
Program Obfuscation Scheme Using
Random Numbers to Complicate Control Flow

Tatsuya Toyofuku1, Toshihiro Tabata2, and Kouichi Sakurai3

1 Graduate School of Information Science and Electrical Engineering,
Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, Japan 812-8581

toyofuku@itslab.csce.kyushu-u.ac.jp
2 Graduate School of Natural Science and Technology,

Okayama University, 3-1-1 Tsushima-naka, Okayama, Japan 700-8530
tabata@it.okayama-u.ac.jp

3 Faculty of Information Science and Electrical Engineering,
Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, Japan 812-8581

sakurai@csce.kyushu-u.ac.jp

Abstract. For the security technology that has been achieved with soft-
ware in the computer system and the protection of the intellectual prop-
erty right of software, software protection technology is necessary. One of
those techniques is called obfuscation, which converts program to make
analysis difficult while preserving its function. In this paper, we examine
the applicability of our program obfuscation scheme to complicate con-
trol flow and study the tolerance against program analysis.

1 Introduction

Recently, Java, the object oriented programming language has been rapidly
widespread. Java is executable in different hardware, OS, and furthermore small
information terminals such as cellular phones and PDA. Described ahead, Java
has a big feature of portability that it is executable on many platforms.

Java has a serious problem, however. Java program is distributed in the style
called class file which is executed on a virtual machine. There is a technique called
decompile that converts binary code into source code. As for the Java class file,
we can easily get program code which is close to original source code. Analyzing
decompiled source code, an attacker can steal algorithm used in the program
code. Java has another big feature. Class file created in a certain program can
be reused in the part of another program. Abusing this feature, the attacker
is able to steal class file, make new program using that file, and insist on the
property right of the program.

To solve these problems, software protection technique is necessary. One of
those techniques is called software obfuscation. Obfuscation is a technique that
converts program into another program which is difficult to analyze while pre-
serving its function.

In this paper, we propose obfuscation scheme using random numbers to com-
plicate control flow. We introduce how to obfuscate program control flow and
study the tolerance against program analysis.

T. Enokido et al. (Eds.): EUC Workshops 2005, LNCS 3823, pp. 916–925, 2005.
c© IFIP International Federation for Information Processing 2005

Program Obfuscation Scheme Using Random Numbers 917

2 Related Works

Many obfuscation schemes have been proposed. The easiest scheme that an auto-
matic application to the program (we call this auto-application) is called name
conversion. This is a scheme of concealing what value each variable maintain
and what kind of operation each function does by changing variable identifiers
and function names into a quite meaningless character string. Monden et al.
proposed scheme obfuscating program includes loop [1]. Ogiso et al. proved that
pointers address decision problem is NP-Hard, and proposed scheme to com-
plicate function calling by using function pointer. This scheme has theoretical
proof of safety against program analysis [2]. These schemes are for obfuscating
C program.

For Java program, Fukushima et al. introduced scheme to make analysis diffi-
cult by destroying the encapsulation by distributing methods. This is the scheme
to destroy encapsulation which is one of the features of object oriented program
and we can erase class information by this scheme [3]. This scheme is applicable
to any object oriented program. Another scheme is to conceal relation between
variables by linear transformation [4]. Some schemes obfuscate program by com-
plicating control flow. For example, paper [5] proposed scheme to make analysis
hard by inserting if-sentence which always returns true (or false).

To apply obfuscation scheme into huge amount of program, auto-application
is required, but some scheme is difficult to do this. It is necessary to find the
part where we can change program execution order while preserving original
program’s functionality to apply scheme introduced in paper [1]. But automation
of this judging process is difficult. About scheme in paper [2], application itself
is difficult because some programming language does not have a pointer.

In this paper, we propose obfuscation scheme complicating control flow. Our
scheme is applicable to program written in object oriented language (we call
this object oriented program), and auto-application is possible. We propose ob-
fuscation scheme by complicating control flow and we study about execution
efficiency and tolerance to the attack.

3 Proposed Scheme

3.1 Complicating Control Flow by Random Numbers

We explain our scheme using Java program. The purpose of this scheme is to
complicate control flow in main function which exists in object oriented program,
and make analysis of program’s entire execution difficult.

We consider obfuscating program in figure 1. We can know an execution order
of each method by analyzing main function part. Our scheme complicates this
part and make program’s entire execution flow analysis difficult. In the process of
complicating control flow, we use random numbers which are difficult to predict
by static analysis which is a technique to analyze program by only seeing source
code. We explain an algorithm to achieve this in the following.

918 T. Toyofuku, T. Tabata, and K. Sakurai

public static void main(){
(A) (B)

method1(); method2();
method3(); method4();}

static void method1(){
(C)
definition of method1}
//define the other methods

Fig. 1. Basic program Fig. 2. Outline of method point algorithm

3.2 Method Point Algorithm

This algorithm consists of three steps. We introduce a detail of each step. Figure
2 shows an outline of this algorithm.

