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Abstract. By obfuscation we mean any efficient semantic-preserving
transformation of computer programs aimed at bringing a program
into such a form, which impedes the understanding of its algorithm
and data structures or prevents the extracting of some valuable
information from the plaintext of a program. The main difficulty in
designing an effective program obfuscator is to guarantee security,
i.e. to prove that no algorithm can break software protection in
reasonable time. All obfuscation techniques and tools developed so
far rely on the informal concept of security and therefore can’t be
regarded as provably secure. In this paper we (1) introduce for the first
time a formal information-theoretic definition of obfuscation security,
(2) present a new obfuscation technique which takes advantage of
cryptographic primitives (one-way functions, hard-core predicates), and
(3) demonstrate, taking a conventional password identification scheme
as a case study, how to prove security of the obfuscating transformations.

Keywords: program transformation, obfuscation, security, mutual in-
formation, one-way function, hard-core predicate.

1 Introduction

Protection of software against intelligent tampering and unauthorized purpose-
ful modifications is one of the central issues in computer security. Almost ev-
ery software-controlled system faces threats from potential adversaries, from
Internet-aware client applications running on PCs, to complex telecommunica-
tions and power systems accessible over Internet, to commodity software with
copy protection mechanisms. Various methods and tools are widely used for the
purpose of software protection, including sophisticated security policies, network
filters, cryptosystems, tamper-resistant hardware, etc. [1,8,10]. But no matter
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how powerful these techniques may be, they don’t cover the case when an ad-
versary, having in mind to make an illegal modification of a program or to gain
some valuable knowledge about algorithms or data structures, gets an access to
the plaintext of a program. The current trends in software engineering and com-
munication technology make it common to distribute software in such a form
that retains most of information presented in the program source code. This
increases drastically the risk of reverse engineering attacks aimed at extracting
secret information from a program.

An important example is Java bytecode. Java applications are distributed as
Java class files, hardware-independent virtual machine codes that retains almost
all information of the original Java source. The customary cryptographic tools
can be very effective for protecting programs from illegal usage at the stage of
their distribution. But when a program is decrypted, it becomes extremely vul-
nerable to software pirates seeking for private information (passwords, data-keys,
etc.) or valuable pieces of code to incorporate them in their own applications.

In these cases the only way to prevent such malicious activity is to con-
vert a program into some tamper-resistant form, which has the property that
understanding and making purposeful modifications to it are rendered difficult
while its original functionality and efficiency are preserved. Program transfor-
mations of this kind are called obfuscating transformations. The plaintext of an
obfuscated program becomes itself the “ultimate defensive line” of the program.

Apart from software protection, program obfuscators could enjoy wide ap-
plication in cryptography. When introducing the concept of public-key cryp-
tosystem in the seminal paper [9], Diffie and Hellman noticed that, given any
means for obscuring data structures in a symmetric-key encryption algorithm,
one could convert this algorithm into a public-key cryptosystem. Obfuscators
would also allow one to convert any public-key cryptosystem into a homomor-
phic one, i.e. a public-key cryptosystem which, given encryption of two bits, can
securely compute an encryption of any Boolean operation of these bits. The ex-
istence of homomorphic encryption schemes is a long-standing open problem in
cryptography.

The concept of obfuscating transformation was introduced in [4]. In this
paper an obfuscator is defined informally as any efficient probabilistic compiler
O which transforms any source program π into a new program O(π) satisfying
the following requirements:

– O(π) has the same observable behavior, and
– O(π) is substantially less intelligible (readable) than π.

To get a formal definition of obfuscating transformation one has to clarify the
terms “the same observable behavior” and “less intelligible”. Now it is commonly
accepted that when dealing with sequential deterministic programs the first term
means that programs π and O(π) compute the same input-output relation and
the complexity of O(π) (its size, time and space complexity, etc.) is at most
polynomially larger than that of π.

