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Abstract. Software protection is an area of active research in which
a variety of techniques have been developed to address the issue. Ex-
amples of such techniques are software watermarking, code obfuscation,
and tamper detection. In this paper we present a novel dynamic software
watermarking algorithm which incorporates ideas from code obfuscation
and tamper detection. Our technique simultaneously provides proof of
ownership and the capability to trace the source of the illegal redistri-
bution. It additionally provides a solution for distributing pre-packaged,
fingerprinted software which is linked to the consumer. Our technique is
specific to programs compiled for the x86 Intel architecture, however, we
have proposed an extension for use on Java bytecode.

1 Introduction

The problem of protecting software from illegal copying and redistribution has
been the focus of considerable research motivated by billions of dollars in lost
revenue each year [1]. The growing concern regarding software piracy can be
attributed to a variety of factors such as the distribution of software in architec-
tural neutral formats and the ease of sharing over the Internet. In previous years
piracy was limited by the necessity to physically transfer a piece of software on
a floppy disc or CD-ROM. With the increases in bandwidth, physical transfer is
no longer necessary.

In the unfortunate event that software is illegally redistributed or an impor-
tant algorithmic secret is stolen, an owner would like to be able to take action
against the theft. This requires demonstration of ownership and/or identification
of the source of the illegal redistribution. A technique which enables such action
is software watermarking.

Software watermarking is used to embed a unique identifier in a piece of soft-
ware in order to encode identifying information. While this technique does not
prevent piracy, it does provide a way to prove ownership of pirated software. In
some cases it is even possible to identify the original purchaser. However, for soft-
ware watermarking to be useful it must be resilient against a variety of attacks,
e.g. semantics-preserving code transformations and program analysis tools.

In this paper we propose a novel dynamic software watermarking algorithm,
branch-based watermarking, which incorporates ideas from code obfuscation (to
aid in preventing reverse engineering) and software tamper detection (to thwart
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attacks such as the application of semantics-preserving transformations). The
heart of the algorithm is centered around redirecting branch instructions to a
specifically constructed fingerprint branch function. This function is responsible
for computing the program’s fingerprint and regulating execution. Through the
use of this function automated attacks will result in non-functional software.

The branch-based software watermarking algorithm makes several improve-
ments over previously proposed techniques:

1. Simultaneously provides proof of authorship and the ability to trace the
source of the illegal distribution.

2. Demonstrates a significantly higher level of resilience to attack without sig-
nificant overhead.

3. Provides a means for distributing pre-packaged, fingerprinted software which
is linked to the consumer.

2 Software Watermarking

Software watermarking takes the approach of discouraging piracy through a
program transformation which embeds a message (the “watermark”) into the
program. The most basic software watermarking system consists of two func-
tions: embed(P, w, k) → P ′ and recognize(P ′, k) → w. Using the secret key k,
the embed-function incorporates the watermark w into a program P , yielding a
new program P ′. The recognize-function uses the same key k to extract the
watermark from a suspected pirated copy.

Each software watermarking algorithm is categorized based on a set of char-
acteristics. These include whether the code is analyzed as a static or dynamic
object, the type of recognizer used, the embedding technique, and the type of
mark embedded.

Static/Dynamic. Strictly static watermarking algorithms only use features
available at compile-time for embedding and recognition. On the other hand,
strictly dynamic watermarking algorithms use information gathered during
the execution of the program. Abstract watermarking algorithms are neither
strictly static or dynamic. Instead, such techniques are static in that recogni-
tion does not require execution of the program. However, they are dynamic
since the watermark is hidden in the semantics of the program.

Recognition Type. A watermark recognizer is categorized based on the in-
formation needed to identify the watermark. Both blind and informed wa-
termarking algorithms require the watermarked program and the secret key
to extract the watermark. An informed technique additionally requires an
unwatermarked version of the program and/or the embedded mark.

Embedding Technique. To incorporate a watermark, a program has to be
manipulated through semantics-preserving transformations. Such transfor-
mations can be categorized as follows:
– Reorder or rename code sections.
– Insert new (non-functional and/or never executed) code .
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– Manipulate the program’s statistical properties such as instruction fre-
quencies.

Mark Type. An authorship mark (AM) is a watermark in which the same mark
is embedded in every copy of the program. An AM is used to identify the
author and is in essence a copyright notice. On the other hand, a fingerprint
mark (FM) is unique for each copy distributed and is normally used to
identify the purchaser. Through the use of a FM it is possible to identify the
source of an illegal distribution.

Previous watermarking algorithms use one of the above embedding tech-
niques. In this paper we introduce a new embedding technique in which a section
of code is added to the program. The new code both calculates the fingerprint
as the program executes and directs program execution.

3 Related Work

A variety of software watermarking algorithms have been proposed. Due to the
relative ease of static watermarking there are far more static than dynamic
algorithms. A few examples of static watermarking algorithms are those proposed
by Venkatesan et al. [2], Stern et al. [3], and Qu and Potkonjak [4]. Venkatesan
et al. embed the watermark through an extension to a method’s control flow
graph. The watermark is encoded in a subgraph which is incorporated into the
original graph. Stern et al. modify the instruction frequencies of the original
program to embed the watermark. Qu and Potkonjak proposed a very stealthy,
but fragile, algorithm which makes use of the graph coloring problem to embed
the watermark in the register allocation of the method. In each of these cases, as
well as all other static watermarking algorithms, the watermark can be destroyed
by basic code optimization or obfuscation techniques.

The first dynamic software watermarking algorithm was proposed by Coll-
berg and Thomborson [5]. This technique embeds the watermark in the structure
of a graph, built on the heap at runtime, as the program executes on a particular
input. A second dynamic technique proposed by Collberg et al. [6] is path-based
and relies on the dynamic branching behavior of the program. To embed the wa-
termark the sequence of branches taken and not taken on a particular input is
modified. Two variations for this algorithm were developed to target the varied
capabilities of Java bytecode and native executables. A final dynamic technique
was developed by Nagra and Thomborson [7]. This technique leverages the abil-
ity to execute blocks of code on different threads. The watermark is encoded
in the choice of blocks executed on the same thread. Cousot and Cousot [8]
developed an abstract watermarking algorithm. The technique uses an abstract
interpretation framework to embed a watermark in the values assigned to integer
local variables during program execution.

4 Branch Based Software Watermarking

The heart of the branch-based software watermarking algorithm is centered
around the use of a branch function specifically designed to generate the pro-
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gram’s fingerprint as the program executes. If the branch function is properly
designed the branch-based algorithm can simultaneously embed authorship and
fingerprint marks. Additionally, tamper detection can be incorporated. In the fol-
lowing algorithm description we will provide an example as to how these three
features can be incorporated in a single branch function.

The embed function for the branch-based algorithm deviates from the stan-
dard definition in that it has four inputs and two outputs.

embed(P, AM, keyAM , keyFM) → P ′, FM

Using the two secret keys, keyAM and keyFM , the embed function incor-
porates the authorship mark AM and the fingerprint generating code into the
program P , yielding a new program P ′ and the fingerprint mark FM . Since the
algorithm can simultaneously embed an authorship and a fingerprint mark, two
secret keys are required. This is in contrast to the usual single key. keyAM is tied
to the authorship mark and is the same for every copy of the program. keyFM

is required for the fingerprint mark and should be unique for each copy. A fin-
gerprint mark for a particular instance of a program is based on the fingerprint
key and the program execution. Thus, the actual fingerprint mark is generated
during embedding and is an output of the embed function.

Similarly, the recognize function is non-standard with three inputs and two
outputs.

recognize(P ′, keyAM , keyFM) → AM, FM

Because the branch-based watermarker uses a blind recognizer, AM and FM can
be obtained from the watermarked program by providing only the two secret
keys.

Additionally, the branch-based watermarker is classified as dynamic, thus
one of the secret keys, keyAM , is actually an input sequence to the program.
By executing the program with the secret input, a trace consisting of a set of
functions F is identified. The set F consists of those functions which will partici-
pate in the fingerprint calculation. During watermark recovery, if the program is
executed with the input sequence, the same set of functions used for embedding
will be executed. This will make it possible to identify both AM and FM.

4.1 Fingerprint Branch Function

A branch function is a special function originally proposed as part of an obfusca-
tion technique used to disrupt static disassembly of native executables [9]. It was
also used by Collberg et al. [6] in watermarking native executables, however, it
was used in a manner different than in our branch-based watermark. The original
obfuscation technique converted unconditional branch instructions to a call to a
branch function inserted in the program. The sole purpose of a branch function
is to transfer the control of execution to the instruction which was the target
of the unconditional branch. Figure 1 illustrates the general idea of the branch
function. To increase the versatility of the branch function we have devised an
extension which makes it possible to convert conditional branches as well.
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j1: jump t1
· · ·
j2: call t2
· · ·
j3: jump t3

⇒
j1: call b →
· · ·
j2: call b →
· · ·
j3: call b →

branch
function b

→ t1
→ t2
→ t3

Fig. 1. Unconditional branch instructions are converted to calls to a branch function.
The branch function transfers execution to the original branch target.

The FM for a program is generated as the program executes through the
use of a specifically designed branch function. We call this branch function a
fingerprint branch function (FBF). The original branch function was designed
simply to transfer execution control to the branch target. In addition to the
transfer of control, the FBF is also responsible for evolving a key. Each time the
FBF is called a new key, ki, is calculated. ki is then used to aid in identifying
the original branch target. The FBF performs the following tasks:

– An integrity check which produces the value vi.
– Generation of the next function key, ki, through the use of a one-way func-

tion, the integrity check value, and the previous key; ki = g(ki−1, vi).
– ki is used to eventually transfer execution to the original branch target.

Within the FBF, an authorship mark and tamper detection can be incorpo-
rated. From a legal perspective, to prove ownership, it is not sufficient to simply
recover a mark from a program. It is also necessary to show the watermark was
intentionally embedded, i.e. recognition is not by chance. Choosing AM such
that AM = pq where p and q are two large primes is one possible example of
a strong watermark. Since factoring is a hard problem, only the person who
embedded such a watermark would be able to identify the factors p and q. To
embed such an authorship mark in the FBF, the AM is encoded in the one-way
function used to generate the next function key. A possible example is:

ki = SHA1[(ki−1 ⊕ AM) ‖ vi]

Through the incorporation of an integrity check the FBF can detect tam-
pering throughout the entire program. An integrity check is a section of code
inserted in the program to verify the integrity of the program. The integrity
checks are capable of identifying if a program has been subjected to semantics-
preserving transformations or even if a debugger is present. For example, an
integrity check could calculate a checksum over a block of code. If an attacker
inserts breakpoints or makes some other modification to the code, the check-
sum will be different. We have developed a variety of different types of integrity
checks. The integrity check will produce some value vi which is then used as an
additional input to the one-way function responsible for the key generation.

4.2 Embedding

The embedding of the authorship and fingerprint marks occur by injecting the
FBF into the program. Selected branch instructions are then converted to calls
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to the FBF. The embedding process consists of three phases. The first phase
is to execute the program using the secret input sequence, keyAM , to obtain
a trace of the program. The trace will identify the set of functions F through
which execution passes. These functions will be used in the watermarking.