1. Setting point variable and method points
2. Generating a random number
3. Comparison of p and mp

1. Setting point variable and method points
Add point variable p (initial value is 0) in (A) , and give a method point mp to
each method. Mp1 stands for mp of method1.

Example
mp1=0, mp2=1, mp3=2, mp4=3

2. Generating a random number
Generate a random number r in (B). Decide to which method to move by r.

Example
Move to method1() if r is 0, method2() if r is 1, method3() if r is 2,
and method4() if r is 3.

3. Comparison of p and mp
In the method moved in step 2, compare p and mp at (C). If both values match,
execute that method, increase p, and do step 2 again. If those do not match,
return to step2 without executing that method.

Repeat step 2 and 3 until p becomes 4 (the number of methods).

Explanation of sample behavior
There are some patterns of program behavior. We will explain them respectively.

Case 1: When p matches mp and p does not become 4 after ex-
ecuting method (Ex. When p=0 and r=0)
Since mp=0 and p=mp, execute method1 and p becomes 1. Then, regen-
erate random number r since p is not 4.

Program Obfuscation Scheme Using Random Numbers 919

public static void main(String[] args){
int p = 0;//initialize point variable
switchfunc(p);}

static void method1(add variable p){
if(p==0){//if p matches mp, execute method
p++;//increase p}
switchfunc(p);}

//add variable p to the other methods similarly
static void switchfunc(int p){

if (p<4){//generate random number if program is not finished
int r =(int)(Math.random()*4);
switch(r){ //move to method allocated by r
case 0: method1(); break; case 1: method2(); break;
case 2: method3(); break; default: method4(); break;}}}

Fig. 3. Outline of obfuscated program

Case 2: When p does not match mp (Ex. When p=1 and r=2)
Since mp=2 and p �=mp, method3 will not be executed. Regenerate random
number r.
Case 3: When p matches mp and p becomes 4 after executing
method (Ex. When p=3 and r=3)
Since mp=3 and p=mp, execute method4 and p will become 4. End pro-
gram because p is now 4 and this means every method is executed.

By this algorithm, we can obtain obfuscated program which has original pro-
gram’s function and complicate control flow. Figure 3 is an outline of program
applying our scheme to program in figure1.

4 Expanding Proposed Scheme

We examined obfuscating program control flow by method point algorithms in the
case that a program does not have such a complicate structure as branch or loop
in main function. We call this structure simple control flow. In this section, we
expand our scheme to make application possible to such a complicate control flow
explained above. We consider applying our scheme to control flow in figure 4 and 5.

4.1 Obfuscating Branch Program

Consider the case of program control flow in figure 4. Program in figure 6 shows
the sample program which has control flow in figure 4. To apply our scheme, we
convert complicate program enclosed with frame into simple control flow. We can
achieve this conversion of program which have branch by executing steps below.

1. Embedding branch condition
2. Allocating method point
3. Setting switchfunc

920 T. Toyofuku, T. Tabata, and K. Sakurai

Fig. 4. Example of program control flow
having branch

Fig. 5. Example of program control flow
having loop

1. Embedding branch condition
Before framed part in figure 4 exists branch condition to decide whether go
to route A or B. Embed this condition into method located in just before the
condition (in this case, embed into method2). We also embed executing condition
of each route into framed methods.

Example of Embedding Condition
int x = (int)(Math.random()*2);(I)
if (x==0){route A} else {route B}(II)

Suppose branch condition is the one written above. This means if random
number x is 0, then execute route A, if x is 1, then route B. Embed condition
(I) into method2 and (II) into method3, method4 (methods executed in route A)
and method5 (method executed in route B).

2. Allocating method point
Allocate method point in executing order just like in the scheme explained in
section 3.2 until reach branch point.

From the part where the branch starts to where branched execution routes
join, method points are allocated from the continuation of the mp allocated in
the method just before the branch point respectively.

In method executed after joining, choose the biggest mp among points allo-
cated in the method just before joining, and allocate from the continuation of
that value. Thus, each method’s mp becomes the value written below.

