
Steganography for Executables
and Code Transformation Signatures

Bertrand Anckaert, Bjorn De Sutter, Dominique Chanet,
and Koen De Bosschere

Ghent University, Electronics and Information Systems Department,
Sint-Pietersnieuwstraat 41 9000 Ghent, Belgium

{banckaer, brdsutte, dchanet, kdb}@elis.UGent.be
http://www.elis.UGent.be/paris

Abstract. Steganography embeds a secret message in an innocuous
cover-object. This paper identifies three cover-specific redundancies of
executable programs and presents steganographic techniques to exploit
these redundancies. A general framework to evaluate the stealth of the
proposed techniques is introduced and applied on an implementation
for the IA-32 architecture. This evaluation proves that, whereas existing
tools such as Hydan [1] are insecure, significant encoding rates can in
fact be achieved at a high security level.

Keywords: code transformation signature, steganography, executables.

1 Introduction

Steganography embeds a secret message in a seemingly innocuous cover-object.
Digital cover-objects most often are media, such as image and music files, that
involve noise and are perceived by imperfect human senses. As a result, they
contain many redundant bits, which can be modified to embed secret messages.

This paper explores the largely unexplored field of steganography for exe-
cutable programs. This differs significantly from steganography for media be-
cause changing as little as a single bit of a program can cause it to fail entirely.
Hence different techniques are required for embedding messages in executables.

With the exception of Hydan [1], little information on this subject is pub-
licly available. While the related subjects of software watermarking and finger-
printing, which also involve information hiding, have received considerably more
attention [2, 3], the results of that research are not applicable in the context of
steganography. This follows from the fact that watermarking and fingerprinting
typically deal with very short embedded messages (shorter than 1 Kb), and that
those messages first of all need to be irremovable, rather than hidden. Moreover,
some watermarking approaches also require knowledge of the embedded message
in the detection phase, which is obviously not possible in steganography.

Rather than implementing ad-hoc techniques, as in Hydan [1], we present a
thorough study of the available redundancy in compiled programs. Furthermore,

C. Park and S. Chee (Eds.): ICISC 2004, LNCS 3506, pp. 425–439, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

http://www.elis.UGent.be/paris

426 B. Anckaert et al.

we present a general framework for evaluating the stealthiness of the different
program transformations that exploit the redundancies. Based on this frame-
work, a number of countermeasures to prevent possible attacks are presented.

This paper is structured as follows: Section 2 presents the used model. The
fitness of executables for steganography is explored in Section 3. A framework
for the evaluation of statistical signatures of code transformations is discussed in
Section 4. The concepts are then evaluated for the IA-32 architecture in Section 5.
Related work is the topic of Section 7 and conclusions are drawn in Section 8.

2 The Prisoners’ Problem

We will follow Simmons’ [4] classic model, a.k.a. the prisoners’ problem for invis-
ible communication. Alice and Bob are two prisoners in different cells. Wendy,
the warden, arbitrates all communication between them, and will not let them
communicate through encryption or suspicious communication. Both prisoners
therefore need to communicate invisibly about their escape plan.

Furthermore, we will assume that the mechanism in use is known to the war-
den (Kerkhoffs’ principle [5]). Hence its security must depend solely on a secret
key that Alice and Bob managed to share, possibly before their imprisonment.

The general principle of steganography is as follows. To share a secret message
with Bob, Alice randomly chooses a harmless message, called a cover-object c,
which can be transmitted to Bob without raising suspicion. The secret message
m is then embedded in the cover-object using the secret key k, resulting in a
stego-object s. This is to be done in such a way that Wendy, knowing only the
apparently harmless message s, cannot detect the presence of the secret. Alice
then transmits s to Bob via Wendy. Bob can reconstruct m since he knows the
embedding method and has access to the key k. It should not be necessary for
Bob to know the original cover c. The security of invisible communication lies
mainly in the inability to distinguish cover-objects from stego-objects. The task
of Wendy can be formalized as a statistical hypothesis-testing problem, for which
she defines a test function on objects (of the set O) f : O → {0, 1} :

f(o) =
{

1 if o contains a secret message
0 otherwise

This function can make two types of errors: detect a hidden message when
there is none (false positive) and not detect the existence of a hidden message
when there is one (false negative). In this paper we will further assume that the
warden is passive, i.e. she will not modify the object, but only classify it. This
is generally accepted in steganography [6].

