
Semantic Encryption Transformation Scheme*

Willard Thompson
Florida State University

267 Love Building
Tallahassee, FL 32306, USA

wthompso@cs.fsu.edu

Alec Yasinsac
Florida State University

262 Love Building
Tallahassee, FL 32306, USA

yasinsac@cs.fsu.edu

Todd McDonald**
Florida State University

267 Love Building
Tallahassee, FL 32306, USA

mcdonald@cs.fsu.edu

Abstract

We present a scheme to protect mobile code from
malicious hosts. We propose a transformation scheme
that changes the semantics of a program using pseudo-
random I/O scrambling, conditional elimination, and
encryption using numeric variables for changing
programs into encrypted but executable form that yields a
recoverable result. The goal of our transformation
process is to prevent an attacker from knowing the
purpose of a program in order to reduce tampering.

Keywords: semantically transform program, mobile code
protection.

1 INTRODUCTION

There are various areas of software applications that
would benefit from encrypted computations such as
mobile code, mobile agents, electronic voting,
watermarking, and hiding intellectual property. It is
difficult to protect remote computations, since they can be
visually inspected, statically analyzed and dynamically
tested by its executing environment [4, 5, 8].

The goal of this paper is to present a program
encryption transformation scheme that will minimize the
impact of Black Box and White Box analysis of a
malicious host. Our proposed program transformation
scheme will transform an original program into a
semantically different but executable program such that
the result of the transformed program is recoverable.
Thus, our aim is to prevent an adversary from knowing
the real intentions of the original program so that his
ability to tamper with it is reduced to blind disruption,
allowing greater program survivability.

The remainder of this paper is organized as follows:
We identify some important related work in section 2. In
section 3 we discuss the goals of our proposed Semantic
Encryption Transformation Scheme (SETS). In section 4,
we go over the transformation methodology, and finally,
in section 5 we conclude.

2 RELATED WORK

We briefly discuss some of the important points of
the two main thrusts of mobile code protection, mobile
cryptography and code obfuscation. Most of the related
work for protecting mobile code has been in defending
against White Box analysis that is, protecting against
identifying the actual instructions of a program. There
has also been related work for defending against Black
Box analysis, since given enough I/O pairs, the function
may be deduced without analyzing the code.

2.1 Mobile Cryptography

Sander and Tschudin [13, 14] have coined the
phrase Mobile Cryptography, which aims to provide
provable security for mobile code. They also provide a
summary on computing with encrypted functions (CEF)
[13, 14]. CEF refers to a process where a program is
transformed into a different program that protects the
original intent, yet still produces the desired result.
Currently, there are no known practical CEF schemes.

The homomorphic encryption scheme (HES) is
another form of mobile cryptography. HES provides a
mapping of data elements of one group or ring to another
unequal but congruent group or ring of data elements.
HES allows for computing with encrypted data and
ensuring privacy of the input. HES is not reasonably
practical because large numbers are required in order to
thwart an attacker from being able to brute force a
computation in any reasonable time and HES encryption
mechanisms suffer from information leakage [13, 14].

Loureiro and Molva [11] present a function hiding
technique based on error correcting codes (ECC).
Loureiro and Molva [11] make use of the McEliece public
key cryptosystem in conjunction with Goppa codes to
encrypt a function. However, the practicality of using
ECC is also limited.

Another area that is closely related to mobile
cryptography is the integration of known data encryption
mechanisms, such as AES (Advanced Encryption
Standard) and DES (Data Encryption Standard), into a
program [9, 10]. Chow, et. al. give a direction into
providing White Box protection using AES [9] and
thwarting extraction of secret keys from a program using

*This work was supported in part by the U.S. Army Research
Laboratory and U.S. Army Research Office under grant number
DAAD19-02-1-0235.
**The views expressed in this article are those of the author and
do not reflect the official policy or position of the United States
Air Force, Department of Defense, or the U.S. Government.

DES [10]. However, some of the drawbacks of their
methods are that it is not provably secure and that it
significantly degrades performance.

2.2 Code Obfuscation

Code obfuscation scrambles the syntax of a program
into some chaotic form that is actually another
representation of the same functionality [1, 2, 3, 7, 9].
The goal of obfuscation is to increase the cost for an
adversary during reverse engineering. Unfortunately,
obfuscation by itself does not provide a mathematical
basis of security, making it difficult to measure its
effectiveness [1, 2]. If only humans analyzed programs,
then obfuscation may provide enough time complexity for
security. However, the more damaging attacks are
automated [8].

Most obfuscation techniques are applied to the
decompilation phase of reverse engineering. Among the
few who focus on the disassembly phase is Linn and
Debray [3], who discuss thwarting static disassembly
algorithms. Additional work on thwarting static analysis
is that of Wang, et. al. [4], who use a compiler based
technique for obstructing static analysis of programs
using control and data flow transformations.

One of the seminal works for code obfuscation was
that of Collberg, et. al. [2], who describe control-flow
transformations with respect to resilience, stealth, potency
and cost. Collberg, et. al. describes resilience in terms of
inserting opaque predicates into code. Opaque predicates
are Boolean expressions whose values are difficult to
ascertain during automatic deobfuscation, but are known
to the obfuscator.

Ng and Cheung [12], use “intention spreading” to
strategically insert dummy code into a program. Ng and
Cheung [12] attempt to maximize entropy by
transforming a program’s original intention to a large
number of indistinguishable intentions. This inundates
the remote host with multiple, equiprobable intentions via
noisy coding, thus reducing the adversary’s ability to
correctly guess the original intention of the code.

Hohl [6] presents a time-limited Black Box
protection mechanism for mobile agents. The idea is to
construct a Black Box agent with the same functionality
of the original agent but with an obfuscated structure.
Hohl’s claim is that this obfuscated structure provides
enough time complexity to prevent an adversary from
learning the meaning of the code. Upon the expiration of
the allotted time, the agent becomes invalid.

Finally, another related work is that of Aucsmith [5],
which implements mechanisms for verifying the integrity
of operations. The main code segment is the Integrity
Verification Kernel, which provides unique installation
and can be self-modifying and self-decrypting [5].

3 SETS

We now discuss the goals of the Semantic
Encryption Transformation Scheme (SETS).

3.1 Objective

The goal of SETS is for Alice to make it difficult for
a malicious Bob to comprehend the semantics of the
program, by altering the operational semantics of the code
and by hiding the I/O relationship of the program1. An
original program p is transformed into a nonequivalent
encrypted program p′ as conceptually shown in Figure 1.
Our notion of nonequivalence between p and p′ is that
when given polynomially many distinct inputs, where the
same input is used for both p and p′, it is computationally
infeasible to find two outputs that are equal, as also
conceptually shown in Figure 1. Thus, the objective of
this paper is to address the following question:

Can Alice transform an original program p into
a secure program p′ such that when Bob has
possession of p′, he is unable to efficiently
identify the semantics of p, and the output of p′
will enable Alice to efficiently recover the
intended result?

3.2 Conceptual Model of SETS

Figure 1 reflects the SETS approach. The dotted
arrowed lines represent data flow and the solid arrowed
lines represent program transformation and data recovery.
A program is encrypted by Alice (p′ = t(p, k)), and sent to
Bob, with the result, y′ = p′(x), being returned to Alice
and decrypted (y = r(y′, k-1)). Note that the adversary only
has in his possession x, p′ and y′. His goal is the deduce p
from p′, and key k to determine how p and p′ are related.
Thus, our goal is to minimize the amount of information
of p′ that the adversary can use to deduce p or k.

I ut x

 Program p Program p′

Transformation t
Usin Key k

 Output y Output y′

Rec
Using In

Figure 1, Semantic Encry

1 By convention we let Alice
code and let Bob be the remot
code.

g

≠

np

≠

 overy r
verse Key k-1

ption Transformation Scheme.

be the originator of the mobile
e host that executes the mobile

3.3 Knowing vs. Not Knowing a Function

The concept of knowing a function is fundamental to
our notion of program encryption2. In order to measure
the security effectiveness of protecting programs we must
formally specify the conditions for program knowledge,
with respect to the transformed program p′. We formally
define knowing a function as:

Definition 1: For every distinct input each corresponding
output can be predicted in polynomial time.

In contrast to knowing a function, we define NOT
knowing a function as:

Definition 2: For every distinct input each corresponding
output can be predicted with only greater than polynomial
time.

Since these definitions represent the extreme cases,
an adversary may only need to predict a percentage of
outputs to any set of corresponding distinct inputs for p′
to obtain enough clues about the non-encrypted, original
program p. We argue that the adversary’s effectiveness
increases with more outputs that can be efficiently
predicted, as conceptually shown in Figure 2.

Figure 2, Knowing vs. Not Knowing a Function.

We now give a Black Box, program, encryption,
transformation means for which it is computationally
infeasible to determine the function given a polynomial
number of I/O pairs.

Theorem 1: If a program P: X → Y is concatenated with
a cryptographically strong data encryption algorithm E to
form another program P′: X → Y, that is P′ = P | E, such
that the data result of P is encrypted with E, then it is
computationally infeasible to determine the I/O
relationship of P′.3

Proof: The properties of strong data
encryption are multiple rounds of substitutions
and permutations in conjunction with a large
key-space, randomness, uniform distribution,

independence, and the inability to determine
the next bit after a given sequence of bits with
a probability greater than 0.5 in polynomial
time. As a result, it is computationally
infeasible to deduce the plaintext of a
corresponding ciphertext, or key in polynomial
time.

2 Since a program implements an algorithm, we use the popular
notion that an algorithm is a relationship or mapping between a
set of inputs and a set of outputs.
3 Note that Theorem 1 is exclusively in terms of Black Box
security, that is, independent from White Box security.

Any outputs produced by the execution of p′
are computationally indistinguishable, that is
they are pseudo-randomly generated. After
knowing any n I/O pairs, {(x1, p′(x1)), …, (xn-2,
p′(xn-2)), (xn-1, p′(xn-1)), (xn, p′(xn))}, when given
the next input xn+1, the corresponding output
p′(xn+1) cannot be correctly predicted in
polynomial time, other than by a random guess
or by executing the program. Moreover, by
executing the program a polynomial number of
times, the entropy of the program remains
constant, that is the probability of deducing a
pattern from any number of I/O pairs remains
negligible.

Therefore, when a program p ∈ P is
concatenated with a data encryption algorithm
e ∈ E to form a new program p′ ∈ P′, the I/O
relationship of p′ is computationally infeasible
to determine. �

Not knowing
a function

Knowing a
function

We can now formally describe our notion of an
adversary being able to deduce the semantics of the
original program. Given an algorithm A, consider an
infinite set of programs P = {p1, p2, …, p∞}, comprised of
all programs that implement algorithm A, such that each p
is syntactically distinct, i.e. no p is a copy of another, and
the corresponding infinite set of encrypted programs P′ =
{p′1, p′2, …, p′∞}, such that p′i = t(pi, k), for any i ≥ 1. An
adversary’s knowledge of A increases if and only if, given
p′i, his ability to predict y = pi(x) in polynomial time for
each distinct x, increases.

0% of the
outputs can
be predicted

100% of the
outputs can
be predictedAdversary’s

knowledge
increases

3.4 Black Box and White Box Security Levels

We describe the security strength of program
encryption in four levels, from weak (1) to strong (4).
The intuition of these levels is that White Box security is
stronger than Black Box security, and protection against
predicting encrypted results (y′) is stronger than
protection only against predicting decrypted results (y).
Note that each definition below begins with the following
common part: ‘Given an encrypted program p′i, n known
I/O (xi, y′i) pairs of p′i, and any number of subsequent
distinct inputs, {xk, xk+1, xk+2,…} where k > n, …’4

4 These definitions are independent from executing the program
or via a random guess.

3.4.1 Weak Black Box (1)

Definition 3: …an adversary cannot deduce any
corresponding decrypted output yk in polynomial time.

3.4.2 Weak White Box (2)

Definition 4: …while having access to the code of p′i and
understanding the logic of the p′i, an adversary cannot
deduce any corresponding decrypted output yk in
polynomial time.

3.4.3 Strong Black Box (3)

Definition 5: …in addition to Weak Black Box, an
adversary cannot deduce any corresponding encrypted
output y′k in polynomial time.

3.4.4 Strong White Box (4)

Definition 6: …in addition to Weak White Box, an
adversary cannot deduce any corresponding encrypted
output y′k in polynomial time.

Notice that each definition describes how much
information can be gleaned from the transformed program
p′. The goal is to achieve Weak Black Box security at a
minimum, that is, to ensure that an adversary cannot
predict the output of a program p by examining its
encrypted version p′. The other three protection levels
give us greater confidence in the transformation security.

3.5 Formal Definition of SETS

We now define SETS, as conceptually shown in
Figure 1 above. SETS is a 9-tuple (X, P, P′, T, R, K, K-1,
Y, Y′) such that:

1. X is the set of possible inputs to both programs pi ∈ P
and pi′ ∈ P′.

2. P is the set of original, non-encrypted programs.
3. P′ is the set of transformed programs derived from P.
4. TK: P → P′, is the set of program transformation

processes.
5. RK-1: Y′ → Y, is the set of output recovery processes.
6. K is the set of computation keys for transformation T.
7. K-1 is the set of inverse computation keys for the

recovery R.
8. Y is the set of final results from R.
9. Y′ is the set of intermediate results from P′.

We note that the computation keys, k and k-1, are
secret information only known to Alice. To illustrate this
notion, suppose an original program is y = x + 3 and the
transformed program is y′ = 2x – 5, then, in this case, k
would be the addition of (x – 8) to y, and k-1 would be the
recovery computation of [((y′ + 5) / 2) + 3], yielding the
originally intended result. For instance, if x = 7, the
original result would be 10 and the intermediate result
would be 2(7) – 5 = 9. Thus, Alice would compute ((9 +
5) / 2) + 3 to recover the original result, 10.

3.6 Minimum Program Encryption Characteristics

To summarize our goals and to ensure that our
transformations are usable, we require three properties for
SETS:

1. p′ cannot equal p, semantically nor syntactically.
2. p′ yields a recoverable result of p by Alice.
3. Given p′, Bob is unable to know p.

4 TRANSFORMATION METHODOLOGY

In section 2 we described other attempts to encrypt
programs. In this section, we present our proposed
transformation methodology of SETS. We aim to
construct White Box security while building on our basis
for Black Box security.

4.1 Black Box Transformation

Considering Theorem 1, producing a pseudo-random
result ensures that the adversary is unable to feasibly
deduce any I/O correlations through exclusive I/O
analysis. The result of the encrypted program undergoes
a final data encryption transformation on any of the
outputs that are returned to Alice, as conceptually shown
in Figure 3.

Encrypted
Output y1, …, yn

Figure 3, Producing a Pseudo-random Result.

4.2 White Box Transformation

We ultimately aim to disguise the operations of the
original program. When an encrypted program receives
an input the resulting output is in expanded form. In other
words, regardless of the I/O mapping of the original, non-
encrypted program, that output is expanded, and we have
a one-to-many I/O relationship as conceptually shown in
Figure 4.

pat
inp

Input x

Variable
expansion
Logical
pathways

…

…

Input

%e(8!#@
e p′ p

x

 Corresponding Outputs to x
Figure 4, Multiple Pathway Executions.

Moreover, since in an original program the logical
hway that is to be executed is dependent upon the
ut, we attempt to minimize this dependency by

implicitly requiring multiple logical pathways to be
executed in order to fulfill the requirement of multiple
results, for expanded outputs. This is also conveyed
above in Figure 4.

4.2.1 Interleaving Data Encryption

We acknowledge that an adversary could quickly
recognize the data encryption mechanism e in section 4.1
through White Box code analysis. We utilize the data
encryption property of transpositions by pseudo-randomly
permuting the expanded structures after each operation on
those structures, as conceptually described in Figure 5.

Figure 5, Transposition of Expanded Variables.

Notice, in Figure 5, before each (set of) operation(s),
the elements of y are rearranged. Since only Alice knows
which element(s) is a part of her transformation/recovery
key, she knows which element(s) to decrypt.

4.2.2 Conditional Elimination

Conditional elimination is a White Box
transformation technique that we propose. Conditional
elimination has the opposite effect of opaque predicates
[2], by reducing the number of pathways through a
program by eliminating conditions in the original
program. Conditional elimination changes the program
from single pathway executions to multiple simultaneous
pathway executions. Conditional elimination is viable if
adequate information within the Boolean expression,
making up the condition, exists in the subsequent non-
conditional operation(s) and the non-conditional
operations do not cause a conflict during execution. Lets
look at a toy example to clarify this concept:

Figure 6, Conditional Elimination Toy Example.

Figure 6 consists of pseudo-code for an original
program in the left box that gets transformed into an
encrypted program in the right box. Given that x and y
are integers, the two non-conditional statements y = x +
30 and y = x + 70 from the original program transform

into y{0} = x + 30 and y{1} = x + 70 respectfully, shown
in the encrypted program, and the if-else condition is
removed. Notice how we expanded y into array y{}. As
long as the non-conditional statements contain some
information about the condition such as the variable x,
then Alice would know which statement is the correct
one. For instance, if x = 21, we know, from the original
program, that the first non-conditional statement would be
executed resulting in y = 51. This would also be the value
of y{0} in the encrypted program, which would indicate
to Alice to use y{0} instead of y{1} as shown below for
the recovery procedure in Figure 7. Also, if y{0} = 50 (or
less), then Alice would know to use y{1}.

Figure 7, Recovery for Conditional Elimination.

y{0} = x + 30
y{1} = x + 70

4.2.3 Encryption Using Numeric Variables

Encryption using numeric variables is another White
Box transformation technique that we propose. It consists
of changing mathematical operations using numeric
variables or constants. This serves two purposes:
disguising the real computation, and allowing for an
easily reversible computation for Alice during decryption.
As it stands, the encrypted toy program in Figure 6 would
expose x + 30 and x + 70 to the adversary. Alice can
disguise those two computations by semantically
changing them. Additionally, Alice further expands the
array y{} to disguise the number of logical pathways of
the original program. Our toy program, after performing
encryption using numeric variables, is shown in Figure 8:

Fi
of
sh
y{
ev
sta
bo

5 W
br
in

Original Program
if (x > 20)
 y = x + 30
else
 y = x + 70

Encrypted Program

y{1} y{2} y{3} y{4} y{5} y{6} y{7} y{8}
Operation 1 on y

y{4} y{5} y{6} y{7} y{3} y{0} y{1} y{2}
Operation 2 on y

y{5} y{3} y{2} y{0} y{7} y{1} y{6} y{4}
Operation 3 on y

y{1} y{6} y{7} y{5} y{4} y{0} y{2} y{3}
…

if y{0} > 50
 Alice uses y{0}
else
 Alice uses y{1}

y{0} = x + 30
y{1} = x + 70

Program from Fig. 6

Figure 8, Encryption Us

For the recovery proced
gure 9 below, Alice can ra
 elements of the array as p
e keeps secret. For instance
2} and y{3} as part of
entually yield a result tha
tically trace the result of y{
x above in Figure 8. If thi

e can assign numeric constan

evity we simply use the actual
stead of variables that represen

y{0} = x + 30
y{1} = x + 70
Encrypted Program

y{0} = 19 + x
y{1} = x/40
y{2} = x + y{0}
y{3} = x - 12
y{4} = 10 ∗ x
ing Numeric Variables5.

ure, conceptually shown in
ndomly choose any number
art of her recovery key that
, Alice randomly designates
the computations that will
t Alice decrypts. We can
2} as 2x + 19 from the right
s expression evaluates to an

ts to variables, but in light of
numeric values themselves
t those constants.

encrypted output of 61 or greater, Alice knows to subtract
19, and then divide by 2. After that Alice can then simply
add 30 to get the final intended result of 51. If the result
of y{2} is less than 61, Alice can use the expression of
y{3} to decrypt the result. Since the difference of 70 and
–12, from the second line in the left box and the fourth
line in the right box in Figure 8, respectfully is 82, Alice
would add 82 to y{3} to get the final intended result.
Finally, the other elements of the array y{}, namely y{0},
y{1}, and y{4} are discarded.

Figure 9, Recovery for Numeric Variables Encryption.

Finally, considering the interleaving of the data
encryption algorithm in section 4.2.1 above, after each
(non-conditional) operation, we can permute the array
y{}, and perform conditional elimination and encryption
via numeric variables repeatedly.

5 CONCLUSION

We provide a means for a key-based transformation
that semantically changes a program while retaining the
ability to efficiently retrieve the computed result. We also
give a framework for defining program encryption and
give toy examples of how our techniques can be applied.
With this framework in place, we can consider more
comprehensive obfuscation techniques.

SETS provides a hybrid approach between Mobile
Cryptography and obfuscation by allowing for the
decryption of the intermediate result and scrambling code.
Our approach builds upon our notion of Black Box
security with the goal of achieving White Box security.
Our method provides insight into defending against
reverse engineering, deobfuscation and decompilation via
the additional step an adversary would need to take to
deduce the original program from the semantically
transformed program.

Finally, as our research evolves, the true test of our
techniques will be determined empirically, and may add
more generality to our solution.

REFERENCES

[1] B. Barak, et. al., “On the (Im)possibility of
Obfuscating Programs”, Electronic Colloguium on
Computational Complexity, Report No. 57, 2001.

[2] C. Collberg, et. al., “Manufacturing Cheap,
Resilient, and Stealthy Opaque Constructs”, In

Proc. 25th ACM Symposium on Principles of
Programming Languages, pp. 184-196, 1998.

[3] C. Linn, S, Debray, “Obfuscation of Executable
Code to Improve Resistance to Static
Disassembly”, Proceedings of the 10th ACM
Conference on Computer and Communication
Security, pp. 290 - 299, 2003.

[4] C. Wang, et. al., “Protection of Software-Based
Survivability Mechanisms”, Foundations of
Intrusion Tolerant Systems (OASIS'03), p. 273,
2003.

[5] D. Aucsmith, “Tamper Resistant Software: An
Implemenation”, Information Hiding: First
International Workshop, Cambridge, U.K., pp.
317-333, 2001.

if y{2} > 60
 Alice computes
 y{2} = (y{2} – 19)/2
 + 30
else
 Alice computes
 y{3} = y{3} + 82

y{0} = 19 + x
y{1} = x/40
y{2} = x + y{0}
y{3} = x - 12
y{4} = 10 ∗ x

[6] F. Hohl, “Time Limited Blackbox Security:
Protecting Mobile Agents from Malicious Hosts”,
LNCS, Springer Verlag, pp. 92-113, 1998.

[7] G. Wroblewski, "General Method of Program
Code Obfuscation", PhD Dissertation, Wroclaw
University of Technology, Institute of Engineering
Cybernetics, 2002.

[8] J. Vitek, G. Castagna, “Mobile Computations and
Hostile Hosts”, Journ'ees Francophones des
Langages Applicatifs JFLA99, pp. 113-132, 1999.

[9] S. Chow, et. al., “White-Box Cryptography and an
AES Implementation”, LCNS, 9th Annual
Workshop on Selected Areas in Cryptography, pp.
250-270, 2002.

[10] S. Chow, et. al., “A White-Box DES
Implementation for DRM Applications”, ACM
CCS-9 Workshop DRM 2002 – 2nd ACM
Workshop on Digital Rights Management,
Springer-Verlag LNCS, pp.1-15, 2002.

[11] S. Loureiro and R. Molva, “Function Hiding Based
on Error Correcting Codes”, Proceedings of the
International Workshop on Cryptographic
Techniques and Electronic Commerce, 1999.

[12] S. Ng, K. Cheung, “Protecting Mobile Agents
Against Malicious Hosts by Intention Spreading”,
International Conference on Parallel and
Distributed Processing Techniques and
Applications (PDPTA '99), pp. 725-729, 1999.

[13] T. Sander, C. Tschudin, “On Software Protection
Via Function Hiding”, Lecture Notes in Computer
Science, Volume 1525, pp. 111-123, 1998.

[14] T. Sander, C. Tschudin, “Protecting Mobile Agents
Against Malicious Hosts”, Lecture Notes in
Computer Science, Volume 1419, 1997.

	REFERENCES