Example of allocating mp
mp1=0, mp2=1, mp3=2, mp4=3, mp5=2, mp6=4

3. Setting switchfunc
Finally, decide which method to execute by r and introduce p.

We have one point to consider. The value in p after executing each route
differs. In this case, p after executing route A is 4, while after route B is 3. Method

Program Obfuscation Scheme Using Random Numbers 921

public static void main(){
method1(); method2();

int x=(int)(Math.random()*2);
//x=0 or 1

if(x==0){
method3(); method4();}

else {method5();}}
method6(); }

static void method1(){
definition of method1}

//define the other methods

Fig. 6. Sample program having branch

static void method2(int p, int x){
if(p==1){execution of method2
p++;} //increase p

(*)x=(int)(Math.random()*2);
switchfunc(p,x);}

static void method3(int p, int x){
(*)if(x==0){
if(p==2){ //compare p and mp
execution of method3
p++;} //increase p

switchfunc(p,x);}
static void switchfunc(int p, int x){

define switchfunc as usual
}

Fig. 7. Outline of obfuscated program
having branch

point mp in method executed next is 4, but after executing route B, method whose
mp is 3 will be executed. To avoid this case, when route B is executed, adjust
value added to p to become the next method’s mp in the last method. If route
B is executed in figure 4, p=2 before method5, so add 2 after executing method.
As we see in this example, if multiple routes meet after branched, we need to
adjust a value added to p in the method whose mp is smaller than other one to
make p next method’s mp in method just before joining of each route.

By these steps, we can apply our scheme to program which has branch struc-
ture. Figure 7 shows an outline of obfuscated program. Operation (*) is an
embedded program.

4.2 Obfuscating Loop Program

In this section, we consider applying our scheme to a program such have a loop
repetition structure like in the part enclosed with the frame in figure 5. In this
control flow, repeat method3(), method4() 5 times after executing method1()
and method2(). Then, execute method5(). Figure 8 shows the sample program.

We can apply our scheme to control flow like figure 5 by following steps.

1. Allocating method point
2. Embedding loop finishing condition

1. Allocating method point
First, allocate method point to each method as usual scheme without considering
loop.

Example
mp1=0, mp2=1, mp3=2, mp4=3, mp5=4

922 T. Toyofuku, T. Tabata, and K. Sakurai

public static void main(){
method1(); method2();

for(int loop=0; loop<5; loop++){
method3(); method4();}
method5();}}

static void method1(){
definition of method1}

//define the other methods

Fig. 8. Sample program having loop

static void method4(int p, int loop){
if(p==3){

(**)if(loop<4){
(**)p--;
(**)loop++;}

else{p=p+1;}//end loop}
switchfunc(p,loop);}

static void switchfunc(int p, int loop){
if(p<5){int r =(int)(Math.random()*5);

define switchfunc as usual }}

Fig. 9. Outline of obfuscated program having
loop

2. Embedding loop finishing condition
Embed loop finishing condition into method executed in the last of the loop
(method4 in the case of figure 5). Explain this by loop written in for sen-
tence. The for sentence is written in a style of (initial state; finishing condition;
continuance processing). Thus, in figure 5, loop condition is for(int loop=0;
loop<5; loop++). This means loop will be repeated 5 times. In method4, com-
pare point variable p and method point mp. If both values match, to judge
whether loop is over or not after executing method, embed finishing condition
and continuance processing as follows.

if(loop<4/*finishing condition*/){p--;
loop++;/*continuance processing*/} else {p++;}

At if sentence, whether to continue loop or not will be judged. If continuing
loop is necessary, method3 must be executed again. Executing method3 is impos-
sible, however, in the time when method4 is executed. Because at that moment,
p is 3 and it does not match method3’s method point mp3(=2). Therefore, we
introduce new operation for p. If a loop must be repeated, decrease p. A value
to decrease is equal to the number of methods in loop structure before method
where the finishing condition is embedded. In this case, there are 2 methods
repeated and only 1 method before method4 where finishing condition is em-
bedded, so we subtract 1 from p. Thus, embedded condition is written before.
Figure 9 is an outline of obfuscated program. Operation (**) is an embedded
program.

5 Evaluating Proposed Scheme

5.1 Attacking Program

Attack on program is divided mainly into 2 types: static analysis which analyze
program only by seeing source code, and dynamic analysis by executing program.
First, we examine the tolerance against static analysis. Our scheme has a feature

Program Obfuscation Scheme Using Random Numbers 923

a=6, b=3
c=9
d=3
e=18
f=2

Fig. 10. Output result before dynamic
analysis

static void sub(){
//method operates subtraction

if(p==2){
(***)System.out.println(”sub”);

execution of sub
p++}

switchfunc(p);}

Fig. 11. Sample of dynamic analysis

that generates random number and decides method executing next. To analyze
an obfuscated program, an attacker must judge whether the called method is
executed or not. He tries to find out method executing order by analyzing p
and mp. Suppose analyzing p and mp is hard. In this case he takes a strategy of
arranging methods suitably and analyzing the execution order. If there are N
methods in the program, there are N! probable execution order. Thus, the more
the method numbers are, the more the probable control flow increases, cost to
static analysis grows extremely high.

Next, we consider the dynamic analysis using program computes the four
basic operations of arithmetic. Figure 10 is an result of execution. For example,
in figure 11, insert a program (***) which outputs method name when p matches
mp and that method is executed. In this case, the string ”sub” is displayed
when executing method sub. Insert this program in every method changing
output name. By this attack, method’s name is displayed like figure 12 when
each method is executed, and an attacker can know method execution order.