3 Fitness of Executables as Cover-Objects

While changing a single bit in a program can cause it to fail, this does not
imply a lack of redundancy for the purpose of steganography. Instead the specific
characteristics of software indeed result in many forms of redundancy.

Steganography for Executables and Code Transformation Signatures 427

In theory, we can consider two programs extensionally equivalent if they pro-
duce identical output, given identical input. In practice, more stringent require-
ments for time, space and power consumption need to be taken into account.
But even then a large number of equivalent executables exists. This has been
exploited for several purposes including program optimization, program obfusca-
tion, software watermarking and fingerprinting, and software diversity. It is thus
generally accepted that the number of equivalent executables for any real-life
application is large and that there is indeed a lot of redundancy in a program
which, in this context, we would like to exploit to encode a secret message.

Besides being equivalent to the original program, any program with an em-
bedded message also needs to pass the warden’s test function described in the
previous section. Since we believe useless (suboptimal) code added to a program
will be easily detected, we will only allow embedding transformations that do not
deoptimize a program. In other words, the message should be embedded in the
code a (optimizing) compiler back-end has produced from its intermediate code
representation of the program. Typically a compiler’s back-end goes through 4
phases (in varying orders), each of which inserts a number of redundancies.

During instruction selection, the intermediate code operations are translated
into assembly instructions. Often multiple instruction sequences can be chosen
to implement an intermediate code operation. During the register allocation, ar-
chitectural registers are chosen to store values temporarily. Usually there are
multiple valid allocations. In the instruction scheduling phase, the selected in-
structions are put in their final order. Again, multiple orderings are often valid.
Finally, multiple compiled files are combined into a program. During this code
layout, multiple orderings can be chosen. These types of choices/redundancies
and their exploitation are the topic of this section. As the target architecture,
we have chosen the IA-32 architecture [7], because it is most commonly used.

3.1 Encoding Bits in a Choice

For each of the choices between equivalents, a number of bits can be encoded in
the program. If there are n equivalent programs because of some type of choice,
the number of bits that can be encoded can be computed as follows.

As n ≥ 2�log2(n)�, it is clear that at least �log2(n)� bits can be encoded: it
suffices to number each equivalent, and to take that equivalent who’s (binary)
number corresponds to the bit-string to be encoded. This simple approach may
result in a significant decrease in encoding capabilities however: if log2(n) /∈ N

for large n, many equivalents may not correspond to an encodable bit-string.
A more efficient scheme is as follows: If log2(n) /∈ N, then �log2(n)� =

�log2(n) − 1�. We can thus always embed �log2(n) − 1� bits. If we associate
each of the remaining n − 2�log2(n)−1� equivalents with one of the 2�log2(n)−1�

already used ones, we can embed an additional bit by allowing the embedder to
choose between one of the two associated equivalents, as illustrated for n = 7
in Figure 1. Therefore, we can embed an extra bit in n − 2�log2(n)−1� of the
2�log2(n)−1� possibilities for the next �log2(n) − 1� bits.

428 B. Anckaert et al.

Fig. 1. Encoding bits in the choice of 7 equivalents

If the embedded message is encrypted with the secret key k, all bit-strings to
be embedded have equal probability, and hence the average number of bits that
can be encoded in the choice out of n valid equivalents is given by

b(n) = �log2(n) − 1� +
n − 2�log2(n)−1�

2�log2(n)−1� . (1)

One can easily verify that equation (1) also holds if log2(n) ∈ N.

3.2 Instruction Selection

To explore the steganographic potential of executables, we have developed a tool
that is capable of exhaustively generating all possible instruction sequences for
the IA-32 architecture. This tool operates in a similar manner as the so-called
superoptimizer [8].

Its input consists of a code sequence, a set of output registers and a set
of (scratch) registers whose value is no longer used after the sequence has been
executed in a program. For all generated sequences, the tool checks whether they
perform the same function as the original code sequence, by testing the output
values for all possible input values. If the test succeeds an equivalent sequence
is found.

Because of the halting problem, it is in general undecidable if a generated se-
quence will terminate. Hence the equivalence test can run forever. By restricting
the set of instructions to the integer instructions, that do not include any con-
trol flow, we can assure that each tested sequence terminates. But even then the
number of potential equivalent sequences is still too large. To make the problem
tractable, and to terminate the exhaustive generations within reasonable time,
we further limit the immediate operands (constants encoded in an instruction)
that can be used to {−1, 0, 1, 31}. Finally, we restrict the length of the generated
sequences.