In the second phase of the algorithm, the branches in each function f ∈ F
are replaced by calls to the FBF. Additionally, a mapping is created between
the calculated key and the replaced branch instruction. The key, branch map-
ping is used in phase three to construct a structure, such as a table or array,
which is added to the program. The structure is accessed during execution to
obtain information relating to the replaced branch instruction. This information
is necessary for proper program execution. Key evolution is linked to proper
program execution through the organization of the structure. Using a perfect
hash function, each key is mapped to a unique location in the structure.

h : {ki, k2, ..., kn} → {1, 2, ..., m}, n ≤ m

If a minimal perfect hash function is used the table size can be minimized.
Unlike the authorship mark, the fingerprint mark is not embedded in the

program. Instead it is generated as the program is executed. Each function in
the set F , obtained by executing the program with the secret input sequence, will
produce a final function key. Each of these keys are combined in a commutative
way to produce the fingerprint mark for the program. The variation in FM is
obtained through the fingerprint key, keyFM , which is unique for each copy of the
program. keyFM is used to begin the key evolution process in each fingerprinted
function. Based on the unique key, the fingerprint for each program will evolve
differently. Since the key is used to access the inserted structure, each program
will contain a differently organized structure.

4.3 Recognition

As with embedding, the first step in recognizing the embedded marks is to ex-
ecute the program using the secret input sequence. Execution will identify the
set of functions F which have been fingerprinted, as well as the FBF itself. Once
the FBF has been identified, the one-way function can be isolated to extract
AM. To extract FM we have to access the location where the final function key
is stored for each f ∈ F while the program is executing. The final function keys
are combined to form the FM.

4.4 Highlighted Features

The branch-based watermarking algorithm includes two features which should
be highlighted. First, because the inserted structure is customized to a particular
fingerprint generation, the program will only execute with the specific user key.
This has the desired effect of the use of a dongle, but without the drawback of
dongle distribution. In addition, the fingerprint key does not have to be stored
in the program, but instead could be distributed with the program and required
every time the program is executed. It is currently a concern that an attacker
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could obtain the initial key and use that information in an attack. One possible
solution is to leverage features of secure computing devices such as the Trusted
Platform Module (TPM) available in the IBM ThinkPad laptop.

The second feature relates to the static variation between differently fin-
gerprinted instances of a program. Because the static variation occurs only in
the inserted structure, a higher level of resistance to collusive attacks can be
achieved. This advantage will be further discussed in Section 6.1. Additionally,
this feature can be used to enable software companies to produce and distribute
fingerprinted software in the traditional manner. The program purchased would
be non-functional until the user installs the software and registers it with the
company. Upon registration, the user key and structure will be distributed creat-
ing a fully functioning program. Previously, if a software company wanted to tie a
specific fingerprint mark to a purchaser, the user had to purchase the software di-
rectly from the company. At the time of purchase the program was fingerprinted.
By using the branch-based watermark, distribution of fingerprinted software can
be accomplished through pre-packaged software sold at retail stores. Installation
of a fully functioning copy does require an initial Internet connection, however,
this does not appear to be a drawback since most software now requires an initial
registration.

5 Native Code Implementation

Our implementation of the branch-based watermarking algorithm for native code
is accomplished by disassembling a statically linked binary, modifying the in-
structions, and then rewriting the instructions to a new executable file. The cur-
rent prototype is designed to watermark Windows executable files. It provides
the capability to embed an authorship mark, a fingerprint mark, and tamper
detection.

As was described in Section 4.2, the embedding procedure is accomplished
in three phases. In the first phase, an execution trace of the program is ob-
tained based on the secret input sequence. Currently, identification of the set
of functions used in watermarking requires manual monitoring. The program is
preprocessed and a break point is inserted at the beginning of each function.
As the program is executed using a debugger, information about each function
encountered is recorded in a file.

During the second phase, instructions in each of the selected functions are
modified. Special care must be taken in selecting which branch instructions are
converted since the branch is tied to a particular key value. To ensure proper
program behavior, branches are selected such that they reside on a determinis-
tic path through the function. Without imposing this constraint, irregular key
evolution will occur, resulting in the transfer of execution to an incorrect in-
struction. For each branch replaced, a mapping between the calculated key and
the branch, target displacement is maintained.

