdown

(T0) (T1) (T1/T0)
gzip 435.52 435.52 1.00
vpr 479.12 480.62 1.00
mcf 563.07 562.55 1.00
crafty 326.96 326.40 1.00
parser 519.31 588.34 1.13
gap 292.20 292.01 1.00
vortex 316.22 316.66 1.00
bzip2 743.18 739.82 0.99
twolf 912.43 922.84 1.01

Table 2. Effect of tamper detection mechanism on execution time.

the size impact is to use a perfect hash function in assigning the slots in the dis-
placement table. Our implementation did not use a perfect hash function thus
the results could be improved.

Program Size (KB)
Program Original Protected Increase

(S0) (S1) (S1/S0)
gzip 100 104 1.04
vpr 212 252 1.19
gcc 1608 2604 1.62
mcf 64 68 1.06
crafty 316 320 1.01
parser 184 188 1.02
gap 660 780 1.18
vortex 608 660 1.09
bzip2 88 96 1.09
twolf 316 332 1.05

Table 3. Effect of tamper detection mechanism on program size.

8 Conclusion

In this paper we describe a novel approach to software tamper detection which
incorporates both an on and offline techniques to increase robustness. It includes
copy-specific customization, obfuscation, and dynamic self-checking. Our tech-
nique is an improvement over previous techniques in that the software is able to
dynamically self-detect alterations and cause program failure, protecting itself
from malicious attacks. The self-validating mechanism embedded in the program
can substantially raise the level of tamper resistance against an adversary with
static analysis tools even if they have knowledge of our algorithm and some
implementation details.



430 Hongxia Jin, Ginger Myles, and Jeffery Lotspiech

The prototype demonstrates that the technique is robust against various
types of automated and manual attacks which makes it a viable protection
mechanism for software running on a potentially hostile host. The space cost
associated with the technique is a very small percentage of the size of the pro-
gram, especially for large programs. Additionally, the mechanism had no adverse
effects on the performance of the benchmark applications.

As part of our future work, we would like to eliminate the requirement in
the branch-based technique that the same initial key be used each time the
program is executed. Additionally, we would like to relax the branch selection
requirement. We will continue to assume that hackers tumble first before they
succeed and our scheme will hopefully detect the tampering by then. However, if
the key generation points can be chosen more randomly rather than having to be
on deterministic path, then even if attackers capture the branch trace once, they
cannot use it again for other input data. We believe this can further improve the
strength of the scheme.

References

[1] C. Collberg, C. Thomborson, and D. Low. Manufacturing cheap, resilient,
and stealthy opaque constructs. In Principles of Programming Languages 1998,
POPL’98, 1998.

[2] S. Fritzinger and M. Mueller. Java security, 1996.
[3] G.Myles and H. Jin. Self-validating branch based software watermarking. In In-

formation Hiding Workshop, June, 2005.
[4] H.Jin and J.Lotspiech. Proactive software tamper detection. In Information Secu-

rity Conference, volume LNCS 2851, pages 352–365, 2003.
[5] IBM. Electronic media management system.
[6] D. Libes. Obfuscated C and Other Mysteries. Wiley, 1993.
[7] C. Linn and S. Debray. Obfuscation of executable code to improve resistence to

static disassembly. In Proceedings of the 10th ACM Conference on Computer and
Communications Security, pages 290–299, 2003.

[8] G. Necula. Proof carrying code. In Twenty Fourth Annual Symposium on Principles
of Programming Languages, 1997.

[9] T. Sander and C. F. Tschudin. Protecting mobile agents against malicious hosts.
In Mobile Agents and Security, 1998. Springer-Verlag, Lecture Notes in Computer
Science 1419.


	Introduction
	Background
	Design Objectives
	Design Assumptions
	Proposed Tamper Detection Technique
	Analysis of the Scheme
	Experimental Results
	Conclusion