Even with these restrictions we can still find many equivalent sequences that
perform realistic computations. For the operation ECX= max(EAX,EDX), e.g., our
tool was able to find 433 different encodings of three instructions. Similarly,
for the computation EAX= (EAX/2), 3708 equivalent sequences of 4 instructions
were generated. Note that the tool did not find shorter sequences because of the
limited list of immediates that does not contain 2.

It should be noted that these examples are no exception. Moreover, the num-
ber of equivalents is exponential in the number of instructions: if we have n
instructions which we can divide in groups of i instructions, of which each group

Steganography for Executables and Code Transformation Signatures 429

has at least a equivalents then combined we have at least a
n
i equivalents. Fur-

thermore, many additional equivalents arise when considering the larger piece
as a whole, in which instructions can be moved from one group to another.

While our tool thus shows great potential for encoding bits, it is too slow
for a practical tool. Hence we had the tool generate a database of equivalence
classes for the instructions that occur most often in our suite of training pro-
grams. During this process, we imposed the additional restriction that equivalent
instructions can only read/write locations that are read/written in the original
instruction. However, if liveness analysis [9] determines that certain status flags
are dead, we allow them to be overwritten. Finally, the set of immediates is
expanded with the immediates used in the original instruction and the negate
thereof.

3.3 Register Allocation

On the IA-32, the number of registers is very limited, and most registers have
fixed designations. Moreover, the calling conventions specify precisely how reg-
isters should be used. Hence the little choice that a compiler in theory has to
choose a register allocation, is in practice unexploitable: any deviation from the
calling conventions would be spotted by the ward. As a result, changing the
allocated registers is not an option to embed secret messages in IA-32 programs.

3.4 Instruction Scheduling

Typically, instruction scheduling is performed per basic block. As two or more
instructions that perform independent operations can be permuted within a basic
block, we can encode bits in the instruction order within basic blocks.

To do so, we first determine all valid orderings by constructing a dependency
graph of a block’s instructions, in which dependent instructions are connected by
directed edges. By iteratively removing instructions from this graph that do not
depend on other instructions in it, a valid schedule can be determined. At each
iteration, multiple instructions may be ready to be removed from the graph. They
are, in other words, in the ready-set [9] of instructions. Using a branch and bound
algorithm to select instructions from the ready-set, we can easily generate all the
possible permutations. Supposing there are n possible schedules, the number of
bits that can be encoded on average is given by equation (1).

Since finding valid instruction orderings using a dependency graph is time-
consuming, and since the marginal gain of additional orderings decreases steadily
when the number of orderings increases, it is useful to put an upper bound on
the number of valid permutations that are considered. In our implementation
this upper bound is 1024 orderings. As basic blocks are usually not longer than
4-5 instructions, this upper limit rarely is reached. Hence it has little influence
on the amount of bits that can be encoded. For the rare, long basic blocks that
offer billions of valid orders, setting an upper limit is absolutely necessary for
obtaining practical execution times.

430 B. Anckaert et al.

3.5 Code Layout

If there exists no fall-through path between two consecutive basic blocks, these
blocks can be moved apart. Hence the order of the basic blocks in a program, i.e.
the code layout, is to some degree free. More precisely, all basic block chains, i.e.
lists of consecutive basic blocks with fall-through paths between them, can be
positioned in any order. When there are c different chains, we have c! possible
orderings to choose from, and hence we can encode b(c!) bits.

While the order of unique elements to encode a bit-string can be exploited
with existing methods [10], all chains in a program are not necessarily unique.
This follows from the fact that most compilers only compile one source code
module at a time, and hence never have an overview over all the code that
constitutes a final program. As a result, duplicated code ends up in programs [11].

This problem is aggravated for our purpose, since we need to number and
qualify all chains independently of their position in the program. Hence we can-
not base our differentiation between two chains on any contents of them that de-
pends on their location. In concreto, this means that all relocatable addresses [12]
encoded in the instructions in the chains need to be neglected when comparing
chains. For the programs in our benchmark suite the thus computed number of
sets of identical chains is only between 47 to 59% of the total number of chains.

With m chains divided in n sets of identical chains s1 . . . sn, the theoretical
average number of bits that can be encoded in their ordering is given by

b(
m!∏n

i=1(|si|!)). (2)

We can approximate this number by iteratively selecting a chain for placement
out of the n remaining sets of chains. The average number of bits that can be
encoded in this selection is once again given by equation (1). Depending on
whether the selected chain was the last of a set of identical chains or not, the
number of sets will be n− 1, respectively n in the next iteration. The process is
repeated until all chains have been placed.

3.6 Interactions Between the Techniques

The discussed techniques are not completely orthogonal. In order to combine
them successfully, a couple of issues need to be addressed.

First, it is worth noting that the number of bits that can be encoded in
instruction selection is dependent on the chosen ordering of instructions in the
basic block, and vice versa. When orders change, liveness ranges change, and
hence the condition flags and scratch registers that may be changed by equivalent
instructions also change.

For the same reason, instruction selection influences the order in which an
embedder or extractor will generate equivalent orderings, and hence how specific
bit sequences are encoded in the ordering. Vice versa, if scheduling is applied
first, it influences the order in which equivalent instructions are generated.

Moreover, if the embedder first encodes bits in the instruction selection of
the instructions in their original order in the program, and subsequently reorders

Steganography for Executables and Code Transformation Signatures 431

55 push EBP 55 push EBP
89 e5 mov ESP,EBP 89 e5 mov ESP,EBP
83 ec 08 sub 0x8,ESP 83 c4 f8 add 0xfffffff8,ESP

Fig. 2. Two equivalent code sequences

the instructions, the extractor does not know the order in which the information
embedded in the instruction selection needs to be extracted. Clearly, the extrac-
tor and the embedder need to depart from the same dependency graph in order
for the extractor to obtain the correct embedded information.

Before the embedding and the extraction, all basic blocks in a program should
therefore be transformed into a canonical form, in which both the instruction
selection and their ordering are predetermined.

3.7 Practical Considerations for Extracting an Embedded Message

In order to extract embedded information from a program, an extractor needs
to identify the basic blocks, and he needs to pinpoint relocated operands, since
these should be neglected for the ordering of chains.

The necessary relocation information is available at the embedding phase, as
the embedding is done at link-time, when the whole program is first available.
This information is lost in the resulting executable however.

Fortunately most of the necessary information can be derived from a static
analysis of the executable program itself. As a consequence, we only need to
communicate the discrepancy between the derived information and the actual
information to the decoder. To do so, we can store this information in the first
instructions of the resulting binary, without taking liveness information into
account. This is the only option since the decoder cannot identify basic blocks
or chains and it cannot compute liveness information at this point.

4 Code Transformation Signatures

While Section 5 shows that the encoding rate achieved by the discussed tech-
niques is fairly high, its security is obviously too low. The reason is that the
techniques introduce very unusual code that will arise suspicion of the warden.
Consider, e.g., the equivalent code sequences in Figure 2. Anyone somewhat fa-
miliar with assembly code will agree that the likelihood of a compiler generating
the code on the right is extremely low. But this code is present in executables
that have been put through Hydan or our tool (without countermeasures). In
short, the application of our tool has left an obvious signature.

We define a code transformation signature (CTS) as a code property that
results from that transformation. The security of the discussed embedding tech-
niques depends by and large on the absence of such signatures. While this is ob-
vious for steganography, it is also of importance for other embedding techniques
such as watermarking and fingerprinting, as the distortion of a watermark or
fingerprint is facilitated if an attacker can accurately locate it.

432 B. Anckaert et al.

Despite the importance of the stealthiness of applied code transformations,
almost all research efforts have targeted the development of new techniques.
Little work has been done on the security evaluation of the techniques. So far,
most claims for security have been ad hoc and often based on author’s belief.

4.1 A Framework for Detecting Code Transformation Signatures

Because quantitative methods have proved so powerful in many other domains,
we will first quantify unusual properties using quantitative software metrics.
On these metrics, we build models of the expected behavior, after which we
can compare the observed value of a metric to the expected behavior, and thus
classify software into clean and suspect software.

Software Metric. A software metric summarizes and quantifies properties of
a given piece of software, called a unit, in order to detect signatures. Hence the
property to measure depends on the applied code transformations. Metrics can
in general be classified along two axes: that of aspects and that of granularities.

The aspect identifies what type of software unit is inspected. This could, e.g.,
be the static code or the dynamically executed code. It could be the heap or the
stack as well, as they result from the executed code. We should note that even
a dynamic data watermark [2] may introduce a signature in the static code.

The granularity of a metric identifies the size of the unit that is the subject
of measurement. Possible granularities are the instruction, the basic block, the
procedure, the memory location, the graph structure, etc. Granularity is impor-
tant for an attacker, because, the smaller the granularity, the more accurately
the attacker can pinpoint the location of the suspicious software.