θ = {k1 → d1, k2 → d2, · · · , kn → dn}
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θ is used in phase three to construct a table T which is stored in the data
section of the binary. The table is used to store the branch, target displacement
for each branch in the program which has been replaced. The first step in laying
out the table is to construct a hash function such that each key maps to a unique
slot in the table.

h = {k1, k2, · · · , kn} → {1, 2, · · · , n}

The displacements are stored in the table such that T [h(ki)] = di.
The fingerprint branch function is a new function inserted in the program

during embedding. The inserted FBF performs the following tasks:

– An integrity check which produces the value vi.
– Generation of the next function key, ki, through the use of a one-way func-

tion, the integrity check value, and the previous key; ki = g(ki−1, vi).
– Identification of the displacement to the next instruction via di = T [h(ki)],

where T is a table stored in the data section and h is a hash function.
– Computation of the return location by adding the displacement di to the

return address.

5.1 Strength Enhancing Features

Two additional features can be incorporated in the branch-based watermarking
algorithm to increase the strength: integrity check branch functions and addi-
tional indirection. Each of these increases the amount of analysis required to
remove the authorship and fingerprint marks.

Integrity check branch functions (ICBF) are based on the same principle as
the FBF. The ICBFs are called by replaced branch instructions not used in the
fingerprint generation, i.e. branches not on a deterministic path or branches in
a function which is not part of the secret input. The important feature of the
ICBFs is that each performs a different type of integrity check. This makes it
possible to establish a check and guard system similar to that proposed by Chang
and Atallah [10]. For instance the ICBFs could be used to verify that the FBF
or other integrity checks have not been altered or removed.

Within the ICBFs, the integrity check value, vi, and the branch instruction
offset are used as inputs to generate a key for displacement look up. The dis-
placements for the ICBFs are stored in the same table used by the FBF. The
one-way function used to generate the key in the ICBF could be the same as
that used by the FBF. If so, the authorship mark would appear in multiple
locations throughout the program. If instead, different one-way functions are
used, additional authorship marks could be embedded in the program, further
strengthening the proof of ownership.

The second strength enhancing feature is to increase the level of indirection.
Additional levels of indirection increase confusion and require more extensive
analysis for an attacker. Further indirection can be incorporated in the branch-
based watermarking algorithm by rerouting all calls to the ICBFs and the FBF
through a single super branch function which transfers execution to the proper
branch function.
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6 Experimental Results

In this section we provide an evaluation of the branch-based watermarking
scheme with respect to its robustness against attack and the overhead incurred.
We have created a prototype implementation for watermarking Windows exe-
cutable files. The current prototype only provides watermarking capabilities and
does not include any of the strength enhancing features.

The evaluation was performed using the SPECint-2000 benchmark suite ap-
plications. We were unable to use eon and perlbmk because they would not build.
Our experiments were run on a 1.8 GHz Pentium 4 System with 512 MB of main
memory running Windows XP Professional. The programs were compiled using
Microsoft’s VisualStudio C++ 6.0 with optimizations disabled.

6.1 Resilience

We examined four categories of attacks to evaluate the robustness of the branch-
based watermarking algorithm.

Additive Attack. In an additive attack an adversary embeds an additional
watermark so as to cast doubt on the origin of the intellectual property. An
attacker is successful even if the original mark remains intact, however, it is more
desirable to damage the original mark. For an additive attack to be successful
the program has to continue to function properly after the embedding of the
second watermark. To simulate an additive attack we double watermarked the
benchmark applications using the branch-based watermarking algorithm. In each
case the result was an improperly functioning application. The double watermark
attack fails because the integrity check detects the program alteration. A simple
checksum integrity check will detect that a call to FBF1 is now a call to FBF2 or
that FBF2 has been added to the program. So the attack is detected when FBF2
transfers execution control to FBF1. We believe that a similar result would be
obtained if any of the currently known watermarking algorithms were used as
the second watermark, however, this hypothesis is untested.

Distortive Attack. In a distortive attack, a series of semantics-preserving
transformations are applied to the program in an attempt to render the wa-
termark useless. It is the goal of the attacker to distort the software in such a
way that the watermark becomes unrecoverable, yet the program’s functionality
and performance remain intact. To verify our hypothesis that the branch-based
watermarking algorithm would be resistant to distortive attacks we subjected
the benchmark applications to five different obfuscations:

1. Conversion of unconditional jumps to conditional jumps through the use of
opaque predicates.

2. Conversion of unconditional jumps to calls to a branch function [9].
3. Conversion of function calls to calls to a branch function [9].
4. Basic block reordering.
5. Merging of two functions into 1 function whose control flow is regulated

through opaque predicates.
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In each case the resulting application was non-functional because the integrity
checks detected the modification.

Collusive Attack. The most crucial attack on a fingerprinted application is
the collusive attack. This occurs when an adversary obtains multiple differently
fingerprinted instances of a program and is able to compare them to isolate the
fingerprint. With previous watermarking algorithms, prevention of a collusive
attack is often addressed through the use of code obfuscation. The general idea
is to apply different sets of obfuscations to the fingerprinted programs. This
will make the programs differ everywhere. This is a viable option to thwart a
collusive attack, however, it may not always be feasible due to the size and/or
performance overhead incurred through obfuscation.

The branch-based watermarking scheme is resistant to the collusive attack
without the use of obfuscation. The only difference between two fingerprinted
programs is the order of the values in the table. Thus, an attacker would have
to examine the data section in order to even notice a difference.

The algorithm is still susceptible to dynamic collusive attacks, but some
of those attacks can be warded off through the use of integrity checks which
recognize the use of a debugger and cause the program to fail. In a dynamic
attack, the only difference the adversary might notice is the value of the key
that is generated at each stage, which will ultimately yield a different table
slot. In order for an adversary to launch a successful collusive attack, extensive
manual analysis in the form of a subtractive attack will be required to remove
the fingerprint.

Subtractive Attack. In a subtractive attack, the attacker attempts to remove
the watermark from the disassembled or decompiled code. If the watermark
has poor transparency, an attacker may be able to discover the location of the
watermark after manual or automated code inspection and then remove it from
the program without destroying the software. Baring the use of a completely
secure computing device, guaranteed protection against subtractive attacks is
not possible. All that we can hope is that the analysis required to remove the
watermark is extensive enough that an attacker finds it too costly.

The robustness against reverse engineering is partially based on the num-
ber of converted branches which contribute to the fingerprint calculation. Since
the algorithm requires the branches to be on a deterministic path, the number
of usable branches is being limited. During preliminary development there was
question if there would be enough branches on the deterministic path to make
the technique a viable option. Through analysis of a variety of different applica-
tions, we found a satisfactory number of conditional and unconditional branch
instructions. Table 1 shows the total number of branches and the number of
usable branches in the SPECint-2000 benchmark applications. By additionally
using conditional branches we are able to significantly increase the number of
usable branches. This makes the algorithm a viable option. Additionally, the
data indicates that even after embedding the watermark, many branches are
still available for use in the integrity check branch functions.
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Table 1. Total number of branches versus the number of usable branches in the
SPECint-2000 benchmark suite applications

Program Total Branches Usable including Usable excluding
conditionals conditionals

gzip 2843 464 170
vpr 5814 1153 674
gcc 28136 4886 3056
mcf 2028 290 89
crafty 3340 496 178
parser 5628 864 522
gap 18999 1942 1027
vortex 16144 3462 1049
bzip2 2354 457 211
twolf 4397 729 429

From our analysis, we believe that if the strength enhancing features are
incorporated into the algorithm the removal of the code which generates the
fingerprint will be prohibitively difficult. If the attacker is able to identify which
sections of code are generating the fingerprint, he will have to manually analyze
the program to identify the call instructions which are converted branch instruc-
tions. He will then have to identify the correct target instruction and replace the
call with the correct branch and displacement. If the adversary only converts
those branches responsible for the fingerprint generation and does not also con-
vert the other branches, the program will fail to execute properly. This is because
the integrity check branch functions are designed as a check and guard system.
One of their duties is to verify that the fingerprint generating branch function
has not been altered or removed. Thus, removal of the fingerprint branch func-
tion also requires removal of the integrity check branch functions. While this is
not entirely impossible, the manual analysis required to accomplish such a task
is extensive.

6.2 Cost

To evaluate the cost we used the SPECint-2000 benchmark suite. The overall
performance of the watermarked program was evaluated using the SPEC refer-
ence inputs. The execution times reported were obtained through five runs. The
highest and lowest values were discarded and the average was computed for the
remaining three runs.

As can be seen in Table 2 very little performance overhead is incurred by
the additional calls and integrity checks. The unwatermarked benchmark appli-
cation gcc did not execute properly on the reference inputs so we were unable to
obtain performance information suitable for comparison with the other results.
However, when run using the test data no significant slowdown was observed.

The majority of the space cost incurred by the branch-based watermark is
based on the size of the fingerprint branch function and the displacement ta-
ble. Since the fingerprint is generated as the program executes, the size of the
fingerprint does not impact the size of the watermarked program. Additionally,
any difference between the converted branch and the call instruction sizes will
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Table 2. Effect of watermarking on execution time

Execution Time (sec)
Program Branches Original Watermarked Slowdown

Used (T0) (T1) (T1/T0)
gzip 79 435.52 435.52 1.00
vpr 405 479.12 480.62 1.00
mcf 24 563.07 562.55 1.00
crafty 94 326.96 326.40 1.00
parser 239 519.31 588.34 1.13
gap 742 292.20 292.01 1.00
vortex 477 316.22 316.66 1.00
bzip2 135 743.18 739.82 0.99
twolf 233 912.43 922.84 1.01

Table 3. Effect of watermarking on program size

Program Size (KB)
Program Branches Original Watermarked Increase

Used (S0) (S1) (S1/S0)
gzip 79 100 104 1.04
vpr 405 212 252 1.19
gcc 2124 1608 2604 1.62
mcf 24 64 68 1.06
crafty 94 316 320 1.01
parser 239 184 188 1.02
gap 742 660 780 1.18
vortex 477 608 660 1.09
bzip2 135 88 96 1.09
twolf 233 316 332 1.05

contribute to the size of the watermarked application. Table 3 shows the effect
watermarking had on the size of the benchmark applications. For most of the ap-
plications the size increase was minimal. gcc was most significantly impacted but
it was also the application in which the greatest number of branches were con-
verted. A technique to minimize the size impact is to use a minimal perfect hash
function in assigning the slots in the displacement table. Our implementation
did not use such a hash function, thus the results could be improved.

7 Extension to Java Bytecode

Due to restrictions placed on the Java language, a straight forward implemen-
tation of the previously described watermarking algorithm is not possible. The
most limiting aspect is the difficulty in modifying the program counter register
which would be analogous to the return address modification in native code.
This makes it impossible to implement the branch function as it is described.
However, we have devised a technique for watermarking Java applications which
maintains the essence of the idea through the use of the Java interface and
explicitly thrown exceptions.

The Java implementation diverges from the native code version in the second
phase of the embedding. The Java FBF (JFBF) uses a completely different mech-
anism for transferring execution control to the branch target. The JFBF makes
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use of an interface A which gets added to the application during embedding.
Additionally, n classes A1, A2, ..., An are added which each implement the
interface A. The interface A defines a method branch which is then implemented
by each of the n subclasses. The main purpose of branch is to explicitly throw
an exception. Within each of the n subclasses, branch will throw a different
exception. Once the exception is thrown, it will be propagated up to the method
which invoked JFBF. When this occurs the invoking method will find the excep-
tion in its exception table and transfer control to the instruction specified. This
instruction is the target of the converted branch.

In the second phase, certain branch instructions along the deterministic path
are replaced by instructions which invoke the fingerprint branch function. In
the native code version we were able to replace jmp, jcc, and call instructions.
With the Java version we are only able to replace goto and conditional branches.
We are unable to replace invoke instructions because of the restrictions placed
on the exception table entries. The target listed in the exception table must be
an instruction within the method.

As the branch instructions are modified, two mappings are maintained. The
first mapping φ, maps the branch target to the exception type which will be used
in transferring execution control to the target instruction. The second mapping
θ, maps the current key ki to that same exception type.

θ = {k1 → e1, k2 → e2, ..., kn → en}

φ is used to modify the method’s exception table. For each target a new
exception table entry is added. One key aspect of the Java branch-based wa-
termarker is that for each converted branch, n entries must be added to the
exception table. One of the entries is the correct target and n − 1 are decoys.
If the decoy exception entries are omitted, the branch, target pairs become ob-
vious. Prior to execution, a Java application must pass the verification process.
Verification involves checking that the class file and the bytecode meet certain
constraints. Examples of the constraints include checking for consistent stack
height or that local variables have been initialized. During verification, an ex-
ception edge is considered a possible execution path. Thus the targets of the
decoy exceptions must be chosen such that the bytecode will still pass the Java
verifier.

θ is used during phase three. In the Java version, an array is used to store
objects instead of a displacement table. The array T stores objects which are
subclasses of A, so a combination of objects A1, A2, ..., An. The array is
constructed again using a hash function which uniquely maps each key to a slot
in the array. The objects are stored such that T [h(ki)] = Aj , where Aj ’s branch
method throws the exception ei.

To regulate execution control and generate the fingerprint the JFBF performs
the following tasks:

– An integrity check producing vi.
– Generation of the next method key, ki, through the use of a one-way function;

ki = g(ki−1, vi).
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– Object look up through the use of an array, the key, and a hash function,
A a = T [h(ki)].

– Call the method branch using the object a, a.branch().

Currently, we only have a preliminary implementation of the branch-based
software watermarking algorithm for Java bytecode. Because the implementation
only includes minimal functionality we have yet to perform a thorough experi-
mental evaluation. As our future work we plan to carry out such an evaluation.

8 Conclusion

In this paper we described a novel approach to software watermarking, branch-
based watermarking, which incorporates ideas from code obfuscation and tamper
detection to increase robustness against determined attempts at discovery and
removal. Our technique simultaneously provides proof of ownership and the capa-
bility to trace the source of the illegal redistribution. This is an improvement over
previous techniques which required the developer to choose between embedding
an authorship mark or a fingerprint mark. Additionally, the branch-based water-
marker provides a solution for distributing pre-packaged, fingerprinted software
which is uniquely linked to the purchaser.

The branch-based watermark prototype demonstrates that the technique can
successfully thwart both additive and distortive attacks. The technique also
demonstrates a higher level of resistance to subtractive and collusive attacks.
Previous fingerprinting techniques addressed the prevention of collusive attacks
through the use of code obfuscation which introduces additional overhead. The
only static variation introduced by the branch-based watermark is in the table.
This makes it more highly resilient to collusive attacks even without the use
of obfuscation. Additionally, the overhead associated with the technique is quite
minimal and should be tolerable for most applications. By eliminating automated
attacks, such as semantics-preserving transformations, and many of the common
manual attacks, attackers are forced to use more complex and costly techniques.
Thus, attackers who lack the necessary skill or find the required attacks to be
too expensive will be eliminated.
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