
Slicing Obfuscations: Design, Correctness, and Evaluation

Anirban Majumdar Stephen Drape Clark Thomborson
Secure Systems Group

Department of Computer Science
The University of Auckland, New Zealand.

{anirban,stephen,cthombor}@cs.auckland.ac.nz

ABSTRACT
The goal of obfuscation is to transform a program, with-
out affecting its functionality, such that some secret infor-
mation within the program can be hidden for as long as
possible from an adversary armed with reverse engineering
tools. Slicing is a form of reverse engineering which aims to
abstract away a subset of program code based on a particu-
lar program point and is considered to be a potent program
comprehension technique. Thus, slicing could be used as a
way of attacking obfuscated programs. It is challenging to
manufacture obfuscating transforms that are provably re-
silient to slicing attacks.

We show in this paper how we can utilise the information
gained from slicing a program to aid us in designing obfusca-
tions that are more resistant to slicing. We extend a previ-
ously proposed technique and provide proofs of correctness
for our transforms. Finally, we illustrate our approach with
a number of obfuscating transforms and provide empirical
results using software engineering metrics.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.1 [Software
Engineering]: Specifications—Languages; D.2.8 [Software
Engineering]: Metrics; D.3 [Software]: Programming Lan-
guages; D.3.1 [Programming Languages]: Formal Defini-
tions and Theory; E.1 [Data]: Data Structures; F.3 [Theory
of Computation]: Logics and Meanings of Programs; F.3.1
[Logics and Meanings of Programs]: Specifying and
Verifying and Reasoning about Programs

General Terms
Design, Experimentation, Human Factors, Languages, Legal
Aspects, Measurement, Security, Theory

Keywords
Obfuscation, Static Slicing, Program Transformation, Soft-
ware Security, Digital Rights Management

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DRM’07, October 29, 2007, Alexandria, Virginia, USA.
Copyright 2007 ACM 978-1-59593-884-8/07/0010 ...$5.00.

1. INTRODUCTION
The goal of software protection through code obfuscation

is to transform the source code of an application to the point
that it becomes unintelligible to automated program com-
prehension tools or becomes unanalysable to a human adver-
sary interpreting the output of program analyses run on the
obfuscated application [19]. The motivation for protecting
software through obfuscation arises from the problem of soft-
ware piracy, which can be summarised as a reverse engineer-
ing process undertaken by a software pirate when stealing
intellectual artefacts (such as a patented algorithm) from
a commercially valuable software to make derivative soft-
ware or tampering DRM routines in order to bypass license
authentication checks. The 2005 annual Global Software
Piracy Report [1] from Business Software Alliance (BSA)
stated that “35% percent of the packaged software installed
on personal computers (PC) worldwide in 2005 was illegal,
amounting to $34 billion in global losses due to software
piracy”. This is one of the primary reasons why commer-
cially popular software such as the Skype VoIP client [6],
the SDC Java DRM [23], and most license-control systems
rely, at least in part, on obfuscation for their security.

Collberg et al. [7, 8] were the first to formally define ob-
fuscation in terms of a semantic-preserving transformation
function O which maps a program P to a program O(P)
such that if P fails to terminate or terminates with an error,
then O(P) may or may not terminate. Otherwise, O(P)
must terminate and produce the same output as P . Barak
et al. [3] strengthened the formalism by defining an obfus-
cator, O, in terms of a compiler that takes a program, P ,
as input and produces an obfuscated program, O(P), as
output such that O(P) is functionally equivalent to P , the
running time of O(P) is at most polynomially larger than
that of P , and O(P) simulates a virtual black-box. Think-
ing in terms of a virtual black-box, an obfuscation function
is a failure if there exists at least one program that cannot
be completely obfuscated by this function, that is, if an ad-
versary could learn something from an examination of the
obfuscated version of this program that cannot be learned
(in roughly the same amount of time) by merely executing
this program repeatedly. This negative result established
that every obfuscator will fail to completely obfuscate some
programs. Drape in [11] observed that the virtual black-box
property is too strong. Obfuscators will be of practical use
even if they do not provide perfect black boxes. Therefore,
the focus has now shifted to designing obfuscations that are
difficult (but not necessarily impossible) for an adversary to
reverse engineer.

70

In the domain of software engineering, program slicing is
widely used for program maintenance, modularisation, and
comprehension [5, 15, 22, 24]. These techniques form the
basis of reverse engineering since the primary goal of these
techniques is to identify relevant/interesting parts of the
code and create representations of the program at a higher
level of abstraction. Indeed, this is what a software pirate
also intends to do when he/she attempts to steal or change
some relevant part (of her/his interest) of the code with the
intention of reusing it in illegal derivative software or inval-
idating the code licensing routine.

It would seem obvious that a natural way to deter such
code comprehension attacks is to intertwine the relevant code
routine with other irrelevant sections such that the attacker
fails to recognise the portions of interest by analysing the
code. Drape and Majumdar in [14] made the first attempt to
intertwine code in a way so that static slicing attacks could
be made difficult (if not impossible). In this contribution,
we extend the work in [14] along many directions — first,
we show a way to prove correctness of our proposed slicing
obfuscations using program refinement techniques [10]. Sec-
ondly, we empirically evaluate our obfuscating transforms
using a popular static program slicer, the CodeSurfer, and
show that the results, in fact, corroborate with the claims
in [14]. In the process of evaluating our transforms, we also
propose our own metrics (derived from the original slicing
metrics) and interpret our results in terms of the derived
metrics.

2. EXPERIMENTAL DESIGN
The motivation of this paper is derived from the difficulty

of empirically evaluating the obfuscatory strength of seem-
ingly resilient obfuscating transforms. Majumdar et al. [18]
(and separately by Udupa et al. [25]) observed that in or-
der to evaluate resilience of obfuscating transforms, we need
to be able to answer the following question — “What kinds
of tools and program analyses are suitable for evaluating a
particular obfuscating transform?” They argued that de-
veloping one general purpose reverse engineering tool for
deobfuscating all possible obfuscating transforms is incon-
ceivable (an adversary will have to use different techniques
to deobfuscate a program obfuscated with different kinds
of transforms). Consequently, we can also assume that it
is ambitious to design an obfuscating transform that will
withstand all possible reverse engineering attacks.

We use CodeSurfer, a static program slicer for code writ-
ten in C [2], for evaluating our slicing obfuscations. It runs
algorithms on system dependence graphs (SDGs), an inter-
mediate graph structure with annotated data and control
dependency nodes, for representing programs [16]. Slicing
using SDGs is the most precise and complete slicing method
currently available [24]. CodeSurfer is capable of backward
slicing, forward slicing, and chopping. A backward slice in-
cludes all program points that affect a given point in the
program. A forward slice includes all program points that
are affected by a given point in the program. A chop in-
cludes all program points that are affected between a source
program point and a sink program point. For our experi-
ments in the paper, we restrict ourselves to only backward
computation of slices (to be explained in Section 2.1).

It has been claimed in the existing literature [8] that ob-
fuscating transforms which are not derived from hard com-
plexity problems are easy to undo. We set ourselves to sub-

stantiate this rather suppositional claim in this contribution.
Moreover, since we do not know how to arbitrarily generate
hard problem instances, we limit ourselves to manufacturing
resilient obfuscating transforms using simple program con-
structs in this paper. Therefore, we choose the language C
and restrict our obfuscations on a subclass of program con-
structs (assignments, output statements, conditionals and
loops) that is common for all imperative languages.

Mobile code (such as Java byte code, Microsoft’s MSIL)
is considered more vulnerable to reverse engineering attacks
than binary executables. Nevertheless, we have designed our
experiments using the constructs of the C language because
it was difficult to find a full-fledged working slicer for a lan-
guage other than C. Experience with using third-party tools
for experimentation suggests that most of the tools built as
part of academic projects are in their prototypical phase and
not well maintained [18]. The only well-known static slicer
for Java programs is Indus [17]; again, it is an academic
project and is yet to be empirically evaluated for correct-
ness and performance. CodeSurfer is an exception — it has
been widely used since the release of the prototype Wiscon-
sin Program-Slicing Project in 1996 (based on the slicing
algorithm by Horowitz et al. [16]) and has been extensively
evaluated in published literature [4, 5, 20].

2.1 Slicing Notation
To denote the slices of a particular method we use the

notation of Ott and Thuss [21] as follows. For each pro-
gram (method) M in our experiments we will concentrate
on variables which are output (for instance, as part of a
printf statement) and so we have a set of output variables
VO. Our slicing point will be the last output statement for
each output variable and thus we will use backward slicing
for evaluation. For each vi ∈ VO the backwards slice for vi

is denoted by SLi, SLint is defined to be
T

i SLi (i.e. the
intersection of all the slices) and | . . . | denotes the size. We
will compute the size by considering the number of nodes in
the SDG (and CodeSurfer allows us to do this).

Suppose that we apply an obfuscation O to the program
P to obtain O(P), what happens to the slicing criterion?
Since we will use data refinement techniques [10] to define
our obfuscations we have a mapping between the variables
in P and O(P) and so we can write O(VO) to denote the set
of output variables in O(P). For the slicing point, we again
use the last output statement for each variable.

2.2 Orphans and Residues
As mentioned earlier, slicing is often used to aid program

comprehension. As obfuscation is used to make programs
harder to understand we should aim to create obfuscations
that make slicing less useful — such obfuscations will be
called slicing obfuscations. What do we mean by “less use-
ful”? One definition could be that an obfuscation creates
larger slices. We can arbitrarily increase the size of a method
and its slices by creating an obfuscation that adds bogus
statements that are contained in the slice. Unfortunately,
such simple obfuscations will not affect any of the program
points left out of the original slice. A more suitable obfusca-
tion would try to increase the size of the slice by including
more of the program points that are left behind. We call
the points that are left behind after slicing as the orphaned
points. For each vi ∈ VO we can define:

residue(M,vi) = M\SLi

71

So the residue of a slice is defined to be the set of points that
are orphaned. Using this concept, we can define a slicing
obfuscation as follows:

Definition. An obfuscation O is a slicing obfuscation for
a program P and a variable Vi if it decreases the size of the
residue (the number of orphaned points), i.e.

|residue(P, vi)| > |residue(O(P),O(vi))|
2.3 Metrics

Using inspiration from the Tightness, MinCoverage, Cov-
erage and MaxCoverage metrics given in [21], we can define
four residue metrics for a method M . We denote RESun to
be the union of all the residues, i.e.

RESun =

|VO|
[

i=1

residue(M,vi)

In fact, RESun = M\SLint.

Compactness. Compactness measures the total number of
orphaned points in relation to the size of the method.

C(M) =
|RESun|

|M |

MinDensity. The minimum density is the ratio of the small-
est residue in a method to the method length.

MinD(M) =
1

|M | min
i

|residue(M, vi)|

Density. Density compares the average residue size to the
method size.

D(M) =
1

|VO|
|VO|
X

i=1

|residue(M,vi)|
|M |

MaxDensity. The maximum density is defined to be the
ratio of the largest residue in a method to the method’s
length.

MaxD(M) =
1

|M | max
i

|residue(M, vi)|

Comparing our metrics to those in [21], we find that

C(M) = 1 − T ightness(M)

MinD(M) = 1 − MaxCoverage(M)

D(M) = 1 − Coverage(M)

MaxD(M) = 1 − MinCoverage(M)

and by the definitions, we see that

MinD(M) ≤ D(M) ≤ MaxD(M) ≤ C(M)

These metrics give values in the range between 0 and 1 (so
we give our values as percentages) and our aim when ob-
fuscating will be to make these metrics as low as possible
(i.e. to have as few orphaned points as possible). In Table
1, we use our residue metrics to evaluate the effectiveness of
some obfuscating transforms (which are explained in detail
later).

3. PROOF FRAMEWORK
In [11] a framework for proving the correctness of obfus-

cations for abstract data-types using functional refinement
[10] was given. Suppose that a data-type D is obfuscated to
produce a data-type E. Under this framework, an abstrac-
tion function af :: E → D and a data-type invariant dti are
needed such that, for x :: D and y :: E:

x � y ⇐⇒ (x = af(y)) ∧ dti(y) (1)

The term x � y is read as “x is obfuscated by y”.
For a function f :: D → D, an obfuscated function O(f)

is correct with respect to f if it satisfies:

(∀x :: D; y :: E) x � y ⇒ f(x) � O(f)(y)

Using Equation (1) we can rewrite this as

f · af = af · O(f) (2)

If we have a conversion function cf :: D → E that satisfies
af · cf = id then we can rewrite Equation (2) to obtain:

f = af · O(f) · cf
In the following subsections we will briefly discuss the use

of this proof framework for proving correctness of our im-
perative obfuscations.

3.1 Modelling statements as functions
We model statements to be functions on states and so a

statement has the following type: statement ::state → state
where a state is defined to be a set of mappings from vari-
ables to values (or expressions computing values). We as-
sume that the variables are integer valued and all expressions
consist of arbitrary-precision arithmetic operators. We con-
centrate on code fragments with no methods, exceptions or
pointers.

Suppose that we have a set of states S . For some initial
state σ0 ∈ S and some statement T , the effect of statement
T on σ0 is to produce a new state σ1 ∈ S such that σ1 =
T (σ0). Suppose that we have a sequential composition (;)
of statements, which we will call a block, B = T1; T2; . . . ; Tn.
If the initial state is σ0 then the final state σn is given by

σn = B(σ0) = Tn (. . . T2 (T1 (σ0)) . . .)

For our simple language, we consider the following state-
ment types: skip, assignments (var = expr), condition-
als (if pred then statements else statements) and loops
(while pred do statements). So given an initial state, how
can we compute the final state after executing each of these
statement types?

The statement skip does not change the state and so if
S ≡ skip then S(σ0) = σ0. For an assignment A of the
form A ≡ x = e, if the initial state σ0 contains the mapping
x
→ x0 then the state after the assignment can be written
as

A(σ0) = σ0 ⊕ {x
→ e[x0/x]}
using functional overriding (⊕) and substitution (/).

Now suppose we have conditional statement C which has
the form C ≡ if p then T else E where p is a predicate with
type p :: state → B and T and E are blocks. Then for some
initial state σ0 we have that

C(σ0) =

j

T (σ0) if p(σ0)
E(σ0) otherwise

72

A loop statement L has the form L ≡ while p do T where
p is a predicate and T is a block. Then for some initial state
σ0 we have that

L(σ0) = T i(σ0) where i = min{n :: N | p (T n(σ0)) = False}
Note that this minimum does not exist if the loop fails to
terminate.

3.2 Using the refinement framework
We suppose that a data obfuscation acts on a state to

produce a new state. To specify a data obfuscation O we
will supply an abstraction function af :: state → state and
a conversion function cf :: state → state which is a pre se-
quential inverse for af (i.e. cf ; af ≡ skip). As well an
abstraction function, for refinement, we need an invariant I
on the obfuscated state. Note that for most of our transfor-
mations unless otherwise stated I ≡ True. The abstraction
and conversion functions will usually consist of assignment
statements.

Since our statements are functions on the state, we can
adapt the framework from [11] to produce correctness equa-
tions. Suppose that we have a block B and we want to
obfuscate it using data refinement to obtain a block O(B)
which preserves the correctness of B. Then using Equation
(2), O(B) is correct with respect to B if it satisfies

af ; B ≡ O(B); af (3)

By writing the abstraction function as a statement we can
construct two blocks af ; B and O(B); af and proving the
equivalence of these blocks establishes that O(B) is correct.

Using the conversion function we can obtain another cor-
rectness equation:

B ≡ cf ; O(B); af (4)

3.3 Obfuscating Statements
Suppose that we have a data obfuscation that changes a

variable x using an abstraction function af and a conversion
function cf satisfying cf ; af ≡ skip. Then af and cf can
be written as statements of the form:

af ≡ x = G(x) cf ≡ x = F (x)

for some functions F and G.
Suppose we have an obfuscation for x (with af and cf de-

fined as above) then let us consider the statement P1 ≡ x =
E where E is an expression that may contain an occurrence
of x. It can be obfuscated as follows:

O(x = E) ≡ x = F (E′) where E′ = E[G(x)/x] (5)

For example, the expression x = x+1 would be transformed
to x = F (G(x) + 1). Note that the expression E[G(x)/x]
denotes how a use of x is obfuscated.

Now let us suppose that P2 ≡ if p then T else E for some
predicate p and blocks T and E. We propose that

O(P2) ≡ if p[G(x)/x] then {af ; T ; cf}
else {af ; E; cf} (6)

with af as above. Using Equation (3) we can show that
O(P2); af ≡ af ; P2.

Finally, suppose that P3 ≡ while p do S then, with af as
above, we propose that

O(P3) ≡ while p[G(x)/x] do {af ; S; cf} (7)

and we can use Equation (3) to prove that this is correct.

Suppose that we want to obfuscate a sequential composi-
tion of blocks. Let B1 and B2 be two blocks of code then
we have:

O(B1; B2) ≡ O(B1); O(B2)

So when applying a data obfuscation to a sequence of state-
ments (blocks) we can obfuscate each statement (block) in-
dividually and compose the results.

3.4 Simultaneous Equations
Suppose that we obfuscate S to obtain O(S) with abstrac-

tion and conversion functions af and cf for the obfuscation.
We can use Equation (4) to prove that O(S) is a correct ob-
fuscation of S by showing that the sequence of statements
cf ; O(S); af is equivalent to S. Suppose that we have an
obfuscation that transforms a variable x (say) then this proof
could take the form:

x := f(x); x = u(x); x = g(x)

where f , g and u are functions. To simplify this expression
we can substitute values of x in sequential order by rewrit-
ing the sequence of statements as a set of simultaneous equa-
tions. Each definition of a variable will have a different name
which is usually the name of the variable with a subscript
(e.g. x2) and we will use the convention that the initial value
of a variable has a subscript 0. All the uses of a variable are
renamed to correspond to the appropriate assignment.

The sequence above can be rewritten as the following set
of equations:

x1 = f(x0); x2 = u(x1); x3 = g(x2)

By substituting the values for x1 and x2 we obtain the fol-
lowing:

x1 = f(x0); x2 = u(f(x0)); x3 = g(u(f(x0)))

We can remove the assignments for x1 and x2 as they are
now redundant. So now we have x3 = g(u(f(x0)) which
corresponds to the statement x = g(u(f(x))).

This conversion from assignments to simultaneous equa-
tions is similar to converting code to SSA (Static Single As-
signment) form which is often used in conjunction with com-
piler optimisations (for example, [9] gives details about how
to compute SSA form). In SSA form, each definition of a
variable is given a different name and each use is renamed
according to the appropriate definition. When there are dif-
ferent control flow paths, a special statement called a φ (phi)
function is added. However, as we are only aiming to sim-
plify a set of simultaneous equations, we will not use the
SSA form directly. In particular, our proofs will not need
to use phi functions as we will use the results of Section 3.3
to enable us to deal with if and while separately and we
can obfuscate a sequence of statements by obfuscating the
individual statements. We will only use the SSA form as a
guide to help us to specify a set of simultaneous equations
which we can manipulate and simplify.

4. TRANSFORMATIONS
In this section, we will discuss some program transforma-

tions that are suitable as slicing obfuscations. To help us
to explain how these transformations operate we will use a
running example.

73

original() {
int c, nl = 0, nw = 0, nc = 0, in;
in = F ;
while ((c = getchar()) ! = EOF) {

nc ++;
if (c ==′ ′ ‖ c ==′ \n′ ‖ c ==′ \t′) in = F ;
else if (in == F) {in = T ; nw ++; }
if (c ==′ \n′) nl ++; }

out(nl, nw, nc); }

Figure 1: Method to calculate the number of lines,
words and characters in a piece of text (the back-
wards slice for nl in indicated by underlined points).

4.1 Word Count Example
Our running example will be the Word Count program

which takes in a block of text and outputs the number of
lines (nl), words (nw) and characters (nc) and so, for this
example, VO = {nl, nw, nc}. The method can be seen in
Figure 1. Note that we write out(nl, nw, nc) as a short-
hand for the three printf statements contained in the actual
method.

Our slicing criteria will be the output statement and one of
the three output variables. In Figure 1 the underlined points
denote the backwards slice from nl given by CodeSurfer. We
can see that the residue for nl contains program points for
nc and nw. The aim of our obfuscations will be to create
dependencies between the three output variables and so de-
crease the sizes of the residues.

Using the Word Count example we discuss several tech-
niques to reduce the size of the residues and thus decrease
the effectiveness of slicing. In Table 1 we summarise the
results of our different transformations on the Word Count
example. Each row of the table contains the results for a par-
ticular experiment where we record the size of the method,
the size of each slice (calculated using CodeSurfer), the size
of each residue and the results for our four residue metrics
from Section 2.3. The top row of the table displays the
measurements for the original Word Count method.

4.2 Adding a bogus predicate
Suppose that the residue for a variable y contains an as-

signment for another variable x. To include a statement
x = G in a slice for y we can transform it to

x = G;
if (pF) y = H(x);

where pF is a false predicate and H is an expression depend-
ing on x. As we appear to have set up that the definition
of y depends on x then the statement x = G will be in-
cluded in the slice for y. Another possibility is the following
transformation:

x = G;
S;

� x = G;
if (qT) S; else y = H(x);

(8)

where S is a statement and qT is a true predicate. To prove
that this is a correct transformation, we can go back to our
statement models from Section 3.1. We can see that with
an initial state of σ0 and an initial value x0 for x the final
state for both blocks in Equation (8) is:

S(σ0 ⊕ {x
→ G[x0/x]})

bogus() {
int c, nl = 0, nw = 0, nc = 0, in;
in = F ;
while ((c = getchar())! = EOF) {

nc ++;
if (c ==′ ′ ‖ c ==′ \n′ ‖ c ==′ \t′) in = F ;

else if (in == F) {in = T ; nw ++; }
if (c ==′ \n′) {if (nw <= nc) nl ++; }
if (nl > nc) nw = nc + nl;

else {if (nw > nc) nc = nw − nl; } }
out(nl, nw,nc); }

Figure 2: Addition of a bogus predicate (with the
backwards slice for nc).

For Word Count, we added the following bogus predicates

if (c ==′ \n′) {if (nw <= nc) nl ++; }
if (nl > nc) nw = nc + nl;

else {if (nw > nc) nc = nw − nl; }
at the end of the while loop. These predicates add depen-
dencies between the three variables and so the slice for each
variable contains the definitions for the other variables. In
Figure 2 we can see this method with the backwards slice
from nc. Since nc is incremented for every character and nw
and nl are only incremented for certain characters, we have
the following invariant

nc ≥ nw ∧ nc ≥ nl (9)

and so our predicates leave the values of the three output
variables unchanged.

In Table 1 we can see for the bogus method that we in-
crease the method size by 19% but we significantly decrease
the size of the residues and thus the slice sizes are increased.

4.3 Variable Encoding
A variable encoding [7] is a data obfuscation which trans-

forms a variable x into the expression α ∗x+β where α and
β are constants. This particular transformation is not very
useful for creating dependencies but we can adapt it so that
x is transformed to F (x, y) where y is another variable. For
example, we can take F (x, y) = α ∗ x + β ∗ y. Applying this
kind of transformation means that x will be dependent on
y.

For this data transformation, the abstraction function is

af ≡ x = (x − β ∗ y)/α

and the conversion function is

cf ≡ x = α ∗ x + β ∗ y

Note that, this obfuscation is not suitable if multiplication
can overflow and division is not exact.

For this transformation we have three rewrite rules. We
transform a use of x, say U(x), to U(x−β∗y

α
). Using Equation

(5) an assignment to x is transformed as follows:

x = E � x = α ∗ E′ + β ∗ y where E′ = E[
x − β ∗ y

α
/x]

Our obfuscated value for x depends on y; thus whenever
we have a definition of y then we will also need a definition of
x as well. Suppose that we want to transform the statement
B ≡ y = f(x) where f is a function (which could depend on
other variables including y).

74

Method M |M | |VO| Slice Size |SLint| Residue size |RESun| C(M) MinD(M) D(M) MaxD(M)
nl nw nc nl nw nc

original 32 3 11 18 10 6 21 14 22 26 81.3% 43.8% 59.4% 68.8%
bogus 38 3 30 30 30 29 8 8 8 9 23.7% 21.1% 21.1% 21.1%

encode1 35 3 11 18 28 6 24 17 7 29 82.9% 20.0% 45.7% 68.6%
encode3 42 3 34 34 32 31 8 8 10 11 26.2% 19.0% 20.6% 23.8%

loop 36 3 29 29 29 28 7 7 7 8 22.2% 19.4% 19.4% 19.4%
split 44 3 35 35 35 34 9 9 9 10 22.7% 20.5% 20.5% 20.5%
array 28 3 21 21 21 20 7 7 7 8 28.6% 25.0% 25.0% 25.0%

Table 1: Table of results for the residues of all our Word Count examples

cf ;O(B); af
≡ {definitions}

x = α ∗ x + β ∗ y;
t = x − β ∗ y;
y = f(t/α);
x = t + β ∗ y;
x = (x − β ∗ y)/α;

≡ {sim eqns}
x1 = α ∗ x0 + β ∗ y0;
t1 = x1 − β ∗ y0;
y1 = f(t1/α);
x2 = t1 + β ∗ y1;
x3 = (x2 − β ∗ y1)/α;

≡{sub x1, t1 and x2}
x1 = α ∗ x0 + β ∗ y0;
t1 = α ∗ x0;
y1 = f(x0);
x2 = α ∗ x0 + β ∗ y1;
x3 = x0;

≡ {remove x1, t1 and x2}
y1 = f(x0); x3 = x0;

≡ {sequential code}
y = f(x); x = x;

≡ {x = x ≡ skip}
y = f(x);

≡ {definition}
B

Figure 3: Proof of correctness for a variable encod-
ing

We propose that a suitable transformation is

O(B) ≡
8

<

:

t = x − β ∗ y;
y = f(t/α);
x = t + β ∗ y;

9

=

;

where t is a fresh variable. In Figure 3, Equation (4) is used
to show that:

cf ;O(B); af ≡ B

For Word Count, we will perform the following encoding:

nc � nc + nl − nw

By our rewrite rules, we can prove that, for example,

nc ++ � nc ++

nw ++ � {nw ++; nc −−; }
Before nc is output, we need to include the statement

nc = nc − nl + nw;

which is, of course, af for this transformation.
The full method for this transformation can be seen in

Figure 4 with the backwards slice for nc indicated. We can
see that we have successfully reduced the residue size for nc
from 22 to 7 but we fail to do so for the other two outputs
variables and, in fact, we increase the size of the residues.
This highlights the importance of adding obfuscations for all
of the output variables.

To create dependencies for all the variables, we can per-
form these three encodings:

nc � nc − nw nw � nw − nl nl � nl + nc

encode1() {
int c, nl = 0, nw = 0, nc = 0, in;
in = F ;
while ((c = getchar()) ! = EOF) {

nc ++;
if (c ==′ ′ ‖ c ==′ \n′ ‖ c ==′ \t′) in = F ;

else if (in == F) {in = T ; nw ++; nc −−; }
if (c ==′ \n′) {nl ++; nc ++; } }

nc = nc − nl + nw;
out(nl, nw,nc); }

Figure 4: A simple variable encoding example (with
the backwards slice for nc).

encode3() {
int c, nl = 0, nw = 0, nc = 0, in;
in = F ;
while ((c = getchar()) ! = EOF) {

nc ++; nl ++;
if (c ==′ ′ ‖ c ==′ \n′ ‖ c ==′ \t′) in = F ;

else if (in == F) {in = T ; nw ++; nc −−; nl −−; }
if (c ==′ \n′) {nl ++; nw −−; } }

int t = nl − nc;
nc = nc + nw − t;
nl = t + nc;
nw = nw + nl − nc;
nl = nl − nc;
out(nl, nw, nc); }

Figure 5: Three variable encodings applied to our
example (with the backwards slice for nw).

We apply these transformations in order starting with the
one for nc. We use the rewrite rules given earlier and before
the output statement we include the abstraction function for
each transformation. After performing these encodings, in
order, we obtain the method given in Figure 5. Note that
we have had to use a temporary variable t (which is included
in the slices) and, from Table 1, we can see that for encode3
the size has increased by 31%. However, we have reduced
the sizes of the three residues and so the metrics values have
significantly decreased.

4.4 Adding to the guard of a while loop
Since we have a while loop we can add predicates to the

guard to create dependencies. We have two choices:

while (c) S � while (c ∧ p) S
while (c) S � while (c ∨ q) S

75

loop() {
int c, nl = 0, nw = 0, nc = 0, in, j = 0;
in = F ;
while (((c = getchar()) ! = EOF) && (j >= 0)) {

nc ++;
if (c ==′ ′ ‖ c ==′ \n′ ‖ c ==′ \t′) in = F ;

else if (in == F) {in = T ; nw ++; }
if (c ==′ \n′) nl ++;

j = nc + nl − nw; }
out(nl, nw, nc); }

Figure 6: Adding a new loop variable to our example
(with backwards slice from nw)

Under what conditions are these transformations valid?
If we add p as a conjunction then when c is false then

c ∧ p will also be false. When c is true then we also want
c ∧ p to be true, i.e.

c ⇒ c ∧ p

≡ {distribution of ⇒}
(c ⇒ c) ∧ (c ⇒ p)

≡ {idempotence of ⇒}
true ∧ (c ⇒ p)

≡ {unit of ∧}
c ⇒ p

Let us consider the conditions for adding the predicate q
as a disjunction. When c is true then c ∨ q is also true but
when c is false we want c ∨ q to be false as well, i.e.

¬c ⇒ ¬(c ∨ q)

≡ {de Morgan’s Law}
¬c ⇒ (¬c ∧ ¬q)

≡ {distribution of ⇒}
(¬c ⇒ ¬c) ∧ (¬c ⇒ ¬q)

≡ {idempotence of ⇒}
true ∧ (¬c ⇒ ¬q)

≡ {unit of ∧}
¬c ⇒ ¬q

≡ {contrapositive}
q ⇒ c

For Word Count, we add a new, fresh variable j to the
loop with which we can create dependencies on the three
output variables. Let us suppose that we add the statement
j = nc+nl−nw into the loop. Before the loop, we initialise
j by adding the statement int j = 0. By our invariant,
Equation (9), we can see that the value of j is always non-
negative in the loop and so we change the loop header to

while (((c = getchar()) ! = EOF) && (j >= 0))

We then add our assignment for j into the loop. The full
method can be seen in Figure 6. From Table 1, for loop we
have only added 4 extra points to the method but the size of
the residues are all decreased (for example, a 68% decrease
for nc).

The addition of the guard does not change the while loop
(as j is always non-negative) and the extra statement for
j does not change the values of nl, nw or nc. Thus the
transformation is correct.

4.5 Variable Splitting
A variable v can be split up to two or more variables,

which we call the split components. The information con-
tained in v is split across the components and since we know
the relationship between the original variable and its com-
ponents we can create invariants based on the split compo-
nents.

Suppose that we split an integer variable v into two vari-
ables v1 and v2. Using [11], we can write the relationship
between v and the split components as

v � 〈v1, v2〉
We need three functions g (the abstraction function), f1 and
f2 (the conversion functions) such that

v1 = f1(v) v2 = f2(v) v = g(v1, v2)

which satisfy v = g(f1(v), f2(v)) and is subject to the in-
variant I(v1, v2).

A use of v, say U(v), is replaced by U(g(v1, v2)). An
assignment to v needs to be replaced by two assignments:

v = E � {v1 = f1(E
′); v2 = f2(E

′)}
where E′ = E[g(v1, v2)/v]

(10)

These transformations need to be applied exhaustively to
the whole method (or at the very least to the whole scope
of v).

As an example for Word Count, we split nc into two other
integers — one containing the least significant digit and the
other containing the rest of the digits. So we can define nc �

〈nc / 10, nc %10〉 and let a = nc / 10 and b = nc % 10 — we
have that 0 ≤ b ≤ 9 which we take to be our invariant. From
above, f1 = λi. i / 10, f2 = λi. i %10 and g = λi, j. 10∗i+j.

The first step is apply the transformation to nc. The
statement nc = 0 becomes a = 0; b = 0; and the output for
nc is now out(10 ∗ a + b). To measure the size of the slice
(and the residue) we will take backwards slice of 10 ∗ a + b
and in Table 1 the values for nc represents the values for the
slice of a and b.

By using Equation (10) we can transform S ≡ nc++ into:

a = a + ((b + 1)/10); b = (b + 1) % 10;

However an equivalent version of O(S) is:

if (b == 9) then {a = a + 1; b = 0} else {b = b + 1}
and in Figure 7 we show this is correct by using Equation
(4) to prove that S ≡ cf ;O(S); af . This transformation is
more efficient as it does not need to use % or /.

In Figure 8 we can see the method after this transforma-
tion. In the method, we have added two bogus predicates as
the variable split in isolation does not produce a very good
slicing obfuscation. The first predicate uses our invariant on
b to add in dependencies for nw and b. The other comes
after the increment for nl where we add in a dependency
on nl. From Table 1 we can see that for split we have re-
duced the residue sizes for the three output variables but
we increased the method size by 38%. This size increase is
due to the extra assignments and predicates needed for this
transformation.

76

cf ;O(S); af
≡ {af ; cf ≡ skip}

cf ; if (b == 9)
then {af ; cf ; a = a + 1; b = 0; af ; cf}
else {af ; cf ; b = b + 1; af ; cf }; af

≡ {Equation (6)}
cf ; O(if ((nc % 10) == 9)

then {cf ; a = a + 1; b = 0; af}
else {cf ; b = b + 1; af}); af

≡ {definitions and Equation (4)}
if ((nc % 10) == 9)
then {a = nc / 10; b = nc % 10; a = a + 1;

b = 0; nc = 10 ∗ a + b}
else {a = nc / 10; b = nc % 10; b = b + 1;

nc = 10 ∗ a + b}
≡ {simultaneous equations in branches}

if ((nc0 % 10) == 9)
then {a1 = nc0 / 10; b1 = nc0 % 10;

a2 = a1 + 1; b2 = 0; nc1 = 10 ∗ a2 + b2}
else {a3 = nc0 / 10; b3 = nc0 % 10;

b4 = b3 + 1; nc2 = 10 ∗ a3 + b4}
≡ {substitutions}

if ((nc0 % 10) == 9)
then {nc1 = 10 ∗ (nc0 / 10) + 10}
else {nc2 = 10 ∗ (nc0 / 10) + (nc0 % 10) + 1}

≡ {modular arithmetic}
if ((nc0 % 10) == 9) then {nc1 = nc0 + 1}

else {nc2 = nc0 + 1}
≡ {convert back to assignments}

if ((nc % 10) == 9) then {nc = nc + 1}
else {nc = nc + 1}

≡ {identical branches}
nc = nc + 1

Figure 7: Proof of correctness for the transformation
using a variable split

4.6 Arrays
So far we have only considered simple variables but what

would happen to the slicing (and the obfuscations) if we use
arrays? Suppose that we had an expression of the form:

x = f(a[0])

for some variable x and array a. If we perform a backwards
slice for x from this point then the slice for x will contain
assignments for other array indices and not just for a[0].

For Word Count, we can perform this transformation:

nl � a[0] nw � a[1] nc � a[2]

This transformation actually is just a variable renaming. If
we ensure that the array a is indexed by using only 0, 1 and
2 then the transformation is correct. In Figure 9 we can see
the result of taking backwards slice for a[0] (i.e. nl). The
results for array can be seen in Table 1 where the results for
nl, nw and nc represent a[0], a[1] and a[2] respectively. The
size of the new method is actually smaller than the original
method — this is due to the initialisation of the variables.
This simple transformation results in significantly decreasing
the residues for all three of the output variables.

Once we use arrays we can employ many different array
transformations. However, array restructuring transforma-

split(){
int c, nl = 0, nw = 0, a = 0, b = 0, in;
in = F ;
while ((c = getchar()) ! = EOF) {

if (b == 9) {a ++; b = 0; } else {b ++; }
if (c ==′ ′ ‖ c ==′ \n′ ‖ c ==′ \t′) in = F ;

else if (in == F) {
if (b < 10) {in = T ; nw ++; }
else {nw = nw + nl; b = b + nw; } }

if (c ==′ \n′) {nl ++; if (in == T) {nl = a + nl; }}
out(nl, nw,10 ∗ a + b); }

Figure 8: Variable Split (with the backwards slice
for 10 ∗ a + b).

array() {
int c, in;
int a[3] = {0, 0, 0};
in = F ;
while ((c = getchar()) ! = EOF) {

a[2] ++;

if (c ==′ ′ ‖ c ==′ \n′ ‖ c ==′ \t′) in = F ;

else if (in == F) {in = T ; a[1] ++; }
if (c ==′ \n′) a[0] ++; }

out(a[0], a[1], a[2]); }

Figure 9: Transformation of the output variables to
arrays (with the backwards slice for a[0]).

tions such as splitting and folding [7], which are often used as
array obfuscations, are not very suitable for creating depen-
dencies on other variables. Instead we should concentrate
on transforming the array index to create dependencies.

5. APPLYING THE TRANSFORMATIONS
In a previous section we outlined a number of transfor-

mations that are suitable for producing slicing obfuscations.
In this section, we discuss some of the choices that we can
make when applying our obfuscations.

5.1 Placing the transforms
When determining where to place our obfuscating trans-

forms we used the backwards slices of the program to help
us to decide — in particular, we generally concentrated on
orphaned points in the residues of the output variables. For
transformations such as encodings and splits, we need to
apply them to the whole of the method (or, at least, to the
scope of the variable). With other transformations, such as
placing bogus predicates, we have a choice in where to place
our obfuscations.

If, when slicing for a particular variable, y say, we have
an assignment x = G in the residue of y then we can add a
dependency for y by using the transformation in Equation
(8). If we have a number of assignments for x then, as we
consider backwards slices, we pick the last assignment for x.

Suppose we have the following code fragment:

x = E; S; x = F ;

where S is a block of statements in which x is used but
not defined and F is an expression which does not depend
(directly or indirectly) on x. This means that the assignment

77

x = F kills the previous definition of x and the backwards
slice for x may not contain the earlier definition for x. We
can perform the following example transformation:

x = F ; � if (pT) x = F ; else x ++;

Now the backwards slice for x should include the previous
assignment to x.

Many of the transformations that we have given relied on
the use of predicates which were a simple kind of opaque
predicate [8]. A predicate p is defined to be opaque at a
certain program point if its value is known to the obfuscator
but it is difficult for an adversary to deduce statically. The
predicates in our examples used invariants that we, as the
creator of a method, knew to be true. We should aim, where
possible, to use predicates that are hard for an attacker to
determine, or, at the very least, require some calculations to
compute this value. When deciding where to place a bogus
predicate, we should, therefore, determine what invariants
we could use and pick a place that has an invariant which
seems hard to determine.

Our loop transformation in Section 4.4 was effective in re-
ducing the sizes of the residues with only a small increase in
the method size — but obviously this transformation is only
applicable if our method contains a loop. If we can “fake” a
while loop then we can apply the loop transformations. Sup-
pose that we have a block of code B and the state before B
is σ. Then we need to find a predicate p such that p(σ) is
true but p(B(σ)) is false. Armed with such a predicate we
can perform the following transformation:

B � while (p) {B}
Thus we can now apply our loop transformations.

5.2 Program Blocks
As we saw in Section 3.3 if we have a piece of code

P ≡ B1; B2

(where B1 and B2 are blocks of code) and an obfuscation
O with conversion function cf and abstraction function af
then we have two ways to obfuscate P . Either we can ob-
fuscate B1 and B2 separately and compose the results, i.e.

O(P) ≡ {af ; B1; cf}; {af ; B2; cf}
or we can obfuscate both blocks together i.e

O(P) ≡ af ; B1; B2; cf

The two obfuscations that we obtain are equivalent but they
may look different. In particular the second derivation may
reduce the number of assignments.

For example, suppose that:

P ≡ {x = x + 1; B; x = 3 ∗ x}
where B is a block of code in which x does not occur and
cf ≡ x = x +2 and af ≡ x = x− 2. If we obfuscate the two
assignments separately then we have that

O(P) ≡ {x = x + 1; B; x = 3 ∗ x − 4}
However computing af ; P ; cf will give us the following

set of simultaneous equations:

x1 = x0 − 2; x2 = x1 + 1; B; x3 = 3 ∗ x2; x4 = x3 + 2

Reducing this set of equations (and remembering that x does
not occur in B) gives us:

B; x4 = 3 ∗ (x0 − 1) + 2

Thus O(P) ≡ {B; x = 3 ∗ x − 1}.
The two derivations produce equivalent programs but the

second program only has one assignment to x. From an
obfuscation point of view, the first program would appear to
better as it has more assignments to x and so it is (slightly)
harder to work out the value of x at the end of O(P).

Instead of completely reducing a set of simultaneous equa-
tions we can partially reduce them. For instance in the ex-
ample above, we can substitute x1 and x3 and so we would
obtain:

O(P) ≡ {x = x − 1; B; x = 3 ∗ x + 2}
We can partially reduce a set of simultaneous equations in
different ways. Thus we have some flexibility when deriving
obfuscation for a sequence of statements using a particular
conversion function.

5.3 Localising the transformations
The variable obfuscations proposed in [7] and [12] are ap-

plied to an entire program or at the very least the entire
scope of a variable. If we apply a data obfuscation to the
whole program then we need to convert any input to an
obfuscated variable using a conversion function. Any out-
puts of obfuscated variables need to have the appropriate
abstraction function applied to them.

When using conversion functions we can localise an ob-
fuscation to a particular code block. Suppose we have an
obfuscation (with functions cf and af) of a variable x and
a piece of code with three blocks A;B; C which all define or
use x. Then we can obfuscate B separately to obtain O(B)
and so our code becomes:

A; cf ; O(B); af ; C

Note that since cf ;O(B); af ≡ B then we must ensure that
we do not “reduce” this code sequence otherwise we will “de-
obfuscate” O(B).

If we had three different data obfuscations (say OA, OB

and OC with appropriate conversion functions) then we can
obfuscate the blocks A, B and C separately and sequentially
compose the results:

cfA; OA(A); afA; cfB ; OB(B); afB; cfC ; OC(C); afC

This means that we can have regions in the program in which
we can apply different obfuscations to the same variable and
so we can create a “scope” for an obfuscation. To help dis-
guise the conversions we should try to combine the expres-
sions for afA; cfB and afB; cfC .

5.4 Combining transformations
Since we are considering our obfuscations as functions we

may naturally want to compose obfuscations. For some vari-
able x, suppose that we have two obfuscations O1 and O2.
For these obfuscations, the conversion functions are cf1 ≡
x = f1(x) and cf2 ≡ x = f2(x) (with corresponding abstrac-
tion functions af1 ≡ x = g1(x) and af2 ≡ x = g2(x)). To
obfuscate a statement S by applying O1 followed by O2 we
have:

O2(O1(S)) ≡ af2; af1; S; cf1; cf2

78

This is equivalent to having a single obfuscation O1;2 with
conversion function cf1;2 ≡ x = (f2 · f1)(x) and abstraction
function af1;2 ≡ x = (g1 · g2)(x). We define O1;2 ≡ O2 · O1.

For example, we can apply a variable transformation to
array elements. So using the function λx.(2∗x+1) we could
have the following array conversion between the arrays A
and B:

cf ≡ B[i] = 2 ∗ A[i] + 1

Since i acts as a dummy variable we can write transforma-
tions which depend on i:

cf ≡ B[i] = A[i] + i

We can combine a variable transformation with array ob-
fuscations given in [13]. For instance if we had the functions
f :: Z → Z and p :: [0..n) → [0..n) (with appropriate in-
verses) then here is a possible conversion function

cf ≡ A[i] = f(A[p(i)])

in which f acts as a variable transformation and p is an
array index permutation.

Another way to combine obfuscations is to overlap their
scope. For instance suppose we have the following blocks
of code: A; B; C and we have two data obfuscations O1

applied to A; B and O2 applied to B; C. Then we have:

O1(A); O1;2(B); O2(C)

For our examples we considered up to three output vari-
ables and so sometimes it was necessary to add more than
obfuscation. For example, for encode3 (from Section 4.3) we
use three different encodings (one for each output variable).
This means that, in effect, we have created a composite ob-
fuscation. Further work is needed to study the effects of
composing obfuscations together and, in particular, does the
order in which we add obfuscations (and the order in which
we consider the output variables) matter?

6. CONCLUSIONS
The problem of providing a provable security model for

obfuscation has plagued the cryptography research commu-
nity for a long time. The security requirements for obfusca-
tion have been poorly understood and this has resulted in
the lack of credible theoretical results in obfuscation since
Barak’s landmark paper [3] in 2001. Keeping this in mind,
we take the complementary approach of addressing the prob-
lem by coming up with weaker notions of obfuscation, which,
in cryptography community, is often termed as “fuzzy secu-
rity”. Whereas the theoretical approach to defining provable
security of obfuscations has been to consider security against
“all” polynomial-time adversaries, we consider it prudent to
consider weaker classes of adversaries, and in this contribu-
tion we take the simplest case where the adversary is just a
single (a-priori known) static slicing algorithm.

We have conducted experiments in which we considered
adding existing obfuscations that were targeted to be more
resistant to slicing. We proposed a new measurement for
slicing obfuscations called a residue which consists of points
which are orphaned (i.e. left behind) by slicing. Our goal
has been to reduce the number of orphaned points. In Ta-
ble 1 we can see that, according to our residue metrics, we
have successfully created transformations to reduce the size
of residues. Further empirical evaluation results appear in

[13]. Since our metrics are related to the slicing based met-
rics from [21], our obfuscations make slicing less useful. The
results for the single variable encoding encode1 highlight the
importance of ensuring that when obfuscating we consider
the slices for all variables. We have only conducted a rela-
tively small experiment but it has shown us how to use ob-
fuscations to decrease the effectiveness of slicing. In [13] we
consider similar obfuscating transforms for different exam-
ple C programs and we find that these obfuscations make
slicing less effective. In Table 2 we present a summary of
these results. The result of Table 2 is represented graphi-
cally using a bar chart in Figure 10. This figure groups the
residue metrics for each of our example programs (12 pro-
grams grouped in 4 categories). We can see from Figure 10,
a better slicing obfuscation reduces the percentage of the
residues that are left behind after slicing.

In our experiments we only used simple transformations
to illustrate the techniques used to create slicing obfusca-
tions. Even with these simple transformation we have man-
aged to decrease the effectiveness of slicing which was our
stated goal. When faced with an attacker who is armed
with more than just a slicer we will obviously have to design
more complicated transformations. This will involve creat-
ing predicates that are harder for an attacker to understand,
using different program constructs such as pointers and deal-
ing with inter-procedural constructs. For future work, it
would be interesting to see if composing different obfusca-
tions (developed for withstanding different program analy-
sis attacks) provides more resilience in protecting a program
against combined attack models (where an adversary tries
to mount attacks using more than one tool).

We have modelled our statements as state functions and
data obfuscations as refinements and as a consequence we
have been able to easily prove the correctness of our data ob-
fuscations. For our obfuscations we have given rewrite rules
detailing how code fragments are transformed. These rules
ensure that we apply our obfuscating transforms precisely
and so we can be sure that our obfuscations are correct.
Correctness of individual transforms ensures that the obfus-
cated program is semantically equivalent to its unobfuscated
counterpart.

Our obfuscations were created manually and in Section
5 we indicated how we used slicing to determine where we
should place our obfuscating transforms. So an area for fu-
ture work is to consider automating the process of applying
obfuscating transforms but this we consider to be a hard
problem. One particular concern for automation is the de-
velopment of heuristics to decide where to place slicing ob-
fuscations in order to maximise the effects of the transforms.
Yet another interesting future work lies in the area of corre-
lating metric values to the “degree” of obfuscations so that
we can tell the extent to which a program has been obfus-
cated by just reading certain metric value and vice-versa.

7. ACKNOWLEDGEMENTS
We would like to thank the anonymous reviewers for pro-

viding us with valuable comments and ideas for integrating
in the paper. We thank them for suggesting interesting open
problems and future research directions for slicing obfusca-
tions.

We thank the New Zealand government for funding this
research through the New Economy Research Foundation
(NERF) grant titled “Securing Software for New Zealand”.

79

Method M |M | |VO| For each vi the residue size |RESi| |RESun| MinD(M) D(M) MaxD(M) C(M)

ps 21 2 prod 9 sum 9 14 42.9% 42.9% 42.9% 66.7%
psObf1 22 2 prod 6 sum 9 11 27.3% 34.1% 40.9% 50.0%
psObf2 26 2 prod 7 sum 7 9 26.9% 26.9% 26.9% 34.6%

search 107 2 n 98 secs 96 105 89.7% 90.7% 91.6% 98.1%
searchObf1 120 2 n 75 secs 109 110 62.5% 76.7% 90.8% 91.7%
searchObf2 127 2 n 78 secs 79 81 61.4% 61.8% 62.2% 63.8%

rov 124 2 fuel 101 dist 78 105 62.9% 72.2% 81.5% 84.7%
rovObf1 129 2 fuel 69 dist 83 84 53.5% 58.9% 64.3% 65.1%
rovObf2 132 2 fuel 70 dist 72 73 53.0% 53.8% 54.5% 55.3%

scatter 143 3 si 27 ru 32 i 134 135 18.9% 45.0% 93.7% 94.4%
scatterObf1 148 3 si 16 ru 16 i 16 17 10.8% 10.8% 10.8% 11.5%
scatterObf2 150 3 si 11 ru 11 i 11 12 7.3% 7.3% 7.3% 8.0%

Table 2: Table showing the residue metric values for example programs. There is a separate row in the
table for recording the residue metric values of the example programs and their obfuscated counterparts.
The row labelled ps, for example, records the slicing metric values for the unobfuscated instance of Product
Sum example; whereas, psObf1 indicates the metric values when slicing obfuscations have been applied. The
columns from |M | to |RESun| reflect measures with respect to the number of SDG nodes. The latter columns
indicate the residue metric values.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ps

ps
Ob
f1

ps
Ob
f2

se
arc
h

se
arc
hO
bf1

se
arc
hO
bf2 rov

rov
Ob
f1

rov
Ob
f2

sc
att
er

sc
att
erO
bf1

sc
att
erO
bf2

MinDensity

Density

MaxDensity

Compactness

Figure 10: Bar Chart showing residue metric values for all our example programs

80

8. REFERENCES
[1] Business Software Alliance. Second annual BSA and

IDC software piracy study, May 2005. Available from
www.bsa.org/globalstudy/upload/

2005-Global-Study-English.pdf.

[2] Paul Anderson and Tim Teitelbaum. Software
inspection using CodeSurfer. In Proceedings of the
Workshop on Inspection in Software Engineering
(WISE 2001), Paris, France, July 2001. IEEE
Computer Society.

[3] Boaz Barak, Oded Goldreich, Russell Impagliazzo,
Steven Rudich, Amit Sahai, Salil P. Vadhan, and
Ke Yang. On the (im)possibility of obfuscating
programs. In Proceedings of the 21st Annual
International Cryptology Conference on Advances in
Cryptology, pages 1–18. Springer-Verlag, 2001.

[4] David Binkley and Mark Harman. An empirical study
of predicate dependence levels and trends. In ICSE
’03: Proceedings of the 25th International Conference
on Software Engineering, pages 330–339, Washington,
DC, USA, 2003. IEEE Computer Society.

[5] David Binkley and Mark Harman. A large-scale
empirical study of forward and backward static slice
size and context sensitivity. In ICSM ’03: Proceedings
of the International Conference on Software
Maintenance, pages 44–53, Washington, DC, USA,
2003. IEEE Computer Society.

[6] Phillipe Biondi and Fabrice Desclaux. Silver needle in
the Skype. Presentation at BlackHat Europe, March
2006. Available from www.blackhat.com/html/

bh-media-archives/bh-archives-2006.html.

[7] Christian Collberg, Clark D. Thomborson, and
Douglas Low. A taxonomy of obfuscating
transformations. Technical Report 148, Department of
Computer Science, University of Auckland, July 1997.

[8] Christian Collberg, Clark D. Thomborson, and
Douglas Low. Manufacturing cheap, resilient, and
stealthy opaque constructs. In POPL ’98: Proceedings
of the 25th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 184–196,
New York, NY, USA, 1998. ACM Press.

[9] Ron Cytron, Jeanne Ferrante, Barry K. Rosen,
Mark N. Wegman, and F. Kenneth Zadeck. Efficiently
computing static single assignment form and the
control dependence graph. ACM Transactions on
Programming Languages and Systems, 13(4):451–490,
October 1991.

[10] Willem-Paul de Roever and Kai Engelhardt. Data
Refinement: Model-Oriented Proof Methods and their
Comparison. Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 1998.

[11] Stephen Drape. Obfuscation of Abstract Data-Types.
DPhil thesis, Oxford University Computing
Laboratory, 2004.

[12] Stephen Drape, Oege de Moor, and Ganesh
Sittampalam. Transforming the .NET Intermediate
Language using Path Logic Programming. In
Principles and Practice of Declarative Programming,
pages 133–144. ACM Press, 2002.

[13] Stephen Drape and Anirban Majumdar. Design and
Evaluation of Slicing Obfuscations. Technical Report
311, University of Auckland, New Zealand, June 2007.

[14] Stephen Drape, Anirban Majumdar, and Clark
Thomborson. Slicing aided design of obfuscating
transforms. In IEEE/ACIS ICIS 2007: In proceedings
of the International Computing and Information
Systems Conference (ICIS 2007), Melbourne,
Australia, 2007. IEEE Computer Society.

[15] Keith Brian Gallagher and James R. Lyle. Using
program slicing in software maintenance. IEEE
Transactions on Software Engineering, 17(8):751–761,
1991.

[16] Susan Horwitz, Thomas Reps, and David Binkley.
Interprocedural slicing using dependence graphs. ACM
Transactions on Programming Languages and Systems
(TOPLAS), 12(1):26–60, 1990.

[17] Ganeshan Jayaraman, Venkatesh Prasad Ranganath,
and John Hatcliff. Kaveri: Delivering the Indus Java
program slicer to Eclipse. In FASE, pages 269–272.
Lecture Notes In Computer Science, SpringerVerlag,
2005.

[18] Anirban Majumdar, Antoine Monsifrot, and Clark D.
Thomborson. On evaluating obfuscatory strength of
alias-based transforms using static analysis. In
ADCOM 2006: Proceedings of the 14th International
Conference on Advanced Computing and
Communication (ADCOM 2006), Mangalore, India,
2006. IEEE Computer Society.

[19] Anirban Majumdar, Clark D. Thomborson, and
Stephen Drape. A survey of control-flow obfuscations.
In Information Systems Security, Second International
Conference, ICISS 2006, Kolkata, India, pages
353–356, December 2006.

[20] Timothy M. Meyers and David Binkley. Slice-based
cohesion metrics and software intervention. In WCRE
’04: Proceedings of the 11th Working Conference on
Reverse Engineering (WCRE’04), pages 256–265,
Washington, DC, USA, 2004. IEEE Computer Society.

[21] Linda M. Ott and Jeffrey J. Thuss. Slice based metrics
for estimating cohesion. In Proceedings of the
IEEE-CS International Software Metrics Symposium,
pages 78–81, 1993.

[22] Juergen Rilling and Tuomas Klemola. Identifying
comprehension bottlenecks using program slicing and
cognitive complexity metrics. In IWPC ’03:
Proceedings of the 11th IEEE International Workshop
on Program Comprehension, pages 115–124,
Washington, DC, USA, 2003. IEEE Computer Society.

[23] Nuno Santos, Pedro Pereira, and Lúıs Moura e Silva.
A Generic DRM Framework for J2ME Applications.
In Olli Pitkänen, editor, First International Mobile
IPR Workshop: Rights Management of Information
(MobileIPR), pages 53–66. Helsinki Institute for
Information Tecnhology, August 2003.

[24] Frank Tip. A survey of program slicing techniques.
Technical Report CS-R9438, CWI (Centre for
Mathematics and Computer Science), Amsterdam,
The Netherlands, 1994.

[25] Sharath K. Udupa, Saumya K. Debray, and Matias
Madou. Deobfuscation: Reverse engineering
obfuscated code. In WCRE ’05: Proceedings of the
12th Working Conference on Reverse Engineering,
pages 45–54, Washington, DC, USA, 2005. IEEE
Computer Society.

81