Statistical Code Model. In order to evaluate executables for the presence of
suspicious units with respect to some metric, we need a model of what consti-
tutes a “clean” unit. We will do so by means of statistical distributions that are
constructed by evaluating a population of units for some metric. On such a dis-
tribution, a statistical test can then be postulated that decides on the behavior
of a unit under investigation.

For each model, the population’s locality identifies how closely related the
units that make up the population are to the unit under investigation. If the
granularity of the metric is, e.g., a basic block, then we could test each block by
comparing it to the blocks in its own procedure or we could compare it to all
the blocks in a training set of programs. In the former case, the locality of the
model would be that of procedures, in the latter that of the software universe.

Based upon the postulated model of the clean behavior of a metric, we can
then compute how unusual it is to observe a particular value for a metric. If we
then define a threshold to differentiate suspect units from clean ones, we obtain
a statistical test. In some cases, a single CTS will suffice to classify units, but in
other cases several CTSs will need to be combined to increase the reliability.

Stealthy Code Transformations. Knowing that a warden uses such statisti-
cal models to detect CTSs of suspicious code, we need to defend against them.

Steganography for Executables and Code Transformation Signatures 433

This can either be done by elevating the false negative rate of a test, i.e. thwarting
the recognition of the CTSs, or by elevating the false positive rate, i.e. trans-
forming original code to contain the same CTSs.

Consider, e.g., a tamper-proofing mechanism that reads a piece of the pro-
gram code, computes a checksum over it and compares it to some predefined
value. Since programs rarely read their own code, an attacker trying to locate
the detection mechanism may search for the CTS consisting of a (static) instruc-
tion that reads the code section. A countermeasure against this attack consists
of hiding the fact that the instruction reads from the code section by obfus-
cating the involved address computation (increasing the false negative rate) or
by transforming the original code to read constant values from the code section
throughout (increasing the false positive rate).

4.2 Application of the Framework to the Steganographic
Techniques

Presence of Unusual Instructions. When multiple instructions are avail-
able to perform a given operation, a compiler will deterministically select the
(assumed) optimal equivalent during the instruction selection phase. A CTS can
therefore be found in an unusual instruction in the static code.

To detect such CTSs, the aspect of the metric is static code, and the granular-
ity is that of instructions. The locality of the model is that of a large, predefined
set of clean programs. The test considers a program suspicious if it contains an
instruction that never occurred in the clean programs.

As a countermeasure against this test, an embedder should only use alter-
native, possibly suboptimal, instructions when they could be the remnant of
a choice based on information that is no longer available to the warden. This
information could, e.g., be the source code or relocation information.

Unusual Relative Frequencies of Instructions. Replacing instructions by
equivalent ones changes the frequencies with which the equivalents occur in a
program. Therefore a suitable metric is the relative frequency of equivalents in
the static code of the program. When an encrypted secret message is embedded
in an executable using equivalent instructions (and without taking countermea-
sures), the equivalents for a certain instruction can be expected to have uniform
frequencies. In clean programs, by contrast, they likely have skew distributions.

Suppose that there are n equivalents for some instruction, whose relative
frequencies in a programs x are presented by f(x) = [f1(x) ... fn(x)]. To measure
how clean a particular program p is, the metric then consists of the euclidean
distance from f(x) to f(P), in which P is large set of clean programs. The model
of programs can be obtained by postulating that this distance follows a normal
distribution, of which the parameters µ and σ2 can be estimated by computing
the average and variance of the distance in P .

To classify an executable e we compute the probability that a distance occurs
that is larger than the observed distance between f(e) and f(P). A low likelihood
indicates a high probability that a secret message is present. The reliability of
this test can be increased by averaging the likelihoods of a number of sets of

434 B. Anckaert et al.

equivalent instructions. The classification could then classify programs with a
score below, e.g., 0.5 as suspect.

To avoid the detection of the presence of an embedded message through
the discussed CTS, we need to approximate the relative frequency of equivalents
through a biased embedding. To do so the equivalents for a particular instruction
are partitioned in two groups with relative frequency r1 and r2 = 1− r1 as close
to 0.5 as possible. Without loss of generality we can assume that r1 ≥ 0.5.
Using a random number generator seeded with a value derived from the secret
key k (to assure that both the embedder and extractor follow the same scheme),
numbers are then generated, on which a test is defined that succeeds with chance
p = (r1 − 0.5) ∗ 2. Whenever the test succeeds for a generated number, we are
forced to take an equivalent from group 1, and no bit is encoded. Otherwise, we
encode a bit by choosing between group 1 and group 2. As a result of Bernoulli’s
theorem, the relative frequencies r1 and r2 will converge to the chance p(g1),
that group 1 is chosen, resp. p(g2), that group 2 to is chosen, with increasing n.
As it is equally likely that the next bit will be a 0 as a 1, p(g1) = (r1 − 0.5) ∗ 2+
1
2 ∗ (1− (r1 − 0.5) ∗ 2) = r1 and p(g2) = 1

2 × (1− (r1 − 0.5) ∗ 2) = r2. Note that if
a group is not a singleton, we iteratively partition it in subgroups on which the
the same process is applied.