The second term is still a topic for discussions. The authors of the most
papers on program obfuscation restrict their consideration only to the expound-
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ing of the intuitive meaning of this term. Thus, Collberg and Thomborson [7]
require an obfuscating transformation O to increase the obscurity of π so that
the understanding and reverse engineering of O(π) will be strictly more time-
consuming than the understanding and reverse engineering of π. Since static
analysis of programs is in wide use for the purposes of program understanding
and reverse engineering, this line of research on obfuscating transformations re-
gards obfuscator as a tool for obstructing static analysis (see [18]). There have
been many ad hoc obfuscating techniques proposed: a taxonomy of approaches
is discussed in [4,5,18,19]. The most advanced of them are based on the following
principle: find some NP-hard problem P, define a class F of program fragments
whose efficient analysis implies resolution of P in polynomial time, and develop
a technique for inserting safely fragments from F into an arbitrary program.
Collberg et al. [5,6] exploit NP-hardness of pointer alias analysis [13,14,17] for
constructing opaque predicates, i.e. predicates whose behavior is difficult for un-
derstanding. The hard cases of points-to analysis problem is also used in [18]
for increasing software tamper-resistance. In [3] a universal technique was pro-
posed which makes it possible to “implant” uniformly and safely an arbitrary
PSPACE-complete problem into any program.

The principal drawback of all these techniques is that none of them has a for-
mal basis for making claims about the difficulty of understanding an obfuscated
program. Therefore it is hardly possible to estimate to what extent such meth-
ods serve the purpose — only the reference to the intractability of some static
analysis problems or to the hardness of combinatoric problem embedded into
obfuscated programs is not sufficient. Meanwhile, the need for formalization of
security requirements was realized in the earliest studies on foundation of cryp-
tography, and a number of suitable security criteria were developed. M. Blum
(see [15]) noticed that some ideas and techniques from cryptography are worthy
of being adapted for program obfuscation. Unfortunately, the straightforward
application of these techniques to the obfuscation problem is hardly possible,
since obfuscating transformations ought to preserve functionality of source pro-
grams, whereas semantic-preserving encryptions are few and far between.

A formal investigation of the very concept of program obfuscation in the con-
text of present-day cryptography was initiated in [2,12]. To formalize the “un-
readability” requirement Barak, Goldreich, et al. introduced in [2] the concept
of “perfect” obfuscation. Intuitively, a program obfuscator O is called perfect if
it transforms any program π into a “virtual black box” O(π) in the sense that
anything one can efficiently compute given O(π), one should be able to efficiently
compute given just oracle access to π. The main result of [2] implies that perfect
obfuscation is impossible. This is proved by constructing a family F of functions
and a predicate P : F → {0, 1} such that, given any program that computes a
function f ∈ F , the value P (f) can be efficiently computed, whereas no efficient
algorithm, being given only oracle access to a randomly selected f ∈ F , can
compute P (f) much better than by random guessing.

Our brief review shows that there is an amazing gap between the well-proved
negative result of [2], which excludes the possibility of omnipotent obfuscators,
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and numerous heuristic algorithms [3,4,5,6,7,18,19] attempting some vague kind
of obfuscation. The aim of our paper is to fill (at least partially) this gap. We
put forward an alternative meaningful definition of obfuscation security which
allows to estimate in information-theoretic terms the capability of a semantic-
preserving program transformation O to obfuscate an individual property P for
a given class of programs H. Informally, O obfuscates securely a property P if
any adversary A, being granted an access to programs from O(H), can extract in
polynomial time only a “negligibly small” amount of information on P . To show
that the new formalization of obfuscation security enables one to design provably
secure program obfuscators we consider one meaningful example. We take forH a
class of programs that implement a simple fixed password identification scheme,
and for P the property of a program to execute actual password checking. Then,
assuming that one-way permutations exist, we design a program compiler O and
prove that O securely obfuscates P . Moreover, by demonstrating that a secure
obfuscation of P implies the existence of one-way functions, we also reveal close
relationships between obfuscation problem and basic cryptographic primitives.