A method in figure 13 is considered as a countermeasure against dynamic
analysis. When applying scheme, insert dummy method which has no influence
on program execution result. There is no limitation in the number of dummy
methods, and it can be executed many times. Example of dummy method is given
in figure 13. Dummy method in figure 13 executes the follwing. If the condition
is true, call method4, and if it is false, operate complicate operation for p. But
this condition always returns false and no method is called. And complicate
operation actually returns p itself. Moreover, the frequency of dummy method
calling changes every time, analyzing method execution order using strategy
considered in this section becomes difficult.

5.2 Program Execution Time

We applied our scheme to program computes the four basic operations of arith-
metic and measured execution time. P0’ is the program which has branch and
executes route A (executes method3 and method4) in figure 4, and P0” is the
program which has loop and repeats framed part 5 times in figure 5. P1 and P2,
P1’ and P2’, P1” and P2”, are programs obfuscated P0, P0’, P0” respectively.
The frequency of random number generation differs. Random numbers are not

924 T. Toyofuku, T. Tabata, and K. Sakurai

a=6, b=3
add //method operates addition
c=9
sub
d=3
mul //method operates multiplication
e=18
div //method operates division
f=2

Fig. 12. Output result after dynamic
analysis

static void dummy(int p){
int x=(int)(Math.random()*100);
if(((2*x+1)%2)==0){

//condition which is always false
method4();}

else{p=2*(p+3)-p+6;}
//dummy operation for p
switchfunc(p);}

Fig. 13. Outline of dummy method

Table 1. Measurement result of program execution time

Source code Frequency of random Execution time Increase rate of
Number generation (10−6s) Execution time(%)

P0 - 605 -
P1 8 619 2
P2 40 627 4
P0’ - 725 -
P1’ 10 736 2
P2’ 50 744 3
P0” - 2,574 -
P1” 10 3,000 17
P2” 50 3,000 17

the same in each execution, so we gave a number sequence consists of probable
value which will be generated during execution. Table 1 shows the result. The
experimental environment is as follows.

– Processor:Intel Pentium III, 1GHz
– Memory:512MB RAM
– Windows 2000 Service Pack 4
– j2sdk-1_4_2_06-windows-i586-p.exe

From table 1, the difference of the execution time between obfuscated pro-
grams and original program is less than 1/1000 seconds. Thus, we can say the
frequency of random number generation has a litte influence to the execution
efficiency, and execution time between original program and obfuscated program
by our scheme.

6 Conclusion

In this paper, we introduced software obfuscation scheme using random numbers.
We explained how to obfuscate control flow and extended this scheme to apply
to the program having complicate control flow.

Program Obfuscation Scheme Using Random Numbers 925

After introducing our obfuscation scheme, we studied about the scheme. In
our scheme, the more the method number is, the bigger the cost of static analysis
becomes. And we confirmed the influence of random number generation on exe-
cution efficiency is small. We found out that our scheme is vulnerable to dynamic
analysis, then explained a countermeasure that inserting dummy method which
has no influence on program execution result. In the future work, we consider
scheme to make distinguishing dummy method and original method difficult,
and study evaluation about quantitive security analysis of proposed scheme.

References

1. Akito Monden, Yoshihiro Takada, Kouji Torii, ”Methods for Scrambling Programs
Containing Loops,” IEICE Trans. D-I Vol.J80-D-I No.7 pp.1-11, July 1997.

2. T. Ogiso, Y. Sakabe, M. Soushi, ”Software obfuscation on a theoretical basis and its
implementation,” IEICE Trans. Fundamentals, Vol.E86-A,No.1, pp.176-186, 2003.

3. Kazuhide Fukushima, Toshihiro Tabata, Kouichi Sakurai, ”Proposal and Evaluation
of Obfuscation Scheme for Java Source Codes by Partial Destruction of Encapsu-
lation,” Proc. of International Symposium on Information Science and Electrical
Engineering 2003 (ISEE 2003), pp.389-392 (11, 2003).

4. Hirotsugu Sato, Akito Monden, Ken-ichi Matsumoto, ”Program Obfuscation by
Coding Data and Its Operation,” Technical Report of IEICE, Techinical Group on
Information Theory, Vol. IT2002-49, pp.13-18, Mar. 2002.

5. D. Low, ”Java control flow obfuscation”, Master of Science Thesis, Department of
Computer Science, The University of Auckland, 1998.

	Introduction
	Related Works
	Proposed Scheme
	Complicating Control Flow by Random Numbers
	Method Point Algorithm

	Expanding Proposed Scheme
	Obfuscating Branch Program
	Obfuscating Loop Program

	Evaluating Proposed Scheme
	Attacking Program
	Program Execution Time

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