Unusual Jump Behavior of Program. Clean programs exhibit spatial local-
ity as the basic block chains of procedures will usually be placed consecutively.
This locality is further increased when cache-optimizing code layout techniques
are applied [13]. When the code in a program is reordered randomly, the spatial
locality of the code is hence likely to decrease. A poor locality may therefore in-
dicate the presence of a secret message, and a suitable metric to test this consists
of the average offset of executed jumps that cross chain boundaries.

In the execution of our population of training programs, the largest average
jump offset during a program’s execution was 3, 725. Respecting a considerable
margin we therefore postulate the model that this average will be no higher than
10, 000 for clean programs. For our evaluation benchmark programs the largest
average observed before embedding was 2, 575, while the smallest average ob-
served after embedding (without countermeasures) was 59, 815. The classification
thus has a perfect false positive and false negative rate for our benchmarks.

To avoid the presence of this CTS, we must retain the spatial locality present
in the original code. To achieve this, it suffices to not reorder all of the different
chains at once, but to take a three step approach. First, chains are reordered
within their procedures. Secondly, all procedures are partitioned into equivalence
classes, where two procedures are considered equivalent if they are (transitively)
connected through inter-procedural jumps (that most often result from tail-call
optimization by compilers), and procedures are reordered within their class.
Finally, all classes are reordered.

Diversity in Scheduling. When instruction schedulers pick instructions from
the ready-set (see Section 3.4), they try to optimize the generated schedules by
taking instruction latencies, available processor resources, and other properties

Steganography for Executables and Code Transformation Signatures 435

into account. As a result, any badly scheduled basic block will raise suspicion.
Moreover, schedulers typically are deterministic, and hence two identical depen-
dency graphs of instructions will most often be scheduled identically within a
program. An important exception is where libraries and the main application
are compiled independently of each other. Furthermore, there may be consider-
able differences between schedules in different programs. Different compilers may
have been used, or different optimization levels, or different processor targets.
Obviously, the warden does not know which combination has been used.

One attack on this type of CTS consists of comparing the basic blocks in a
program, and to consider identical dependency graphs that are scheduled dif-
ferently suspicious. For this type of model, the metric’s aspect would be static
code, and the granularity the basic block, while the locality is the equivalence
class of the block’s procedure within the program.

Since the warden does not know which properties the original scheduler has
taken into account, he cannot know which graphs were identical according to
the original scheduler. So while the warden may consider two graphs identical,
the compiler may have seen them as different. Hence the warden needs to build
a statistical model of clean code with a large set of programs.

The approach resembles the one to detect suspect instruction frequencies.
Now f(x) indicates how often a compiler has generated i different schedules for
(assumingly) identical graphs. Again, we can compute the euclidean distance
and obtain a model by postulating that this distance follows a normal distri-
bution. In practice, we observed that 95% of the graphs occurring more than
once occurred with a single schedule, while approximately 5% occurred with two
different schedules. More schedules are rare.

As a countermeasure to these attacks, we suggest the following approach:
instead of choosing any instruction from the ready-set, limit this choice to the
set of, within reasonable boundaries, good instructions to schedule. Furthermore,
identical dependency graphs should result in i schedules with chance fi. To
implement this, it suffices to maintain a database of already scheduled blocks
and enforce i different schedules with chance fi.

Please note that making compilers non-deterministic, to increase the false
positive rate, is not an option: besides the simple fact that one cannot con-
trol all compilers, making them non-deterministic would make debugging the
compilers themselves and the compiled programs even more difficult than it is
today.

5 Experimental Evaluation

To evaluate the presented concepts we have implemented Stilo, our stegano-
graphic tool for the IA-32 architecture, using the link-time rewriting framework
Diablo [14], and applied it on 9 SPECint2000 benchmark programs to embed and
extract “King Lear” by W. Shakespeare. The programs were compiled with GCC
3.2.2 and linked to glibc 2.3.2 for Linux. For each benchmark, the embedding
and extraction took less than a minute on a 2.8GHz Pentium IV.

436 B. Anckaert et al.

Fig. 3. Encoding rate before (left) and after (right) countermeasures for steganalysis

Fig. 4. Code transformation signature: unusual relative frequencies of instructions

The obtained encoding rates are presented in Figure 3. The distribution over
the different techniques is also indicated. We achieve an encoding rate between
1/29.6 and 1/25.49 and a total encoding rate of 1/26.96 before countermeasures,
four times the encoding rate of the previous prototype tool Hydan (1/110).

Without countermeasures, neither our tool nor Hydan, as noted by its au-
thors, is stealthy. Most importantly, their encoding rate achieved through in-
struction selection is achieved by and large by choosing very unusual instruc-
tions. However, as the clean instruction distribution is uniform across executa-
bles [1], little information can be stealthily embedded this way. When we take
countermeasures to address this problem, only 9% of the encoding rate due to
instruction selection remains, as can be seen in Figure 3. This clearly illustrates
the usual trade-off between data rate and stealth.

The need for countermeasures is acknowledged by the results of our attack
on the unusual instruction frequency CTS as discussed in Section 4.2. These
results are presented in Figure 4, and confirm that unlimited instruction selection
freedom indeed results in big, easily detectable discrepancies from clean code.

Fortunately, there is a much greater variation in schedules across executables
and 47% of the encoding rate due to instruction scheduling can be safely retained.
Furthermore, as code layout is largely determined by the source code, a piece of
information that is no longer available to the warden, 59% of the encoding rate
due to code layout can be safely retained.

Steganography for Executables and Code Transformation Signatures 437

Combined, we thus achieve a stealthy encoding rate ranging from 1/108.59 to
1/80.1 and averaging 1/88.76. This is still higher than the unsafe rate of Hydan.

6 Future Work

The techniques discussed in this paper are portable to other architectures, as
they exploit compiler choices common to all architectures. It would be interesting
to see how the characteristics of an architecture influence the obtained data
encoding rate. For example, a RISC architecture is unlikely to have the same
redundancy in its instruction set as the IA-32 architecture. Therefore, the data
rate due to instruction selection can be expected to be much lower on a RISC.
On the other hand, RISC architectures typically have a larger set of registers, as
a result of which register allocation might be a safe place to hide information.

While we have taken measures to prevent the detection of the presence of
secret information in an executable in general, all executables generated by a
single programmer are likely to be generated by the same compiler, with the same
compiler flags, libraries, etc. If an embedder wants to use this tool repeatedly to
defeat the same warden, his freedom of choice may need to be further reduced
to assure that the attacker is not alarmed when different executables from the
same programmer are unlikely to have been compiled with the same tool chain.
This requires future research.

7 Related Work

Several types of cover-objects have been used to embed a secret message. The
first reported occurrence is due to Herodotus. He tells of Histiæus, who shaved
the head of his most trusted slave and tattooed it with a message that disap-
peared after his hair had regrown. Many other physical objects have since been
used as cover-objects, e.g, earrings, written documents, and music scores.

Digital steganography has mainly been applied to media, such as images,
sound and video. A large number of systems has been proposed [15, 16].

Steganography in the context of executables has, to the best of our knowledge,
only been addressed by Hydan [1], a steganographic tool for IA-32 compatible
executables.

Significantly more research has been conducted in the related field of soft-
ware watermarking. The first one, proposed by Davidson and Myhrvold [17],
encodes the watermark in the sequence of basic blocks. Pieprzyk [18] suggests
assigning a unique identity to every copy in the choice of equivalent instructions.
Another approach encodes the watermark in the frequency of groups of instruc-
tions [3]. All of these approaches change properties of the existing executable.
Other techniques add a piece of data [19] or code [20] to the original program.

Whereas the mentioned work has mainly focused on the development of new
techniques, more attention has recently gone into the evaluation of their secu-
rity [21, 22, 23]. No general framework has been presented however.

438 B. Anckaert et al.

8 Conclusion

This paper identified the redundancy present in executable programs and pre-
sented instruction selection, instruction scheduling and code layout as three tech-
niques to exploit this redundancy for steganography. Combined, they resulted in
encoding rates of approximately 1

27 , four times the rate of the previous approach
by Hydan [1].

A framework for the evaluation of code transformation stealth was intro-
duced and applied to the presented techniques, showing that our techniques can
be made secure by the appropriate countermeasures, while still obtaining an
encoding rate of 1

89 .