The paper is organized as follows. In Section 2 we give some basic definitions
along with some facts from complexity theory that are necessary for proving
our main result. In Section 3 we introduce an information-theoretic definition of
obfuscation security. Next (Section 4) we consider an obfuscation problem for a
fixed password identification scheme, present an obfuscating transformation O
and prove its security. Finally (Section 5) we show how to apply O in practice
to strengthen the tamper resistance of an arbitrary program.

2 Preliminaries

We denote by B the set {0, 1}, by Bn the set of all binary strings of length n,
and by B∗ the set of all finite binary strings. If x and y are binary strings of

the same length, say n, then we write
⊕

(x, y) for
n⊕

i=1
xiyi. PPA is shorthand

for probabilistic polynomial time algorithms. Each PPA A is associated with a
pair of polynomials p1, p2. If A is a PPA then by A(x, r) we refer to the result
of running A within p1(|x|) steps on input x, x ∈ B∗, and a random string r
choosing uniformly from Bp2(|x|). By A(x) we refer to the distribution induced
by choosing r uniformly and running A(x, r). If D is a distribution then by
x

R← D we mean that x is randomly distributed according to D. When writing
x

R← Bn we mean that x is a random binary string distributed uniformly over
the elements of Bn.

We denote by U some universe of computer programs. The nature of U is
of minor importance; for definiteness sake we consider ALGOL-style programs.
Each program π computes some recursive function Fπ : DomIn → DomOut.
Programs π1 and π2 are said to be equivalent (π1 ∼ π2 in symbols) iff Fπ1 =
Fπ2 . We denote by compπ some complexity measure of program π; for example,
compπ(x) may be thought of as the number of basic actions (steps) to be executed
by π for computing Fπ(x). When a program π is analyzed by an algorithm A,
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we assume that some suitable encoding is used to represent π as a binary string
x, and by writing A(π) we refer to the result of running A on such x. The length
of such binary string x is denoted by size(π).

A function µ : IN → IN is called negligible if for any positive polynomial
p(·) there exists N ∈ IN such that µ(n) < 1/p(n) for any n > N . We will
sometimes use neg(·) and poly(·) to denote unspecified negligible function and
positive polynomial, respectively.

A sequence ϕ = {ϕn}n∈IN of functions ϕn : Bn → Bm(n) is called one-way
function if the following conditions hold

1. n < poly(m(n)),
2. there is a deterministic polynomial time algorithm C such that C(x) = ϕn(x)

for every x ∈ Bn, n ∈ IN,
3. Pr

x
R←Bn

[ϕn(A(ϕn(x))) = ϕn(x)] = neg(n), for any PPA A.

This means that it is “easy” to compute ϕ for all binary strings x but for “es-
sentially all” elements y ∈ Im(ϕ) it is “computationally infeasible” to find any
string x such that ϕ(x) = y. If every ϕn is a bijection then ϕ is called a one-
way permutation. It is still unknown whether one-way functions exist since the
existence of one-way functions implies P�=NP. But nevertheless, some functions
(discrete logarithm, RSA-function, etc., see [16]) are strongly believed to be one-
way. One-way functions are used widely in cryptography for designing public-key
cryptosystems, pseudorandom generators, hash-functions, etc. A cryptographic
method is said to be provably secure if its defeating can be shown to be essen-
tially as hard as solving a well-known and supposedly difficult problem (such as
inverting one of the above functions).

A function h : B∗ → B is said to be a hard-core predicate for a one-way
function ϕ if the following conditions hold

1. there is a deterministic polynomial time algorithm C ′ which computes h,
2. if there is a PPA A1 such that

Pr
x

R←Bm
[A1(ϕm(x)) = h(x)] >

1
2

+ 1/poly(m)

holds for infinitely many m ∈ IN then there exists a PPA A2 such that

Pr
x

R←Bn
[ϕn(A2(ϕn(x))) = ϕn(x)] > 1/poly(n)

holds for infinitely many n ