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1 Introduction

An encryption scheme enables Alice to send a message to Bob in such a way that an adversary

Eve does not gain signi�cant information about the message content. This is the classical problem

of cryptography. It is usually considered in one of two settings. In the symmetric (private-key)

one, encryption and decryption are performed under a key shared by the sender and receiver. In

the asymmetric (public-key) setting the sender has some public information and the receiver holds

some corresponding secret information.

In this paper we have two goals. The �rst is to study notions of security for symmetric encryption

in the framework of concrete security. This means we will look at the concrete complexity of

reductions between di�erent notions. We want to prove both upper and lower bounds. In this

way we can establish tight relations between the notions and can compare notions (even though

polynomially reducible to each other) as stronger or weaker.

The second goal is to provide a concrete security analysis of some speci�c symmetric encryption

schemes. The schemes we consider are in pervasive use, and yet have never received any formal

analysis (concrete or otherwise) in the tradition of provable security. We want to remedy this. Once

again the goal is to �nd tight bounds on the success probability of an adversary as a function of

the resources it expends. This involves proving both an upper bound and a matching lower bound.

Background. The pioneering work of Goldwasser and Micali [15] was the �rst to introduce formal

notions of security for encryption. Speci�cally, they presented two notions of security for asymmetric

encryption, \semantic security" and \polynomial security," and proved them equivalent with respect

to polynomial-time reductions. Micali, Racko� and Sloan [22] showed that (appropriate versions of)

these notions were also equivalent to another notion, suggested by Yao [26]. A uniform complexity

treatment of notions of asymmetric encryption is given by Goldreich [11]. Some adaptations of

these notions to the symmetric setting are presented by Luby in [20, Chapters 11{12].

Goldwasser and Micali [15] also speci�ed an asymmetric encryption scheme whose security (in

the senses above) is polynomial-time reducible from quadratic residuosity. Subsequently many

other schemes have emerged (eg. [9, 1, 26, 13, 7]), based on various hard problems.

Concrete security. The viewpoint in all the works above is that two notions of security are

equivalent if there is a polynomial-time reduction between them; and a scheme is declared provably

secure if there is some polynomial-time reduction from a hard problem to it. These are certainly

basic questions, but we believe that, once the answers are known, it is important to classify notions

and schemes in a more precise way.

To make an analogy, caring only about polynomial-time reducibility in cryptography is a bit

like caring only whether a computational problem is or is not in P. Yet we know there are a lot

of interesting questions (including most of the �eld of algorithms, and much of complexity theory)

centered around getting further information about problems already known to be in P. Such

information helps to better understand the problem and is also essential for practical applications.

Paying attention to the concrete complexity of polynomially-equivalent notions in cryptography

has similar payo�s. In particular, when reductions are not security-preserving it means that one

must use a larger security parameter to be safe, reducing eÆciency. Thus, in the end, one pays for

ineÆcient reductions in either assurance or running time.

Our approach for doing concrete security is that of Bellare, Kilian and Rogaway [6], wherein

one parameterizes the resources involved and measures adversarial success by an explicit function

on them. The approach is non-asymptotic and applicable to functions with a �nite domain.

We will be concerned not only with proving security by exhibiting concrete bounds, but also

with showing that these bounds are the best possible, which is done by exhibiting matching attacks.
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We follow works of Bellare et al. [5, 3], who did this for certain message authentication schemes.

Though this paper is concerned with concrete security for symmetric encryption, we believe

that, in general, concrete security is one of the major emerging avenues for productive research in

theoretical cryptography.

Notions of Security. We will consider four de�nitions of security for symmetric encryption and

examine the complexity of reductions between them. Each of our de�nitions actually capture two

notions: one against chosen-plaintext attack (CPA) and the other against chosen-ciphertext attack

(CCA). The �rst de�nition, which we call \left-or-right indistinguishability" (LOR) is new, and the

second, \real-or-random indistinguishability" (ROR) is a variant of it. The next two de�nitions,

\�nd-then-guess security" (FTG) and \semantic security" (SEM) are adaptations of the de�nitions

of Goldwasser and Micali [15] to the symmetric setting. 1

In order to model CPA we must give the adversary the ability to see ciphertexts. In the public

key setting it can create them itself given the public key, but in the symmetric key setting the

encryption key is secret so we must modify the model and provide the adversary with an oracle for

the encryption function. The presence of the encryption oracle is one reason it would be untrue to

regard the notion of symmetric encryption as a special case of asymmetric encryption. To model

CCA, we must give the adversary, in addition to an encryption oracle, an oracle for the decryption

function.

As indicated above, our approach to concrete security is via parameterization of the resources

of the adversary A. We distinguish between A's running time, t (by convention, we include in

this the space for A's program and the time to answer all of A's oracle queries); the number of

queries, qe, made by A to an encryption oracle; the amount of ciphertext A sees in response to

its encryption oracle queries, �e; and, in the case of CCA, also the number of queries, qd, made

by A to a decryption oracle; and the amount of plaintext A sees in response to its decryption

oracle queries, �d. With an eye towards practical applications, it is important to treat all of these

resources separately. (Previous works would neglect qe; �e; qd; �d, since they are bounded by t. But

as resources they are very di�erent, because, typically, obtaining legitimate plaintext-ciphertext

pairs is more problematic than performing local computation.) The security of a scheme under

any of the notions is speci�ed by giving bounds on an \advantage function" for that scheme. The

advantage function is the maximum, over all adversaries restricted to some indicated resources, of

the \advantage" that the adversary has (compared to simply guessing) in \breaking" the scheme.

Of course what it means to \break" a scheme varies across the di�erent notions.

Reductions Among the Notions. In this work, we only look at the complexity of reductions

among notions under the same attack, ATK 2 fCPA;CCAg. That is, either both the notions being

compared are de�ned against CPA or both are de�ned against CCA. It follows from our results

here and the work of [4, 10, 19] that there can be no reductions from any of the notions of security

against CPA to any of the notions of security against CCA.

We show that LOR-ATK and ROR-ATK are equivalent, up to a small constant factor in the

reduction. (That is, we have security-preserving reductions between them.) We also show a security-

preserving reduction from these notions to FTG-ATK. However, the reduction from FTG-ATK to

LOR-ATK (or ROR-ATK) is not security-preserving. However, we show that the reduction we give

is tight; one cannot hope to do better. We complete the picture by showing that SEM-ATK and

FTG-ATK are equivalent.

From the above results it is clear that when one wants to prove the security of some encryption

scheme SE it is best to give a tight reduction from ROR-ATK or LOR-ATK, since that implies

1 In [15] the term \polynomial security" is used for the notion analogous to what we call \�nd-then-guess security."
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Figure 1: Relating the notions for ATK 2 fCPA;CCAg. A solid line from notion A to notion B

means that there is a security-preserving reduction from A to B. A broken line indicates that the

reduction is not security-preserving.

good reductions to the rest. A summary of the reductions is given in Figure 1.

Although concrete security has been considered before in the context of scheme analysis [6, 5,

3, 8], this is the �rst work that considers it also for the purpose of relating di�erent notions of

security. That is, this is the �rst time notions are classi�ed as weaker or stronger according to the

complexity of the reductions between them.

Actually these results extend easily to the asymmetric setting. We focus on the symmetric

mainly because that is the domain in which lie the schemes we want to analyze.

Security of Encryption Schemes. We analyze the security of some classic symmetric encryp-

tion schemes. Speci�cally, we look at three di�erent modes of encryption with a block cipher (eg.,

DES): CBC (Cipher Block Chaining mode); CTR (Counter mode); and XOR (a stateless variant

of the CTR mode).

In these schemes the underlying primitive is a pseudorandom function (PRF) or pseudorandom

permutation (PRP) family F in which a particular function FK , speci�ed by a key K, maps l-bits

to L-bits for �xed l; L. (For permutations, l = L.) To encrypt a message the applications of FK
are iterated in some scheme-dependent way. We wish to see how the security of the encryption

scheme depends on the assumed security of the PRF family. We de�ne the concrete security of PRF

and PRP families as in [6], via parameterization of the time t0 and the number of oracle queries

q0. We de�ne the advantage function for the PRF or PRP family, similar to the one de�ned for

encryption schemes. The question then is: assuming F is a \good" PRF family (meaning it has a

small advantage function for reasonable values of t0; q0), what are values of t; qe; �e such that the

advantage function with those resources for the encryption scheme are small? We seek upper and

lower bounds. (The latter represent the best known attacks.)

For the CTR scheme we show that if the underlying PRF family has an advantage function

value �0 for resources t0; q0, then the advantage function value for the scheme is at most 2�0, for

resources t = t0, � = q0l and any q. For the XOR scheme we show that with the above meanings,

the advantage function value for the scheme is at most 2�0 + ÆXOR, where ÆXOR = �(q � 1)=(L2l)

and other resources are as before. We analyze CBC assuming the underlying family to be a PRP

family, since the scheme must indeed be used with permutations. With t0; q0; �0 now understood to

be associated to F as a PRP family, we show that for CBC, the corresponding advantage function

value is at most 2�0+ ÆCBC, where ÆCBC = (�2��l)=(l22l) and the other resources are as before. In

all cases, we show that these results are tight, up to a constant. Notice that even if the underlying

PRF (or PRP) family is ideal (meaning, �0 = 0), it is still possible for an adversary attacking the

XOR or CBC schemes to derive some advantage. This is not true for CTR and hence we conclude

that it has the best security.

5



In all the above the security is in the LOR-CPA sense. From what we said before this gives

comparable bounds for security under any of the other three notions against CPA. There are simple

(and well-known) attacks to show that none of the three schemes we look at are secure against CCA.

More related work. We have already mentioned the most important related work, namely [15].

Here we provide some more detailed comparisons and histories and also discuss other work.

Since our results imply that the notions we consider are equivalent under polynomial time

reductions, they can be viewed, at one level, as providing the analogue of [15] for the symmetric

case. Luby [20] de�nes what is essentially �nd-then-guess security for symmetric encryption, and

he mentions encryption using a pseudorandom function whose output length is the number of bits

you wish to encrypt. In treating the asymmetric setting, [11] says that the symmetric case can

be dealt with similarly. One ingredient missing in this view is that to model CPA one must, in

the symmetric setting, supply the adversary with some means to encrypt. We extend polynomial

and semantic security by providing the adversary with an encryption oracle. Stronger notions of

asymmetric encryption than those of [15, 22] have appeared in the form of non-malleability [10] and

chosen-ciphertext security [24, 25]. It can be gathered from results [4, 10, 19] obtained subsequent

to this work that FTG-CCA implies all these other notions.

Works like [20, 12, 16] pay attention to concrete security to some extent but do not really

go \all the way," in the sense that at some level their notions are still only caring about whether

something is polynomial or not. Also the 
avor is di�erent from us in that their concern is more the

security you can get for a certain investment of randomness, and the treatment remains asymptotic.

Curiously, some earlier works had a more concrete treatment: in the asymmetric encryption arena,

Alexi et. al. [1] were careful to specify the complexity of their reductions, a habit many later works

unfortunately dropped.

The construction of a pseudorandom generator from a one-way function [17] provides a solution

for symmetric encryption starting from a one-way function. In the current work existence is not

the issue; we are interested in concrete security and the analysis of some particular schemes.

A concrete security analysis of the CBC MAC is provided in [6]. (The CBC MAC should not be

confused with CBC encryption: The former is a message authentication code.) We build on their

techniques, but those techniques do not directly solve the problems here. CBC mode encryption is

standardized in [2, 18, 23].

2 Notions of Security

If A(�; �; : : :) is any probabilistic algorithm then a A(x1; x2; : : :) denotes the experiment of running

A on inputs x1; x2; : : : and letting a be the outcome, the probability being over the coins of A.

Similarly, if A is a set then a  A denotes the experiment of selecting a point uniformly from A

and assigning a this value.

Syntax of (symmetric) encryption schemes. A (symmetric) encryption scheme SE = (K; E ;

D) consists of three algorithms. The randomized key generation algorithm K takes input a security

parameter k 2 N and returns a key K; we write K
R
 K(k). The encryption algorithm E could be

randomized or stateful. It takes the key K and a plaintext M to return a ciphertext C; we write

C
R
 EK(M). (If randomzed it 
ips coins anew on each invocation. If stateful, it uses and then

updates a state that is maintained across invocations.) The decryption algorithm D is deterministic

and stateless. It takes the key K and a string C to return either the corresponding plaintext M or

the symbol ?; we write x  DK(C) where x 2 f0; 1g
� [ f?g. We require that DK(EK(M)) = M

for all M 2 f0; 1g�.
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We now give four de�nitions of security, each modeling both, chosen-plaintext attack and chosen-

ciphertext attack (in the sense of Racko� and Simon [25]). In each case, we allow the adversary

access to an encryption oracle in some form; this is one feature distinguishing these de�nitions from

previous ones. We will describe our de�nitions for stateless encryption schemes and later indicate

how to modify them for stateful ones.

Left-or-Right Indistinguishability. The adversary is allowed queries of the form (x0; x1)

where x0; x1 are equal-length messages. Two games are considered. In the �rst, each query is

responded to by encrypting the left message; in the second, it is the right message. Formally, we

de�ne the left-or-right oracle EK(LR(�; �; b)), where b 2 f0; 1g, to take input (x0; x1) and do the

following: if b = 0 it computes C  EK(x0) and returns C; else it computes C  EK(x1) and

returns C. We consider an encryption scheme to be \good" if a \reasonable" adversary cannot

obtain \signi�cant" advantage in distinguishing the cases b = 0 and b = 1 given access to the

left-or-right oracle.

To model chosen-ciphertext attacks we allow the adversary to also have access to a decryption

oracle. Note that if the adversary queries the decryption oracle at a ciphertext output by the

left-or-right oracle, then it can obviously easily win the game. Therefore, we disallow it from doing

so. Any other query is permissible.

De�nition 1 [LOR-CPA, LOR-CCA] Let SE = (K; E ;D) be a symmetric encryption scheme.

Let b 2 f0; 1g and k 2 N. Let Acpa be an adversary that has access to the oracle EK(LR(�; �; b))

and let Acca be an adversary that has access to the oracles EK(LR(�; �; b)) and DK(�). Now, we

consider the following experiments:

Experiment Exp
lor-cpa-b
SE;Acpa

(k)

K
R
 K(k)

d A
EK(LR(�;�;b))
cpa (k)

Return d

Experiment Explor-cca-bSE;Acca
(k)

K
R
 K(k)

d A
EK(LR(�;�;b));DK(�)
cca (k)

Return d

Above it is mandated that Acca never queries DK(�) on a ciphertext C output by the EK(LR(�; �; b))

oracle, and that the two messages queried of EK(LR(�; �; b)) always have equal length. We de�ne

the advantages of the adversaries via

Adv
lor-cpa
SE;Acpa

(k) = Pr[Exp
lor-cpa-1
SE;Acpa

(k) = 1 ]� Pr[Exp
lor-cpa-0
SE;Acpa

(k) = 1 ]

Advlor-ccaSE;Acca
(k) = Pr[Explor-cca-1SE;Acca

(k) = 1 ]� Pr[Explor-cca-0SE;Acca
(k) = 1 ] :

We de�ne the advantage functions of the scheme as follows. For any integers t; qe; �e; qd; �d,

Adv
lor-cpa
SE

(k; t; qe; �e) = max
Acpa

fAdv
lor-cpa
SE;Acpa

(k)g

Advlor-ccaSE (k; t; qe; �e; qd; �d) = max
Acca

fAdvlor-ccaSE;Acca
(k)g

where the maximum is over all Acpa; Acca with \time complexity" t, each making at most qe queries

to the EK(LR(�; �; b)) oracle, totalling at most �e=2 bits, and, in the case of Acca, also making at

most qd queries to theDK(�) oracle, totalling at most �d bits. The scheme SE is said to be LOR-CPA

secure (resp. LOR-CCA secure) if the function Adv
lor-cpa
SE;A (�) (resp. Advlor-ccaSE;A (�)) is negligible for

any adversary A whose time complexity is polynomial in k.

The \time complexity" is the worst case total execution time of the experiment, plus the size of

the code of the adversary, in some �xed RAM model of computation. We stress that the total
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execution time of the experiment includes the time of all operations in the experiment, including

the time for key generation and the computation of answers to oracle queries. Thus when the

time complexity is polynomially bounded, so are all the other parameters. This convention for

measuring time complexity and other resources of an adversary is used for all de�nitions in this

paper. The advantage function is the maximum probability that the security of the scheme SE can

be compromised by an adversary using the indicated resources.

Real-or-Random Indistinguishability. The idea is that an adversary cannot distinguish the

encryption of text from the encryption of an equal-length string of garbage. (By transitivity,

the adversary cannot distinguish from each other the encryption of any two equal-length strings.)

Formally, we de�ne the real-or-random oracle EK(RR(�; b)), where b 2 f0; 1g, to take input x and

do the following: if b = 1 it computes C  EK(x) and returns C; else it computes C  EK(r)

where r
R
 f0; 1gjxj and returns C. (It is understood that the oracle picks any coins that E might

need if E is randomized, or updates its state appropriately if E is stateful.) The encryption scheme

is \good" if no \reasonable" adversary cannot obtain \signi�cant" advantage in distinguishing the

cases b = 0 and b = 1 given access to the oracle.

De�nition 2 [ROR-CPA, ROR-CCA] Let SE = (K; E ;D) be a symmetric encryption scheme.

Let b 2 f0; 1g and k 2 N. Let Acpa be an adversary that has access to the oracle EK(RR(�; b)) and

let Acca be an adversary that has access to the oracles EK(RR(�; b)) and DK(�). Now, we consider

the following experiments:

Experiment Exp
ror-cpa-b
SE;Acpa

(k)

K
R
 K(k)

d A
EK(RR(�;b))
cpa (k)

Return d

Experiment Expror-cca-bSE;Acca
(k)

K
R
 K(k)

d A
EK(RR(�;b));DK(�)
cca (k)

Return d

Above it is mandated that Acca never queries DK(�) on a ciphertext C output by the EK(RR(�; b))

oracle. We de�ne the advantages of the adversaries via

Adv
ror-cpa
SE;Acpa

(k) = Pr[Exp
ror-cpa-1
SE;Acpa

(k) = 1 ]� Pr[Exp
ror-cpa-0
SE;Acpa

(k) = 1 ]

Advror-ccaSE;Acca
(k) = Pr[Expror-cca-1SE;Acca

(k) = 1 ]� Pr[Expror-cca-0SE;Acca
(k) = 1 ] :

We de�ne the advantage functions of the scheme as follows. For any integers t; qe; �e; qd; �d,

Adv
ror-cpa
SE

(k; t; qe; �e) = max
Acpa

fAdv
ror-cpa
SE;Acpa

(k)g

Advror-ccaSE (k; t; qe; �e; qd; �d) = max
Acca

fAdvror-ccaSE;Acca
(k)g

where the maximum is over all Acpa; Acca with time complexity t, each making at most qe queries

to the EK(RR(�; b)) oracle, totalling at most �e bits, and, in the case of Acca, also making at most

qd queries to the DK(�) oracle, totalling at most �d bits. The scheme SE is said to be ROR-CPA

secure (resp. ROR-CCA secure) if the function Adv
ror-cpa
SE;A (�) (resp. Advror-ccaSE;A (�)) is negligible for

any adversary A whose time complexity is polynomial in k.

Find-then-Guess Security. This is an adaptation of the notion of polynomial security as given

in [15, 22]. We imagine an adversary that runs in two stages. During the �nd stage, the adversary

endeavors to come up with a pair of equal-length messages, x0 and x1, whose encryptions it wants

to try to tell apart. It also retains some state information s that it may want to preserve to help it
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later. In the guess stage, it is given a random ciphertext y for one of the plaintexts x0; x1, together

with the state information s. The adversary \wins" if it correctly identi�es which plaintext goes

with y. The encryption scheme is \good" if \reasonable" adversaries cannot win signi�cantly more

than half the time.

De�nition 3 [FTG-CPA, FTG-CCA] Let SE = (K; E ;D) be a symmetric encryption scheme.

Let b 2 f0; 1g and k 2 N. Let Acpa be an adversary that has access to the oracle EK(�) and let Acca

be an adversary that has access to the oracles EK(�) and DK(�). Now, we consider the following

experiments:

Experiment Exp
ftg-cpa-b
SE;Acpa

(k)

K
R
 K(k)

(x0; x1; s) A
EK(�)
cpa (k; �nd)

y  EK(xb)

d A
EK(�)
cpa (k; guess; y; s)

Return d

Experiment Exp
ftg-cca-b
SE;Acca

(k)

K
R
 K(k)

(x0; x1; s) A
EK(�);DK(�)
cca (k; �nd)

y  EK(xb)

d A
EK(�);DK(�)
cca (k; guess; y; s)

Return d

Above it is mandated that Acca does not query DK(�) on the ciphertext y in the guess stage and

that the two messages (x0; x1) have equal length. We de�ne the advantages of the adversaries via

Adv
ftg-cpa
SE;Acpa

(k) = Pr[Exp
ftg-cpa-1
SE;Acpa

(k) = 1 ]� Pr[Exp
ftg-cpa-0
SE;Acpa

(k) = 1 ]

Adv
ftg-cca
SE;Acca

(k) = Pr[Exp
ftg-cca-1
SE;Acca

(k) = 1 ]� Pr[Exp
ftg-cca-0
SE;Acca

(k) = 1 ] :

We de�ne the advantage functions of the scheme as follows. For any integers t; qe; �e; qd; �d,

Adv
ftg-cpa
SE

(k; t; qe; �e) = max
Acpa

fAdv
ftg-cpa
SE;Acpa

(k)g

Adv
ftg-cca
SE

(k; t; qe; �e; qd; �d) = max
Acca

fAdv
ftg-cca
SE;Acca

(k)g

where the maximum is over all Acpa; Acca with time complexity t, each making at most qe queries

to the EK(�) oracle, totalling at most (�e� jx0j) bits, and, in the case of Acca, also making at most

qd queries to the DK(�) oracle, totalling at most �d bits. The scheme SE is said to be FTG-CPA

secure (resp. FTG-CCA secure) if the function Adv
ftg-cpa
SE;A (�) (resp. Adv

ftg-cca
SE;A (�)) is negligible for

any adversary A whose time complexity is polynomial in k.

Semantic Security. Goldwasser and Micali [15] explain semantic security by saying that what-

ever can be eÆciently computed about the plaintext given the ciphertext can also be computed in

the absence of the ciphertext. We adapt the formalizations of [15, 22] to the symmetric setting.

Our adversary will run in two stages. During the select stage it endeavors to come up with an

advantageous message distributionM. We assume that the message distribution is valid, meaning

that all strings inM with non-zero probability have the same length. In the adversary's predict stage

it is given a random ciphertext y for a plaintext x1, chosen according to the distributionM, and it

has to output a function f and a function value �. It hopes that � = f(x). An encryption scheme is

semantically secure if no reasonable adversary can guess f(x) with probability signi�cantly better

than the probability � = f(x0), for some hidden x0 drawn randomly from M. This comparison-

based method of measuring an adversary's advantage follows the approach Bellare et al [4] used to

capture the notion of non-malleability.

Previous formalizations required the condition to hold for all functions f . In our concrete treat-

ment we allow the function f and the probability distributionM to be selected by the adversary.
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De�nition 4 [SEM-CPA, SEM-CCA] Let SE = (K; E ;D) be a symmetric encryption scheme.

Let k 2 N. Let Acpa be an adversary that has access to the oracle EK(�) and let Acca be an adversary

that has access to the oracles EK(�) and DK(�). Now, we consider the following experiments:

Experiment Exp
sem-cpa-b
SE;Acpa

(k)

K
R
 K(k)

(M; s) A
EK(�)
cpa (k; select)

x0  M ; x1  M

y  EK(x1)

(f; �) A
EK(�)
cpa (k; predict; y; s)

If � = f(xb) then d 1; else d 0

Return d

Experiment Expsem-cca-bSE;Acca
(k)

K
R
 K(k)

(M; s) A
EK (�);DK(�)
cca (k; select)

x0  M ; x1  M

y  EK(x1)

(f; �) A
EK (�);DK(�)
cca (k; predict; y; s)

If � = f(xb) then d 1; else d 0

Return d

Above it is mandated that Acca does not query DK(�) on the ciphertext y in the predict stage. We

de�ne the advantages of the adversaries via

Adv
sem-cpa
SE;Acpa

(k) = Pr[Exp
sem-cpa-1
SE;Acpa

(k) = 1 ]� Pr[Exp
sem-cpa-0
SE;Acpa

(k) = 1 ]

Advsem-ccaSE;Acca
(k) = Pr[Expsem-cca-1SE;Acca

(k) = 1 ]� Pr[Expsem-cca-0SE;Acca
(k) = 1 ]

We de�ne the advantage functions of the scheme as follows. For any integers t; qe; �e; qd; �d,

Adv
sem-cpa
SE

(k; t; qe; �e) = max
Acpa

fAdv
sem-cpa
SE;Acpa

(k)g

Advsem-ccaSE (k; t; qe; �e; qd; �d) = max
Acca

fAdvsem-ccaSE;Acca
(k)g

where the maximum is over all Acpa; Acca with time complexity t, each making at most qe queries

to the EK(�) oracle, totalling at most (�e� jx0j) bits, and, in the case of Acca, also making at most

qd queries to the DK(�) oracle, totalling at most �d bits. The scheme SE is said to be SEM-CPA

secure (resp. SEM-CCA secure), if the function Adv
sem-cpa
SE;A (�) (resp. Advsem-ccaSE;A (�)) is negligible for

any adversary A whose time complexity is polynomial in k.

Modifying the definitions for the stateful case. De�nitions of security for stateful en-

cryption schemes are obtained by modifying the above de�nitions in the natural way, adjusting

how one answers oracle queries. For example, in De�nition 2, A
EK(RR(�;0))
cpa now means Acpa with

an oracle that maintains a state �, initially ". Upon receiving a query x it picks coins r and sets

(�0; y) to be EK(x; �; r). It returns y as the answer to the oracle query and updates the state via

�  �0. Notice that the ciphertext (meaning y) is returned, but the updated state is not. (Thus we

are abusing notation when we write A
EK(RR(�;0))
cpa ; we ought to write A

E2
K
(RR(�;0))

cpa .) Notice that the

encryption oracles now have \memory": between invocations, the state is modi�ed and retained.

The notation A
EK(RR(�;1))
cpa can be similarly re-interpreted, and the same approach applies to the

other de�nitions.

3 Reductions Among the Notions

Here we look at the reductions among the di�erent notions of security. We look at both upper

bounds and lower bounds. Since we are paying attention to concrete security bounds, we can use

our results to decide how strong is a notion of security relative to other notions to which it is

10



polynomially equivalent. This information is useful because it helps us identify the most desirable

starting points for reductions. We implicitly use this information when we demonstrate the security

of schemes via reductions from left-or-right indistinguishability.

We use the notation A ) B to indicate a security-preserving reduction from notion A to

notion B. A! B indicates a reduction (not necessarily security-preserving) from A to B. A 6) B

and A 6! B are the natural interpretations given the above. For concision and clarity, we relate

the notions, simultaneously with respect to CPA and CCA. We let the string atk be instantiated

by the formal symbols cpa, cca, while ATK is then the corresponding formal symbol from CPA,

CCA. In the proofs of our claims, we use the convention that if atk = cpa then O�1 = �. (When

we say O�1 = �, we mean O�1 is the function which, on any input, returns the empty string.)

The �rst two theorems say that our �rst two notions, left-or-right indistinguishability and real-

or-random indistinguishability, are of essentially equivalent strength, under any attack.

Theorem 1 [ROR-ATK) LOR-ATK] For any scheme SE = (K; E ;D),

Adv
lor-cpa
SE

(k; t; qe; �e) � 2 �Adv
ror-cpa
SE

(k; t; qe; �e)

Advlor-ccaSE (k; t; qe; �e; qd; �d) � 2 �Advror-ccaSE (k; t; qe; �e; qd; �d):

Proof: Assume that A1 is an adversary attacking SE = (K; E ;D) in the LOR-ATK sense. We

construct a new adversary A2, using A1, that attacks SE in the ROR-ATK sense.

Let O2(�) be A2's encryption oracle and O�1(�) its decryption oracle. A
O2(�);O

�1(�)
2 will run A1,

using its oracles to provide a simulation of A1's oracles.

For b 2 f0; 1g and jx0j = jx1j, de�ne O1(LR(x0; x1; b)) as O2(xb).

Algorithm A
O2(�);O

�1(�)
2 (k)

(1) Let b
R
 f0; 1g

(2) If b = 0 then d A
O1(LR(�;�;0));O�1(�)
1 (k), else d A

O1(LR(�;�;1));O�1(�)
1 (k).

(3) If b = d then return 1 else return 0.

From the above description, it is easy to see that the time and query complexities are as claimed.

We now compute A2's advantage. We consider Expror-atk-bSE;A2
(k), freely referring to the random

variables underlying this experiment. We have,

Advror-atkSE;A2
(k) = Pr[Expror-atk-1SE;A2

(k) = 1 ]� Pr[Expror-atk-0SE;A2
(k) = 1 ]

When O2(�) = EK(RR(�; 0)), we have that O1(LR(�; �; 0)) and O1(LR(�; �; 1)) return identically

distributed answers. So, Pr[Expror-atk-0SE;A2
(k) = 1 ] = 1=2. Hence,

Advror-atkSE;A2
(k) = Pr[Expror-atk-1SE;A2

(k) = 1 ]� 1=2

= 1=2 � Pr[Explor-atk-1SE;A1
(k) = 1 ] + 1=2 � Pr[Explor-atk-0SE;A1

(k) = 0 ]� 1=2

= 1=2 � Pr[Explor-atk-1SE;A1
(k) = 1 ] + 1=2 �

�
1� Pr[Explor-atk-0SE;A1

(k) = 1 ]
�
� 1=2

= 1=2 �
�
Pr[Explor-atk-1SE ;A1

(k) = 1 ]� Pr[Explor-atk-0SE;A1
(k) = 1 ]

�
= 1=2 �Advlor-atkSE;A1

(k)

Since A1 is an arbitrary adversary, the claimed relation in the advantage functions follows.
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Theorem 2 [LOR-ATK) ROR-ATK] For any scheme SE = (K; E ;D),

Adv
ror-cpa
SE

(k; t; qe; �e) � Adv
lor-cpa
SE

(k; t; qe; �e)

Advror-ccaSE (k; t; qe; �e; qd; �d) � Advlor-ccaSE (k; t; qe; �e; qd; �d):

Proof: Assume that A2 is an adversary attacking SE = (K; E ;D) in the ROR-ATK sense. We

construct a new adversary A1, using A2, that attacks SE in the LOR-ATK sense.

Let O1(�; �) be A1's encryption oracle and O�1(�) its decryption oracle. A
O1(�;�);O

�1(�)
1 will run A2,

using its oracles to provide a simulation of A2's oracles.

For any string x, de�ne O2(x) to be O1(r; x) where r
R
 f0; 1gjxj is chosen anew each time the

oracle is invoked.

Algorithm A
O1(�;�);O

�1(�)
1 (k)

(1) Return A
O2(�);O

�1(�)
2 (k)

It is clear that the time and query complexities are as claimed. For A1's advantage, we have,

Advlor-atkSE;A1
(k) = Pr[Expror-atk-1SE;A2

(k) = 1 ]� Pr[Expror-atk-0SE;A2
(k) = 1 ] = Advror-atkSE;A2

(k)

Since A2 is an arbitrary adversary, the claimed relation in the advantage functions follows.

Left-or-right indistinguishability and real-or-random indistinguishability constitute a stronger no-

tion of security than the traditional �nd-then-guess notion. Intuitively, the adversary's job is harder

with �nd-then-guess because it has to single out a single message pair on which to perform. This

is illustrated by Theorems 3 and 4 and Proposition 5.

The �rst theorem says that a scheme with a certain security in the left-or-right sense has

essentially the same security in the �nd-then-guess sense.

Theorem 3 [LOR-ATK) FTG-ATK] For any scheme SE = (K; E ;D),

Adv
ftg-cpa
SE

(k; t; qe; �e) � Adv
lor-cpa
SE

(k; t; qe + 1; �e)

Adv
ftg-cca
SE

(k; t; qe; �e; qd; �d) � Advlor-ccaSE (k; t; qe + 1; �e; qd; �d):

Proof: Assume that A3 is an adversary attacking SE = (K; E ;D) in the FTG-ATK sense. We

construct a new adversary A1, using A3, that attacks SE in the LOR-ATK sense.

Let O1(�; �) be A1's encryption oracle and O�1(�) be its decryption oracle. A
O1(�;�);O

�1(�)
1 will run

A3, using its oracles to provide a simulation of A3's oracles.

For any string x, de�ne O3(x) to be O1(x; x). We assume, wlog, that A3 does not query O
�1(�) on

any ciphertext it has previously obtained by querying O3(�).

Algorithm A
O1(�;�);O

�1(�)
1 (k)

(1) Let (x0; x1; s) A
O3(�);O

�1(�)
3 (k; �nd)

(2) Let d A
O3(�);O

�1(�)
3 (k; guess;O1(x0; x1); s)

(3) If d = 0 then return 0, else return 1.
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It is clear that the time and query complexities are as claimed. For A1's advantage, we have,

Advlor-atkSE;A1
(k) = Pr[Exp

ftg-atk-1
SE;A3

(k) = 1 ]� Pr[Exp
ftg-atk-0
SE;A3

(k) = 1 ] = Adv
ftg-atk
SE;A3

(k)

Since A3 is an arbitrary adversary, the claimed relation in the advantage functions follows.

The next theorem says that if a scheme has a certain security in the �nd-then-guess sense, then it

is secure in the left-or-right sense, but the security shown is quantitatively lower.

Theorem 4 [FTG-ATK! LOR-ATK] For any scheme SE = (K; E ;D),

Adv
lor-cpa
SE

(k; t; qe; �e) � qe �Adv
ftg-cpa
SE

(k; t; qe; �e)

Advlor-ccaSE (k; t; qe; �e; qd; �d) � qe �Adv
ftg-cca
SE

(k; t; qe; �e; qd; �d):

Proof: Assume that A1 is an adversary attacking SE = (K; E ;D) in the LOR-ATK sense. We

construct a new adversary A3, using A1, that attacks SE in the FTG-ATK sense.

Let O3(�) be A3's encryption oracle and O�1(�) be its decryption oracle. For b 2 f0; 1g and

jx0j = jx1j, de�ne O1(LR(x0; x1; b)) to be O3(xb).

Algorithm A
O3(�);O

�1(�)
3 (k; �nd)

(1) Let i
R
 f1; � � � ; qeg

(2) Run A1 answering its encryption oracle queries with O1(LR(�; �; 0)) and decryption oracle

queries with O�1(�), until the point at which it makes its i-th encryption oracle query, which

we denote (xi0; x
i
1). (That is, A1 has now made this query and is waiting for the response from

the encryption oracle.) Let s be A1's runtime state at this point.

(3) Return (xi0; x
i
1; s)

Algorithm A
O3(�);O

�1(�)
3 (k; guess; y; s)

(1) Resume execution of A1 in state s by answering its i-th encryption oracle query (namely

(xi0; x
i
1)) by y, and stop before it makes another oracle query.

(2) Continue execution of A1, answering all encryption oracle queries now via O1(LR(�; �; 1)) and

decryption oracle queries via O�1(�), until A1 halts.

(3) If A1 outputs 1 then return 0, else return 1.

Clearly, the time and query complexities are as given. We compute A3's advantage using a standard

hybrid argument. Towards this, we de�ne a sequence of qe + 1 experiments: for j = 0 : : : qe de�ne

Exp
hyb-atk-j
SE;A1

(k) to be an experiment in which one chooses K
R
 K(k) and runs A1, answering

the �rst j encryption oracle queries of A1 via EK(LR(�; �; 0)) and the rest via EK(LR(�; �; 1)), and

furthermore, if atk = cca, answering its decryption oracle queries via DK(�). The output of the

experiment is de�ned to be the output of A1.

Now consider the experiment Exp
ftg-atk-b
SE;A3

(k), where A3 is the algorithm above. In this experiment,

if b = 0 then y = EK(x
i
0) and, in the simulation, A1's output would be that of Exp

hyb-atk-(i+1)
SE;A1

(k).

On the other hand, if b = 1 then y = EK(x
i
1) and, in the simulation, A1's output would be the

same as Exp
hyb-atk-i
SE;A1

(k). Since i is chosen randomly from f1; � � � ; qeg by A3, we have,

Adv
ftg-atk
SE;A3

(k) = (1=qe) �
Pqe�1

i=0

�
Pr[Exp

hyb-atk-i
SE;A1

(k) = 1 ]� Pr[Exp
hyb-atk-(i+1)
SE;A1

(k) = 1 ]
�

= (1=qe) �
�
Pr[Exp

hyb-atk-0
SE;A1

(k) = 1 ]� Pr[Exp
hyb-atk-qe
SE;A1

(k) = 1 ]
�

= (1=qe) �Adv
lor-atk
SE;A1

(k)
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Since A1 is an arbitrary adversary, the claimed relation in the advantage functions follows.

The following proposition says that the drop in security above is not due to any weakness in the

reduction but is intrinsic| we present a scheme having a higher security in the �nd-then-guess sense

than in the left-or-right sense, with the gap being the same as in the theorem above. Obviously

we cannot make such a statement if there are no secure encryption schemes around at all, so the

theorem assumes there exists a secure scheme, and then constructs a di�erent scheme exhibiting

the desired gap.

Proposition 5 [FTG-ATK 6) LOR-ATK] Suppose SE is a stateless encryption scheme, over a

message space containing f0; 1g. Then, there exists a stateless encryption scheme SE 0, such that,

Adv
lor-cpa
SE 0

(k; t; qe; qe) = Advlor-cca
SE 0

(k; t; qe; qe; 0; 0) � 0:632

Adv
ftg-cpa
SE 0

(k; t; qe; �e) � Adv
ftg-cpa
SE

(k; t; qe; �e) + 1=qe

Adv
ftg-cca
SE 0

(k; t; qe; �e; qd; �d) � Adv
ftg-cca
SE

(k; t; qe; �e; qd; �d) + 1=qe

Furthermore, then there exists a stateful encryption scheme SE 00, such that,

Adv
lor-cpa
SE00

(k; t; qe; qe) = Advlor-cca
SE00

(k; t; qe; qe; 0; 0) = 1

Adv
ftg-cpa
SE00

(k; t; qe; �e) � Adv
ftg-cpa
SE

(k; t; qe; �e) + 1=qe

Adv
ftg-cca
SE 00

(k; t; qe; �e; qd; �d) � Adv
ftg-cca
SE

(k; t; qe; �e; qd; �d) + 1=qe:

Proof: Let SE = (E ;D;K) be the given encryption scheme. We now de�ne SE 0 = (E 0;D0;K0) and

show that it has the claimed properties. Set K0 = K. De�ne encryption as:

Algorithm E 0K(x)

(1) Pick i
R
 f1; � � � ; qeg

(2) If i = 1 then return 0 kx, else return 1 k EK(x)

D0 is as one would expect. Now consider the following adversary A1 attacking SE
0 in the LOR-ATK

sense. Let O1(�; �) be A1's encryption oracle and O�1(�) be its decryption oracle.

Algorithm A
O1(�;�);O

�1(�)
1 (k)

(1) Fix a pair x1; x2 of distinct, equal length messages. (For concreteness x0 = 0 and x1 = 1,

which we assumed are in the message space of SE .)

(2) For j = 1; � � � ; qe do: yj  O1(x0; x1)

(3) If there is some j such that yj = 0 kx0, then return 0; else return 1.

One can check that A1's advantage is the probability that the i value chosen by E 0K is 1 in at least

one of the qe encryptions, namely Advlor-atkSE;A1
(k) = 1� (1� 1=qe)

qe � 1� 1=e.

Notice A1 makes qe queries, each consisting of two 1-bit messages, so its complexity is as claimed.

A �nd-then-guess adversary making qe queries must hope that its challenge in the guess state, y,

begins with a 0. If not, it can achieve no advantage over and above that of an adversary attacking

SE . With probability 1=qe it is the case that y begins with 0, soAdv
ftg-cpa
SE0

(k; t; qe; �e) (respectively,

Adv
ftg-cca
SE0

(k; t; qe; �e; qd; �d)) is at most �0+(1��0)=qe � �0+1=qe, where �
0 is Adv

ftg-cpa
SE

(k; t; qe; �e)

(respectively, Adv
ftg-cca
SE

(k; t; qe; �e; qd; �d)).
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Notice that SE 0 is stateless (as long as SE is stateless). If we allow the constructed scheme to be

stateful we can slightly improve the constant factor in the gap between the securities, making �0

exactly 1. To do this we de�ne a stateful encryption scheme SE 00 = (E 00;D00;K00) which maintains a

counter ctr , initially zero. The key generator K00 outputs (i; a) where i
R
 f1; : : : ; qeg andK

R
 K(k).

E 00 is as follows:

Algorithm E 00i;K(x; ctr )

(1) ctr  ctr + 1

(2) If i = ctr then return (ctr ; 0 kx), else return (ctr ; 1 k EK(x))

(Remember that according to our syntax for stateful schemes the output of the encryption algorithm

is a pair consisting of the new state (here the updated counter) and the actual ciphertext.) D00 is

as one would expect. If we consider the same left-or-right adversary A1 as above, executing now

with scheme SE 00, we see that it is guaranteed to receive, in its qe queries, a response whose �rst

bit is 0. So the advantage function of SE 00 in the LOR-ATK sense is now 1, while it remains the

same as that of SE 0 in the FTG-ATK sense.

In the above, think of the advantage function value of SE as very small (essentially zero). The

constructed scheme SE 0 can be broken with probability �0 = 0:632, using qe queries, in the left-

or-right sense, meaning it is completely insecure under this notion. However, the probability of

breaking it (with comparable resources) in the �nd-then-guess sense is � � 1=qe. The probabilities

obey the relation qe� = �(�0), showing that Theorem 4 is essentially tight. Furthermore, if one

allows the scheme to be stateful, one can make �0 exactly one, so that qe� � �0.

Semantic security is too complex to make it a good starting point for proving schemes secure. Still,

as the next theorem indicates, it is nice that there is a strong reduction from semantic security to

�nd-then-guess security. Notice that for this only requires semantic security to hold for a particular

and simple function, the identity function, and a particular and simple distribution over the message

space. This theorem is implicit in [15] for the asymmetric setting and their proof is easily adapted

to the symmetric setting.

Theorem 6 [SEM-ATK) FTG-ATK] For any scheme SE = (K; E ;D),

Adv
ftg-cpa
SE

(k; t; qe; �e) � Adv
sem-cpa
SE

(k; t; qe; �e)

Adv
ftg-cca
SE

(k; t; qe; �e; qd; �d) � Advsem-ccaSE (k; t; qe; �e; qd; �d):

Proof: Assume that A3 is an adversary attacking SE = (K; E ;D) in the FTG-ATK sense. We

construct a new adversary A4, using A3, that attacks SE in the SEM-ATK sense. We use the

standard reduction of [15], which is easily extended to take into account the presence of oracles.

Let O4(�) be A4's encryption oracle and O�1(�) be its decryption oracle.

Algorithm A
O3(�);O

�1(�)
4 (k; select)

(1) Let (x0; x1; s) A
O4(�);O

�1(�)
3 (k; �nd)

(2) Return ((x0; x1); (s; (x0; x1)))

That is,M is the pair (x0; x1), with a probability 1=2 assigned to each of x0 and x1.

Algorithm A
O4(�);O

�1(�)
4 (k; predict; y; (s; (x0; x1)))

(1) Let d A
O4(�);O

�1(�)
3 (k; guess; y; s)
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(2) Return (f; xd), where f is the identity function.

For the advantage of A4 we have,

Advsem-atkSE;A4
(k) = Pr[Exp

ftg-atk-1
SE;A3

(k) = 1 ]� Pr[Exp
ftg-atk-0
SE;A3

(k) = 1 ] = Adv
ftg-atk
SE;A3

(k)

Uaing this, we get the claimed relation in the advantage functions.

Combining this with Theorem 4 yields a reduction from security in the semantic sense to security

in the left-or-right sense, but this reduction inherits the security loss of the reduction of Theorem 4.

As before it turns out this loss is inherent: security in the left-or-right sense is a stronger notion.

The example to see this is essentially the same as that in the proof of Proposition 5 but the setup

becomes more complicated. We do not discuss it further here.

Theorem 7 [FTG-ATK) SEM-ATK] For any scheme SE = (K; E ;D),

Adv
sem-cpa
SE

(k; t; qe; �e) � 2 �Adv
ftg-cpa
SE

(k; t; qe; �e)

Advsem-ccaSE (k; t; qe; �e; qd; �d) � 2 �Adv
ftg-cca
SE

(k; t; qe; �e; qd; �d):

Proof: Assume that A4 is an adversary attacking SE = (K; E ;D) in the SEM-ATK sense. We

construct a new adversary A3, using A4, that attacks SE in the FTG-ATK sense.

Let O3(�) be A3's encryption oracle and O�1(�) be its decryption oracle.

Algorithm A
O3(�);O

�1(�)
3 (k; �nd)

(1) Let (M; s) A
O3(�);O

�1(�)
4 (k; select)

(2) Let x0  M ; x1  M

(3) Let s0  (M; s; x0; x1)

(4) Return (x0; x1; s
0)

Algorithm A
O3(�);O

�1(�)
3 (k; guess; y; (M; s; x0; x1))

(1) Let (f; z) A
O3(�);O

�1(�)
4 (k; predict; y; s)

(2) If z = f(x1) then return 1; else return a random bit.

For the advantage of A3 we have,

Adv
ftg-atk
SE;A3

(k) = Pr[Expsem-atk-1SE;A4
(k) = 1 ]� Pr[Expsem-atk-0SE;A4

(k) = 1 ] = Advsem-atkSE;A4
(k)

Using this, we get the claimed relation in the advantage functions.

In earlier work [15, 22, 11] no restriction was made on the complexity of f ; it was even allowed to

be uncomputable. Clearly semantic security against such very complex functions is not captured

by De�nition 4. There are alternate de�nitions and theorems (following techniques of [11]) that are

useful in talking about complex functions f (but less useful when talking about simple functions).

We do not pursue this more at the moment because, as we have indicated above, other notions of

security are more suitable for practice.

Putting things together, showing an encryption scheme left-or-right secure or real-or-random

secure implies tight reductions to all other notions Showing an encryption scheme �nd-then-guess

secure or semantically secure does not. Thus, if the bounds are equal, it is better to demonstrate
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security with respect to one of the �rst two notions, since that immediately translates into equally-

good bounds for the other notions.

Asymptotic security. The above theorems imply that all the de�nitions considered (under the

same attack) are equivalent under polynomial time reductions, because, as the theorems indicate,

all the translations involve only polynomial factors. We are just saying something stronger.

Asymmetric encryption. All of the above de�nitions and results carry over to the asymmetric

setting. In that setting it is not necessary to give the adversary an encryption oracle for the

purpose of facilitating a chosen plaintext attack (but the encryption oracle remains for left-or-

right indistinguishability and real-or-random indistinguishability for the purpose of testing the

adversary's e�ectiveness). For all four de�nitions it is important to provide the adversary with the

public key. Then it remains true, even in the asymmetric setting that, from the point of view of

concrete security, to prove a good bound on left-or-right indistinguishability, say, is \better" than

providing an equally-good bound on �nd-then-guess security.

4 Finite PRFs and PRPs

The symmetric encryption schemes we study in this paper are based on �nite pseudorandom func-

tions [6], a concrete security version of the original notion of pseudorandom functions [14]. We thus

recall some necessary de�nitions from [6].

A family of functions is a map F : Keys(F ) � Dom(F ) ! Ran(F ). Here Keys(F ) is the key

space of F ; Dom(F ) is the domain of F ; and Ran(F ) is the range of F . The two-input function

F takes a key K 2 Keys(F ) and an input x 2 Dom(F ) to return a point F (K;x) 2 Ran(F ). If

Keys(F ) = f0; 1gk for an integer k then we refer to k as the key-length. If Dom(F ) = f0; 1gl for

some integer l then we refer to l as the input-length. If Ran(F ) = f0; 1gL for some integer L then

we refer to L as the output-length. In this paper, Keys(F ), Dom(F ), and Ran(F ) will always be

�nite. For each key K 2 Keys(F ) we de�ne the map FK : Dom(F )! Ran(F ) by FK(x) = F (K;x)

for all x 2 Dom(F ). Thus, F speci�es a collection of maps from Dom(F ) to Ran(F ), each map

being associated with a key. That is why F is called a family of functions. We refer to FK as

an instance of F . We often speak of choosing a random key K uniformly from Keys(F ). This

operation is written K
R
 Keys(F ). We write f

R
 F for the operation K

R
 Keys(F ) ; f  FK .

That is, f
R
 F denotes the operation of selecting at random a function from the family F . When

f is so selected it is called a random instance of F . We say that F is a family of permutations if

Dom(F ) = Ran(F ), and for each key K 2 Keys(F ) it is the case that FK is a permutation (ie. a

bijection) on Dom(F ).

In order to de�ne PRFs and PRPs we �rst need to �x two function families. One is Randl
!L, the

family of all functions from f0; 1gl to f0; 1gL, and the other is Perml, the family of all permutations

on f0; 1gl.

De�nition 5 [PRF and PRP families, [6]] Let F be a function family with input-length l and

output-length L and P be a permutation family with length l. Let b 2 f0; 1g. Let Dfn;Dpn be

distinguishers that have access to the oracle Ob(�). Now, we consider the following experiments:

Experiment Exp
prf-b
F;Dfn

O0
R
 Randl

!L; O1
R
 F

d D
Ob(�)
fn

Return d

Experiment Exp
prp-b
P;Dpn

O0
R
 Perml; O1

R
 P

d D
Ob(�)
pn

Return d
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We de�ne the advantages of the distinguishers via

Adv
prf
F;Dfn

= Pr[Exp
prf-1
F;Dfn

= 1 ]� Pr[Exp
prf-0
F;Dfn

= 1 ]

Adv
prp
P;Dpn

= Pr[Exp
prp-1
P;Dpn

= 1 ]� Pr[Exp
prp-0
P;Dpn

= 1 ] :

We de�ne the advantage functions of the function family as follows. For any integers t; q,

Adv
prf
F (t; q) = max

Dfn

fAdv
prf
F;Dfn

g

Adv
prp
P (t; q) = max

Dpn

fAdv
prp
P;Dpn

g

where the maximum is over all Dfn;Dpn with time complexity t, each making at most q queries to

the oracle.

Notice that since we are talking about �nite families F; P , there is no �xed or formal notion of

a \secure" PRF or PRP family. Every family has some associated insecurity as a PRF or PRP

family. We use the terminology \F is a secure PRF" only in informal discussions, to indicate that

Adv
prf
F (t; q) is \low" for \reasonable" values of t; q. Notice also that unlike Luby and Racko� [21],

we measure the quality of a PRP family with respect to the family of random permutations, not

random functions. This is motivated by the fact that PRPs, as we de�ne them, are better models

for block ciphers, than PRFs. (Of course, the distinction is only in the concrete security, but that is

indeed our concern.) Nonetheless, the following relation between the two notions is often enough:

Proposition 8 [PRPs are PRFs] For any permutation family P with length l,

Adv
prf
P (t; q) � Adv

prp
P (t; q) + q22�l�1 :

A block cipher is a (�nite) family of permutations. For example, DES is a family of permutations

with Keys(DES) = f0; 1g56 and Dom(DES) = Ran(DES) = f0; 1g64. The estimated cryptanalytic

strength of the block ciphers gives us values of t; q for which the block cipher may be viewed as a

PRP family. Using Proposition 8 we get the bounds by which it can be viewed as a PRF family.

5 Analysis of the XOR and CTR Schemes

Fix a function family F with input-length l, output-length L, and key-length k. We let K denote

the key shared between the two parties who run the encryption scheme. It will be used to specify

the function f = FK . In fact, all the schemes depend only only on this function, in the sense that

they can be implemented given an oracle for the function.

The CTR scheme is stateful (counter based and deterministic). The XOR scheme is a stateless

(randomized) variant of CTR.

Specifications. The scheme XOR[F ] = (E-XOR;D-XOR;K-XOR) works as follows. The key

generation algorithm K-XOR just outputs a random k-bit key K for the underlying PRF family

F , thereby specifying a function f = FK of l-bits to L-bits. The message x to be encrypted is

regarded as a sequence of L-bit blocks (padding is done �rst, if necessary), x = x1 � � � xn. We de�ne

E-XORK(x) = E-XOR
FK (x) and D-XORK(z) = D-XOR

FK (z), where:

function E-XORf (x)

r  f0; 1gl

for i = 1; : : : ; n do yi = f(r + i)�xi
return r k y1y2 � � � yn

function D-XORf (z)

Parse z as r k y1 � � � yn
for i = 1; : : : ; n do xi = f(r + i)�yi
return x = x1 � � � xn
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We call r the nonce. Addition, above, is modulo 2l, and the result is encoded as an l-bit string in

the usual way.

This scheme's stateful variant is CTR[F ] = (E-CTR;D-CTR;K-CTR). Here the role of r is

played by a l-bit counter, denoted ctr , that is initially �1 and increases after each encryption by

the number of encrypted blocks. Note only the sender maintains the counter and it is output as

part of the ciphertext. A restriction placed on the scheme is that the total number of encrypted

blocks be at most 2l.

The key generation algorithm K-CTR is the same as before, meaning just outputs a random key

K for the PRF family. With the same formatting conventions as above, we de�ne E-CTRK(x; ctr ) =

E-CTRFK (x; ctr ) and D-CTRK(z) = D-CTR
FK (z), where:

function E-CTRf (x; ctr )

for i = 1; : : : ; n do yi = f(ctr + i)�xi
ctr  ctr + n

return (ctr ; ctr k y1y2 � � � yn)

function D-CTRf (z)

Parse z as ctr k y1 � � � yn
for i = 1; : : : ; n do xi = f(ctr + i)�yi
return x = x1 � � � xn

Features of the schemes. Notice that decryption does not require the ability to invert f = FK .

Thus FK need not be a permutation.

The XOR and CTR schemes have some computational advantages over the more common modes

of operation. Namely, the FK computations on di�erent blocks can be done in parallel since the

computation on a block is independent of the other blocks. This parallelizability advantage can

be realized through either hardware or software support. Decryption does not have to be done in

order if each block is tagged with its index. These schemes also support o�-line processing, in the

sense that the FK computations can be done during idle times before the messages they are to be

used with become available.

Security of XOR. We give bounds on the advantage function for the XOR[F ] scheme, assuming

F is a �nite PRF family. We drop the security parameter k in our notation since there are no

asymptotics present in this case. This convention is followed for all other schemes we study in this

work too.

We �rst derive a lower bound on the success of an adversary trying to break the XOR[F ] scheme

in the LOR-CPA sense. In the common cryptographic terminology, this means, simply, that we are

providing an attack. The attack we specify is on the \ideal" scheme, XOR[Randl
!L].

Proposition 9 [Lower bound on insecurity of XOR using a random function] Suppose

R = Randl
!L. Then, for any qe; �e; such that �eqe=L � 2l,

Adv
lor-cpa
XOR[R]

(�; t; qe; �e) � 0:316 �
�e � (qe � 1)

L � 2l
:

This is a \birthday" attack. It may be easier to gauge if we let �n = �e=(Lqe) be the average number

of blocks per query, so that �e = Lqe � �n. Then we see that the advantage function is 
(q2e=2
l) � �n,

a typical birthday behavior exhibiting a quadratic dependence on the number of queries.

Since we prove a lower bound in the random function model, we do not discuss the time

complexity. However it is clear from the strategy that the time complexity would be just a little

overhead besides the time for the oracle calls. This is true for all lower bounds and we do not

mention it again. Proposition 9 indicates that even when the underlying block cipher F is very

good (it cannot get better than truly random) the XOR scheme leaks some information as more

and more data is encrypted. Next, we show that the above is essentially the best attack: one cannot

get a better advantage, up to a constant factor.
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Lemma 10 [Upper bound on insecurity of XOR using a random function] Suppose R =

Randl
!L. Then, for any t; qe; �e,

Adv
lor-cpa
XOR[R]

(�; t; qe; �e) �
�e � (qe � 1)

L � 2l
:

Of course, an indication of security in the ideal model is not an indication of security when we use

a block cipher. The \real-world" case however is easily derived from the above:

Theorem 11 [Security of XOR using a pseudorandom function] Suppose F is a PRF family

with input-length l and output-length L. Then, for any t; qe and �e = q0L,

Adv
lor-cpa
XOR[F ]

(�; t; qe; �e) � 2 �Adv
prf
F (t; q0) +

�e � (qe � 1)

L � 2l
:

Security of CTR. The stateful version of the scheme has better security. The adversary has no

advantage in the ideal case:

Lemma 12 [Security of CTR using a random function] Suppose R = Randl
!L. Then, for

any t; qe and �e � L2l,

Adv
lor-cpa
CTR[R]

(�; t; qe; �e) = 0:

This translates into the following \real-world" security:

Theorem 13 [Security of CTR using a pseudorandom function] Suppose F is a PRF family

with input-length l and output-length L. Then, for any t; qe and �e = min(q0L;L2l),

Adv
lor-cpa
CTR[F ]

(�; t; qe; �e) � 2 �Adv
prf
F (t; q0):

Proofs. The following will be useful in various estimates:

Fact 14 For any real number x with 0 � x � 1 we have (1� e�1)x � 1� e�x � x

We use throughout the following notation. If x is a string of length a multiple of L we view it as

a sequence of L bit blocks. We let n = jxjL denote the number of blocks and x[i] denote the i-th

block, so that x = x[1] : : : x[n]. For an integer m let [m] = f1; : : : ;mg. In the proofs, we let q

denote qe and � denote �e.

Proof of Proposition 9: The proof of this is by construction of an adversary that achieves

the given security parameters. Recall that an adversary in the LOR-CPA sense makes encryption

oracle queries consisting of pairs of messages, trying to tell whether the left or right half of the pair

is being encrypted. Our adversary A looks for a collision in the inputs to the random function f

underlying the scheme.

Algorithm AO(�;�)(k)

(1) Let n = �=(Lq). (This will be the number of blocks in all queried messages.)

(2) Choose messages N1; : : : ; Nq, all n blocks long, such that Ni[k] 6= Nj [k
0] for all i; j = 1; : : : ; q

and k; k0 = 1; : : : ; n satisfying (i; k) 6= (j; k0). (For example, set Ni[k] to the L-bit binary

encoding of the integer n(i� 1) + k for i = 1; : : : ; q and k = 1; : : : ; n.)

(3) For i = 1; : : : ; q do: (ri; yi[1] : : : yi[n]) O(0
nl; Ni). We call ri the i'th nonce.
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(4) If there is some i 6= j that jri�rjj < n (treat ri; rj as integers here!) then determine the values

k; k0 2 f1; : : : ; ng such that ri + k = rj + k0. Output 1 if yi[k] = yj[k
0] and 2 otherwise.

(5) If there is no i 6= j that jri � rjj < n, output a coin 
ip.

Let OverlapNonce be the event that for some i 6= j we have jri � rj j < n. Whenever this event

occurs we say that there has been an overlap of nonces. We claim that the advantage of A is just

the probability of OverlapNonce. To see this, �rst observe that the probability of this event is the

same in both games as it involves only the random nonce values. Let p be this probability. Let

Prb [A = 1 ] be the probability that A declares that it is playing game 0 when it is playing game

b 2 f0; 1g. We have

Adv
lor-cpa
XOR[R];A

(�) = Pr1 [A = 1 ]�Pr0 [A = 1 ] =

�
p � 1 + (1� p) �

1

2

�
�

�
p � 0 + (1� p) �

1

2

�
= p

Now we want to lower bound p. Let Di be the event that there has not been an overlap of nonces

up to and including the i'th query. We observe that for Di+1 to be true, the nonce of the (i+1)'th

query must not overlap with any of the i nonces of the previous queries. In terms of values that the

(i+ 1)'th nonce can assume, we note that there are at least in values that would cause an overlap

of nonces. (In general there could be as many as i(n � 1) more such values, but we may ignore

them for now since our interest is a lower bound on p.) We therefore have

Pr [ Di+1 j Di ] �
2l � in

2l
= 1�

in

2l
:

The probability of no overlap of nonces at the end of the q'th query can now be computed as follows

Pr[Dq ] =
Qq�1
i=1Pr [ Di+1 j Di ] �

Qq�1
i=1

�
1�

in

2l

�
�
Qq�1
i=1 e

�in=2l = e�nq(q�1)=2
l+1

:

The last inequality follows from Fact 14. Continuing,

p = Pr[OverlapNonce ] = 1� Pr[Dq ] � 1� e�nq(q�1)=2
l+1

= 1� e�(1=2)��(q�1)=(L2
l) :

We have assumed �q=L � 2l. This means x
def
= �(q� 1)=(L2l) � 1 and we can apply the inequality

1� e�x � (1� e�1)x of Fact 14 to get

p �

�
1�

1

e

�
�
1

2
�
�(q � 1)

L2l
;

which proves the Proposition.

Proof of Lemma 10: Let (M1; N1); : : : ; (Mq; Nq) be the oracle queries of the adversary A, each

consisting, by de�nition, of a pair of equal length messages. These queries are random variables

that depend on the coin tosses of A and responses of the oracle to previous queries. Let ri 2 f0; 1g
l

be the nonce associated to (Mi; Ni) as chosen at random by the oracle, for i = 1; : : : ; q. Let ni
be the number of blocks in the i'th query. In answering the i'th query, the oracle applies the

underlying function f to the ni strings ri + 1; : : : ; ri + ni 2 f0; 1g
l . We call these strings the i'th

sequence, and ri + k is the k-th point in this sequence, k = 1; : : : ; ni.

Let D be the following event, de�ned for either game: ri+k 6= rj+k0 whenever (i; k) 6= (j; k0), for all

i; j = 1; : : : ; q and k = 1; : : : ; ni and k0 = 1; : : : ; nj . That is D is the event that no collision occurs

in the inputs to the random function (or equivalently, that there are no overlapping sequences)

among all of the queries. We also de�ne Pr0 [ � ] to be the probability of an event in game 0 and

Pr1 [ � ] of the event in game 1.

Claim 1. Pr0
h
D
i
= Pr1

h
D
i
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Proof: The event D for either game depends only on the nonce chosen for each query. The nonces

themselves are chosen randomly and are thus independent of the game being played (or of the

messages given to the oracle). 2

Claim 2. Pr0 [A = 1 j D ] = Pr1 [ A = 1 j D ]

Proof: Given the event D, we have that, in either game, the function f is evaluated at a new point

each time it is invoked, and thus the output is randomly and uniformly distributed over f0; 1gL,

independently of anything else. Thus each cipher block is a message block XORed with a random

value. A consequence of this is that each cipher block has a distribution that is independent of any

previous cipher blocks and of the messages. 2

We now upper bound the advantage of A as follows:

Adv
lor-cpa
XOR[R];A

(�) = Pr1 [A = 1 ]� Pr0 [A = 1 ]

= Pr1
h
A = 1 j D

i
� Pr1

h
D
i
+ Pr1 [A = 1 j D ] � Pr1 [D ]�

Pr0
h
A = 1 j D

i
� Pr0

h
D
i
� Pr0 [A = 1 j D ] � Pr0 [D ]

Using Claim 1 and Claim 2, we have,

Adv
lor-cpa
XOR[R];A

(�) =
�
Pr1

h
A = 1 j D

i
� Pr0

h
A = 1 j D

i�
� Pr1

h
D
i
� Pr1

h
D
i

Given Claim 1 we drop the subscript in talking about the probability of D and write the above

just as Pr[D ]. Now we want to upper bound Pr[D ]. We observe that the chance of collision at the

time of the choice of the i'th nonce is maximized if all the i � 1 previous queries resulted in i � 1

sequences of inputs to f that were no less than ni � 1 blocks apart. We have a collision if the i'th

sequence begins in a block that is ni � 1 blocks before any other previous sequence j or in a block

position occupied by that sequence j. Now let the probability of the i'th sequence colliding with

any of the previous sequences be pi. We then have, for i > 1

pi �

Pi�1
j=1(nj + ni � 1)

2l
=

(i� 1)(ni � 1) +
Pi�1

j=1 nj

2l
:

Thus

Pr[D ] �

qX
i=1

pi �

qX
i=1

�
(i� 1)(ni � 1) +

Pi�1
j=1 nj

�
2l

=
�
L
(q � 1)�

q(q�1)
2

2l
�

�(q � 1)

L � 2l
:

Putting everything together we have Adv
lor-cpa
XOR[R];A

(�) �
�(q�1)

L�2l
.

Proof of Theorem 11: Intuitively, Lemma 10 says the XOR[R] is secure. If XOR[F ] were not

secure, this would mean F is not good as a PRF function family. Formally we prove the theorem by

a contradiction argument. Assume that A is an adversary attacking XOR[F ] in the LOR-CPA sense

and having an advantage greater than Adv
lor-cpa
XOR[F ](k; t; qe; �e). We build a distinguisher D, using

A, that has an advantage better than Adv
prf
F (t; q0), for some reasonable values for q0, contradicting

the assumed security of F as a pseudorandom function family. Our distinguisher simply runs A

and tries to see whether A breaks the encryption scheme. If so, it bets that f is drawn from F , else

it bets that f is drawn from R. In order to run A it simulates its oracle O(�; �) via queries to its

own oracle f by using the latter as the function underlying the encryption scheme. In more detail:

Algorithm Df (k)

(1) b f0; 1g. (This represents a choice to play either left or right oracle for A.)
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(2) Run A, responding to its oracle queries as follows. When A makes an oracle query (M1;M2),

let z  E-XORf (Mb), and return z to A as the answer to the oracle query. (It is important

here that D can implement the encryption function given an oracle for f .)

(3) Eventually A stops and outputs a guess d to indicate whether it thought its oracle was the left

oracle or the right oracle. If d = b then output 1, else output 0.

In responding to oracle query (M1;M2), distinguisher D makes n oracle queries to f , where n =

jM1j=L = jM2j=L is the number of blocks in the messages. So the total number of oracle queries

made by D is at most �=L, which by assumption is q0.

To compute Adv
prf
F;D we �rst need some notation. For G 2 fF;Rg, let Correct(G) be the probability

that A correctly identi�es its oracle when the function underlying the encryption scheme is f  G,

One can check that Correct(G) = (1=2) � [1 +Adv
lor-cpa
XOR(G);A(�)]. Now note

Adv
prf
F;D = Correct(F )� Correct(R) = (1=2) �

h
Adv

lor-cpa
XOR[F ];A

(�)�Adv
lor-cpa
XOR[R];A

(�)
i
:

Lemma 10 gives us a bound for Adv
lor-cpa
XOR[R];A

(�). Using this, we see that to avoid a contradiction,

we must bound the advantage function as stated in the theorem statement.

Proof of Lemma 12: The proof is similar to that of Lemma 10. The di�erence is in that

Pr0
h
D
i
= Pr1

h
D
i
= 0 for �=L � 2l. This is because the counter will not repeat until 2l blocks

have been encrypted.

Proof of Theorem 13: The proof is similar to that of Theorem 11 and is omitted.

6 Analysis of the CBC Scheme

For the CBC scheme we require that l = L (the input-length and output-length of F are the same)

and that each FK be a permutation such that given K we can compute not only FK but also F�1
K .

Specification. The scheme CBC[F ] = (E-CBC;D-CBC;K-CBC) has the same key generation

algorithm as the previous schemes, meaning the key for encryption is the key K specifying f = FK .

The message x to be encrypted is regarded as a sequence of l bit blocks, x = x1 : : : xn. We de�ne

E-CBCK(x) = E-CBC
FK (x) and D-CBCK(z) = D-CBC

FK (z), where:

function E-CBCf (x)

y0  f0; 1g
l

for i = 1; : : : ; n do yi = f(yi�1�xi)

return y0 k y1y2 � � � yn

function D-CBCf (z)

Parse z as y0 k y1 � � � yn
for i = 1; : : : ; n do xi = f�1(yi)�yi�1
return x = x1 : : : xn

The value y0 is called initial vector, or nonce. See discussion below for the counter variant.

Features of the scheme. We have already mentioned the computational advantages of the

XOR and CTR schemes over the CBC scheme. The CBC scheme, however, has superior error-

propogation and erro-recovery properties to these other schemes. CBC is self-synchronizing, in

that the corruption or even loss of a few ciphertext blocks prevents the correct decryption of only

a few of the plaintext blocks, without requiring explicit re-synchronization.

Security of CBC. The CBC[F ] scheme should be analyzed assuming F is a PRP family, not

a PRF family, because the scheme must indeed be used with permutations, not functions. How-

ever, the analysis is signi�cantly simpler using functions, rather than permutations. Hence, our
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approach will be the following. For the upper bound (on the insecurity of CBC[F ]), we �rst analyze

CBC[Randl
!l] (ie. the scheme using random functions). Then, similar to Theorem 11, we derive

the security of CBC[F ], assuming F is a PRF family. Finally, using Proposition 8, we translate this

to the security when F is viewed as a PRP family. For the lower bound, however, this approach

does not work. Hence we derive this directly.

Proposition 15 [Lower bound on insecurity of CBC using a random permutation] Sup-

pose R = Perml. Then, for �e � l � 2
l
2 and qe = �e=l,

Adv
lor-cpa
CBC[R]

(�; t; qe; �e) � 0:316 �

 
�2e
l2
�
�e

l

!
�
1

2l
:

Next, we show that this is the best possible attack up to a constant factor.

Lemma 16 [Upper bound on insecurity of CBC using a random function] Suppose R =

Randl
!l. Then, for any t; qe; �e,

Adv
lor-cpa
CBC[R](�; t; qe; �e) �

 
�2e
l2
�
�e

l

!
�
1

2l
:

The \real-world" security follows:

Theorem 17 [Security of CBC using a pseudorandom permutation] Suppose F is a PRP

family with length l. Then, for any t; qe and �e = ql,

Adv
lor-cpa
CBC[F ]

(�; t; qe; �e) � 2 �Adv
prp
F (t; q) + q22�l�1 +

 
�2e
l2
�
�e

l

!
� 2�l :

CBC with counters. It is tempting to make a counter variant of CBC and hope that the security

is increased (or at least preserved). Indeed it is suggested in various books that the initialization

vector may be a counter. But this does not work; knowing the next value of the counter, the

adversary can choose a message query that forces a collision in the inputs to f , thus breaking the

scheme (under any of the de�nitions).

To make a proper counter version of CBC, one can let the initialization vector be y0 = f(ctr)

and increment ctr by one following every encryption. The scheme is capable of encrypting at

most 2l messages. An analog to Theorem 17 is then possible. The result is easiest (following as a

corollary to Theorem 17 if the key used to determine y0 is separate from the key used for the rest

of the CBC encryption.

Proofs. We begin with the attack on CBC[Perml].

Proof of Proposition 15: The idea is that it suÆces to �nd collisions in the initial vectors

(nonces). The details follow.

The adversary sets q = �=l. It then sets Mi = 0l for i = 1; : : : ; q and chooses N1; : : : ; Nq

to be distinct, non-zero l-bit strings. It makes q queries, consisting of the pairs of messages

(M1;M
0
1); : : : ; (Mq;M

0
q). Let Ci[0]Ci[1] denote the response to the i-th query. If C1[0]; : : : ; Cq[0]

are all distinct the adversary 
ips a coin to determine its output. Else, let i 6= j be such that

Ci[0] = Cj [0]. The adversary outputs 1 if Ci[1] = Cj[1] and 2 otherwise. It is easy to see that the

advantage is exactly the chance that there is a collision in the initial vectors. We use the lower

bound from Fact 14 to bound this advantage.
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Note that in the attack above, given �e, we allow the adversary to choose a convenient qe. This

turns out to be qe = �e=l. It is possible to prove something stronger, namely that an attack could

be mounted for any given value of qe. The proof of this, again is by construction of an adversary

that achieves the given security parameters. Our adversary A looks for a collision in the inputs to

the random function f underlying the scheme.

Algorithm AO(�;�)

(1) Let n = �=(lq). (This will be the number of blocks in all queried messages.) Let T = [q]� [n].

(2) Choose messages M1; : : : ;Mq, all n blocks long, such that Mi[k] 6= Mj[k
0] for all distinct

(i; k); (j; k0) 2 T . (For example, setMi[k] to the l-bit binary encoding of the integer n(i�1)+k

for all (i; k) 2 T .) Also set M 0
i [k] = 0l and M 0

i =M 0
i [1] : : : M

0
i [n] for all (i; k) 2 T .

(3) For i = 1; : : : ; q do: (Ci[0]; Ci[1] : : : Ci[n]) O(Mi;M
0
i). We call Ci[0] the i'th initial vector.

(4) If D is true then output a coin 
ip and halt. Else (meaning D is false) go on with the rest of

the algorithm below.

(5) Let (j; k) 2 T be the least pair for which Dj;k is false. (Meaning if Dj0;k0 is false for some

other pair (j0; k0) 2 T then (j; k) � (j0; k0).)

(6) If there exists (j0; k0) � (j; k) such that Cj[k � 1] �Mj [k] = Cj0 [k
0 � 1] �Mj0 [k

0] then set

b0 = 1 and test if Cj [k] = Cj0 [k
0]. If the test passes then set a0 = 1 else set a0 = 0. Otherwise

set b0 = 0.

(7) If there exists (j0; k0) � (j; k) such that Cj [k � 1] = Cj0 [k
0 � 1], then set b1 = 1 and test if

Cj [k] = Cj0[k
0]. If the test passes then set a1 = 1 else set a1 = 0. Otherwise set b1 = 0.

(8) If b1 = 1 then: if a1 = 1 then output 1, else output 0.

(9) Else (meaning b1 = 0) it must be that b0 = 1. Then if a0 = 1 then output 0, else output 1.

We omit details of the analysis of this attack, noting that same bound derived for the attack

allowing the choice of a convenient qe holds in this case too.

We next give a lemma that will be useful in proving Lemma 16.

Consider an arbitrary adversary A, attacking CBC[R] (where R = Randl
!l) in the LOR-CPA sense.

It makes up to q queries to its oracle O(�; �), totaling at most � bits. Let (M1;M
0
1); : : : ; (Mq;M

0
q)

be the oracle queries of the adversary A, each consisting, by de�nition, of a pair of equal length

messages. These queries are random variables that depend on the coin tosses of A and responses

of the oracle to previous queries. Let ni = jMijl = jM
0
i jl be the number of blocks in a message in

the i-th query, i = 1; : : : ; q. Let Ci = Ci[0] : : : Ci[ni] be the random variable which is the response

of the oracle to query (Mi;M
0
i), for i = 1; : : : ; q.

Some notation will be useful. Let T = f (j; k) : j 2 [q] and k 2 [nj] g and T 0 = f (j; k) : j 2

[q] and k = 0; : : : ; nj g and T 00 = f (j; k) : j 2 [q] and k = 0; : : : ; nj + 1 g. We put an order � on

T 00 de�ned as follows:

(j; k) � (j0; k0) if
�Pj�1

i=1 (ni + 2)
�
+ k <

�Pj0�1
i=1 (ni + 2)

�
+ k0 ;

for any (j; k); (j0 ; k0) 2 T 00. We write (j; k) � (j0; k0) if either (j; k) � (j0; k0) or (j; k) = (j0; k0). Of

course, the order inherits to any subset of T 00 and we will most often use it on T or T 0.

We let Prb [ � ] denote the probability distribution in Game b 2 f0; 1g, where Game b is the one

where O(�; �) = E-CBCf (LR(�; �; b)), with f  R.) We know that Cj[k] = Cj[k � 1] �Mj[k] in

Game 0 and Cj[k] = Cj [k� 1]�M
0
j [k] in Game 1, for all j 2 [q] and k 2 [nj]. The following de�nes

an event, for either game, that says there are no collisions in the inputs to f , in either game, upto

the indicated point.
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De�nition 6 [Event Distinct] In the above setting, with adversary A �xed, de�ne the event Di;u

(called distinct), for i 2 [q] and u 2 [ni], to be true if

Cj [k � 1]�Mj [k] 6= Cj0 [k
0 � 1]�Mj0 [k

0] and Cj[k � 1]�M 0
j[k] 6= Cj0 [k

0 � 1]�M 0
j0 [k

0]

for all (j; k); (j0; k0) 2 T satisfying (j0; k0) � (j; k) � (i; u).

Let D � Dq;nq . Also let D1;0 be an event that is always true and Di;0 � Di�1;ni�1
for i � 2. Finally

let Di;ni+1 � Di;ni for i 2 [q].

It turns out the probability of D tells us pretty much all we want to know about the advantage of

the adversary.

Lemma 18 [Main CBC lemma] Let A be an adversary for CBC[R] in the setting above. Then

(1) Pr0
h
D
i
= Pr1

h
D
i
.

Furthermore, letting p be the (common) value of this probability, we have

(2)
1

2

�
1�

1

e

�
�

 
�2

l2
�
�

l

!
�
1

2l
� p �

 
�2

l2
�
�

l

!
�
1

2l
, and

(3) Adv
lor-cpa
CBC[R];A

(�) =
�
Pr1

h
A = 1 j D

i
� Pr0

h
A = 1 j D

i�
� p.

We �rst prove our results given the Main CBC lemma and then return to the proof of the lemma.

Proof of Lemma 16: From Lemma 18 (3) we have

Adv
lor-cpa
CBC[R];A

(�) =
�
Pr1

h
A = 1 j D

i
� Pr0

h
A = 1 j D

i�
� p � p :

Now apply the upper bound of Lemma 18 (2).

Proof of Theorem 17: The proof is similar to the one given for Theorem 11. The addition here

is that once we get the security assuming F to be a PRF family, we must use Proposition 8 to

transate this to security assuming F to be a PRP family.

Proof of Lemma 18: For i 2 [q] and u 2 f0; : : : ; nig let Ci;u = (Cj[k] : (j; k) 2 T
0 and (j; k) �

(i; u)) be the sequence of all ciphertext blocks upto and including Ci[u].

Let cj [k] be an l-bit string for j 2 [q] and k 2 f0; : : : ; njg. For i 2 [q] and u 2 f0; : : : ; nig let

ci;u = (cj [k] : (j; k) 2 T 0 and (j; k) � (i; u)) be the sequence of all strings \below" and including

ci[u].

For (i; u) 2 T we de�ne the set Prohi;u(cq;nq), for the �xed set of cipher blocks cq;nq , to consist of

all of the following l bit strings:

(1) cj [k � 1]�Mj [k]�Mi[u] for all (j; k) 2 T such that (j; k) � (i; u)

(2) cj [k � 1]�M 0
j [k]�M 0

i [u] for all (j; k) 2 T such that (j; k) � (i; u)

That is Prohi;u(cq;nq) is the set of values that Ci[u � 1] may take which cause Di;u given that we

had Cj[k] = cj [k] for all (j; k) � (i; u� 1).

We observe from the de�nition of Prohi;u(cq;nq) that

(n1 + � � �+ ni�1 + u� 1) �
��Prohi;u(cq;nq)�� � 2 � (n1 + � � �+ ni�1 + u� 1) : (1)

We note that we have calculated bounds on the cardinality of Prohi;u(cq;nq). In general the size of

the set could be something in between.
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Remember that the di�erence between the games is that in Game 0 we have Cj [k] = Cj[k�1]�Mj[k]

and in Game 1 we have Cj[k] = Cj[k � 1] �M 0
j [k], for all j 2 [q] and k 2 [nj]. Our �rst claim is

that the probability distributions conditioned on D are nonetheless equal.

Claim 1: Let cq;nq be a �xed sequence of ciphertext blocks as above. Then

Pr0 [ Ci;u�1 = ci;u�1 j Di;u ] = Pr1 [ Ci;u�1 = ci;u�1 j Di;u ] (2)

for all i 2 [q] and u 2 [ni + 1].

Proof: By induction. The base case is (i; u) = (1; 1). Here C1;0 = C1[0] is uniformly distributed

since it is the randomly chosen initial vector, so the claim holds.

Now suppose (1; 1) � (i; u). The inductive hypothesis is that

Pr0 [ Cj;k�1 = cj;k�1 j Dj;k ] = Pr1 [ Cj;k�1 = cj;k�1 j Dj;k ]

for all (j; k) � (i; u) with j 2 [q] and k 2 [nj].

Let Pr0b [ � ] = Prb [ � j Di;u ], for b = 0; 1. We consider two cases.

First suppose u � 2, so that u 2 f2; : : : ; ni + 1g. Then

Pr0b [Ci;u�1 = ci;u�1 ] = Pr
0

b [ Ci[u� 1] = ci[u� 1] j Ci;u�2 = ci;u�2 ] � Pr
0
b [Ci;u�2 = ci;u�2 ] : (3)

We take the two terms one by one and show each is independent of b. (The arguments justifying

the claims are slightly di�erent in the cases u � ni and u = ni +1, but the claims are true in both

cases.) Begin with the second. We are conditioning on Di;u. It would make no di�erence, for this

term, to condition on Di;u�1 since the quantities in the probability expression do not involve Ci;u�1

or ci;u�1. That is,

Pr0b [Ci;u�2 = ci;u�2 ] = Prb [ Ci;u�2 = ci;u�2 j Di;u�1 ] :

Now by the induction hypothesis this term is independent of b.

For the �rst term of the right hand side of Equation (3), observe

Pr
0

b [ Ci[u� 1] = ci[u� 1] j Ci;u�2 = ci;u�2 ] =

(
0 if ci[u� 2] 2 Prohi;u�1(cq;nq)

2�l otherwise.
(4)

We see Equation (4) like this. The �rst case (the probability of 0) is true because we have

conditioned on Di;u which exactly prohibits the event in question. For the second case, note

Ci[u� 1] = f(Ci[u� 2]�Mi[u� 1]) in Game 0 and Ci[u� 1] = f(Ci[u� 2]�M 0
i [u� 1]) in Game 1.

However, both Ci[u� 2]�Mi[u� 1] and Ci[u� 2]�M 0
i [u� 1] are points on which f has not been

invoked before, regardless of which game is being played, if we know that ci[u � 2] is not in the

prohibited set. Thus the probability in question is as claimed and in particular independent of b.

We have thus completed the proof that the quantity in Equation (3) is independent of b.

Now we have to deal with the case u = 1, namely show

Pr0 [ Ci;0 = ci;0 j Di;1 ] = Pr1 [ Ci;0 = ci;0 j Di;1 ] : (5)

We can assume i � 2 since the case (i; u) = (1; 1) was covered in the base case of the induction.

We have

Pr0b [Ci;0 = ci;0 ] = Pr
0

b

�
Ci[0] = ci[0] j Ci�1;ni�1

= ci�1;ni�1

�
� Pr0b

�
Ci�1;ni�1

= ci�1;ni�1

�
: (6)

The �rst term is 2�l since Ci[0] is the random initial vector. For the second term, we could condition

on Di�1;ni�1+1 rather than Di;1 without changing the outcome. Then we can apply the induction

hypothesis to see that the term in question is independent of b. 2

Claim 2. Pr0 [ A = 1 j D ] = Pr1 [A = 1 j D ].

27



Proof: This follows from Claim 1. 2

The following is the �rst claim in the statement of Lemma 18.

Claim 3. Pr0
h
D
i
= Pr1

h
D
i
.

Proof: We will show by induction that for each (i; u) 2 T we have

Pr1
h
Di;u

i
= Pr2

h
Di;u

i
:

Clearly when (i; u) = (1; 1) both probabilities are one, so suppose (1; 1) � (i; u) 2 T . Assume

inductively that Pr0
h
Dj;k

i
= Pr1

h
Dj;k

i
for all (j; k) � (i; u). For any b = 0; 1,

Prb

h
Di;u

i
= Prb

h
Di;u j Di;u�1

i
� Prb

h
Di;u�1

i
+ Prb

h
Di;u j Di;u�1

i
� Prb [Di;u�1 ] :

In the �rst term of the sum, the �rst term is 1 and the second term is by induction independent of

b. In the second term of the sum, the second term is by induction independent of b. It remains to

show that

Pr0
h
Di;u j Di;u�1

i
= Pr1

h
Di;u j Di;u�1

i
: (7)

We break the proof of Equation (7) into two cases.

First suppose u � 2. Write

Prb

h
Di;u j Di;u�1

i
=X

ci;u�2

Prb

h
Di;u j Di;u�1 ^Ci;u�2 = ci;u�2

i
� Prb [ Ci;u�2 = ci;u�2 j Di;u�1 ] :

We claim that each term in the sum is independent of b. To see this �x cq;nq and consider the term

Prb

h
Di;u j Di;u�1 ^Ci;u�2 = ci;u�2

i
� Prb [ Ci;u�2 = ci;u�2 j Di;u�1 ] : (8)

The second term of Equation (8) is independent of b by Claim 1. For the �rst term we claim:

Prb

h
Di;u j Di;u�1 ^ Ci;u�2 = ci;u�2

i
=
jProhi;u(cq;nq)j

2l
: (9)

To see Equation (9), note Di;u occurs when Ci[u � 1] falls in the prohibited set. We know that

Ci[u � 1] = f(Ci[u � 2] � Mi[u � 1]) in Game 0 and Ci[u � 1] = f(Ci[u � 2] � M 0
i [u � 1]) in

Game 1. Given that Di;u�1 is true, in either game, f has not previously been invoked on either

Ci[u� 2]�Mi[u� 1] or Ci[u� 2]�M 0
i [u� 1] and thus Ci[u� 1] is uniformly distributed. Thus its

chance of landing in the prohibited set is as claimed. Finally, note that Prohi;u(cq;nq ) involves only

ciphertexts in ci;u�2. This means its size is �xed and in particular independent of the Game. We

have thus completed the proof that the quantity in Equation (8) is independent of b.

It remains to show Equation (7) for the case u = 1. We proceed similarly with mainly just a change

in notation. We can assume i � 2 since the case (i; u) = (1; 1) was covered in the base case of the

induction. Write

Prb

h
Di;1 j Di;0

i
=X

ci�1;ni�1

Prb

h
Di;1 j Di;0 ^ Ci�1;ni�1

= ci�1;ni�1

i
� Prb

�
Ci�1;ni�1

= ci�1;ni�1
j Di;0

�
:

Again, take the above sum term by term. Fix cq;nq , thereby �xing one term of the sum. In this

term (itself a product of two terms) �rst consider the second term. We could equally well condition
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on Di�1;ni�1+1 without changing the probability. Then, we see the quantity i is independent of b

by Claim 1. For the �rst term, argue analogously to the above in terms of the prohibited set. Note

that Ci[u�1] is random (being the initial vector) and the prohibited set, and thus its size, depends

only on quantities that we have �xed via the conditioning. Thus this term is also independent of

b. This completes the proof of Claim 3. 2

We now let p
def
= Pr0

h
D
i
= Pr1

h
D
i
. The following is the upper bound of the second claim in the

statement of Lemma 18.

Claim 4. p �

 
�2

l2
�
�

l

!
�
1

2l
.

Proof: Standard conditioning and bounding says that

Pr0
h
D
i
�

qX
i=1

niX
u=1

Pr0
h
Di;u j Di;u�1

i
:

A collision occurs when Ci[u�1] falls in Prohi;u(�). Now we can apply Equation (1) to upper bound

the above by

qX
i=1

niX
u=1

2(n1 + : : :+ ni�1 + u� 1)

2l
=

2

2l

qX
i=1

�
ni(n1 + : : :+ ni�1) +

(ni � 1)ni

2

�

=
1

2l

"
�2

l2
�
�

l

#
:

This completes the proof of Claim 4. 2

The following is the lower bound of the second claim in the statement of Lemma 18.

Claim 5: p �
1

2

�
1�

1

e

�
�
1

2l

 
�2

l2
�
�

l

!
.

Proof: We upper bound the complementary event using Equation (1):

Pr0 [D ] =

qY
i=1

niY
u=1

Pr0 [ Di;u j Di;u�1 ]

�

qY
i=1

niY
u=1

2l � (n1 + : : :+ ni�1 + u� 1)

2l

=

qY
i=1

niY
u=1

�
1�

n1 + : : :+ ni�1 + u� 1

2l

�
:

Using the inequality 1� x � e�x of Fact 14 we can upper bound the above by e�M where

M =

qX
i=1

niX
u=1

n1 + : : :+ ni�1 + u� 1

2l
=

1

2

1

2l

"
�2

l2
�
�

l

#
:

But p � 1� e�M . Now apply the inequality 1� e�M � (1� e�1)M of Fact 14 to get

p �
1

2

�
1�

1

e

�
�
1

2l

"
�2

l2
�
�

l

#
:

This completes the proof of Claim 5. 2
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The following is the third claim in the statement of Lemma 18.

Claim 6: Adv
lor-cpa
CBC[R];A

(�) =
�
Pr1

h
A = 1 j D

i
� Pr0

h
A = 1 j D

i�
� p.

Proof: By conditioning we have

Adv
lor-cpa
CBC[R];A(�) = Pr1 [A = 1 ]� Pr0 [A = 1 ]

= Pr1
h
A = 1 j Dq;nq

i
Pr1

h
Dq;nq

i
+ Pr1

�
A = 1 j Dq;nq

�
Pr1

�
Dq;nq

�
�Pr0

h
A = 1 j Dq;nq

i
Pr0

h
Dq;nq

i
� Pr0

�
A = 1 j Dq;nq

�
Pr0

�
Dq;nq

�
:

The proof of Claim 6 is concluded by applying Claims 2 and 3. 2

This concludes the proof of Lemma 18.
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