Acknowledgments

This work is supported by the Institute for the Promotion of Innovation through
Science and Technology in Flanders (IWT-Vlaanderen), the Fund for Scientific
Research - Belgium - Flanders (FWO) and Ghent University, member of the
HiPEAC network.

References

1. El-Khalil, R., Keromytis, A.: Hydan: Hiding information in program binaries. In:
International Conference on Information and Communications Security, LNCS.
Volume 3269. (2004)

2. Collberg, C., Thomborson, C.: Software watermarking: Models and dynamic em-
beddings. In: ACM SIGPLAN-SIGACT symposium on Principles of Programming
Languages, ACM Press (1999) 311–324

3. Stern, J., Hachez, G., Koeune, F., Quisquater, J.J.: Robust object watermarking:
Application to code. In: Information Hiding, LNCS. Volume 1768. (1999) 368–378

4. Simmons, G.J.: The prisoners’ problem and the subliminal channel. In: Advances
in Cryptology. (1984) 51–67

5. Kerkhoffs, A.: La cryptographie militaire. Journal de Sciences Militaires 9 (1883)
5–38

6. Anderson, R.J., Petitcolas, F.A.: On the limits of steganography. I.E.E.E. Journal
of Selected Areas in Communications (1998) 474–481

7. Intel: IA-32 Intel Architecture Software Developer’s Manual. (2003)

8. Massalin, H.: Superoptimizer: a look at the smallest program. In: Architectual
Support for Programming Languages and Operating Systems, IEEE Computer
Society Press (1987) 122–126

9. Aho, A., Sethi, R., Ullman, J.: Compilers, Principles, Techniques and Tools.
Addison-Wesley (1986)

10. Kwan, M.: Gifshuffle (1998) http://www.darkside.com.au/gifshuffle/.

11. De Sutter, B., De Bus, B., De Bosschere, K.: Sifting out the mud: Low level c++
code reuse. In: ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages and Applications. (2002) 275–291

12. Levine, J.: Linkers & Loaders. Morgan Kaufmann Publishers (2000)

Steganography for Executables and Code Transformation Signatures 439

13. Gloy, N., Smith, M.D.: Procedure placement using temporal-ordering information.
ACM Transactions on Programming Languages and Systems 21 (1999) 977–1027

14. De Bus, B., De Sutter, B., Van Put, L., Chanet, D., De Bosschere, K.: Link-
time optimization of ARM binaries. In: ACM SIGPLAN/SIGBED Conference on
Languages, Compilers, and Tools for Embedded Systems. (2004) 211–220

15. Cox, I., Miller, M., Bloom, J.: Digital watermarking. Morgan Kaufmann (2002)
16. Katzenbeisser, S., Petitcolas, F.: Information hiding techniques for steganography

and digital watermarking. Artech House (2000)
17. Davidson, R., Myhrvold, N.: Method and system for generating and auditing a

signature for a computer program (1996) Microsoft Corporation, US5559884.
18. Pieprzyk, J.: Fingerprints for copyright software protection. In: Information Secu-

rity, LNCS 1729. (1999) 178–190
19. Holmes, K.: Computer software protection (1991) International Business Machines

Corporation, US5287407.
20. Venkatesan, R., Vazirani, V., Sinha, S.: A graph theoretic approach to software

watermarking. In: Information Hiding, LNCS. Volume 2137. (2001) 157–168
21. Collberg, C., Thomborson, C., Townsend, G.: Dynamic graph-based software wa-

termarking. Technical report, Dept. of Computer Science, Univ. of Arizona (2004)
22. Curran, D., Cinneide, M.O., Hurley, N., Silvestre, G.: Dependency in software

watermarking. In: Information and Communication Technologies: from Theory to
Applications. (2004) 569–570

23. Sahoo, T.R., Collberg, C.: Software watermarking in the frequency domain: Im-
plementation, analysis, and attacks. Technical report, Dept. of Computer Science,
Univ. of Arizona (2004)

	Introduction
	The Prisoners' Problem
	Fitness of Executables as Cover-Objects
	Encoding Bits in a Choice
	Instruction Selection
	Register Allocation
	Instruction Scheduling
	Code Layout
	Interactions Between the Techniques
	Practical Considerations for Extracting an Embedded Message

	Code Transformation Signatures
	A Framework for Detecting Code Transformation Signatures
	Application of the Framework to the Steganographic Techniques

	Experimental Evaluation
	Future Work
	Related Work
	Conclusion

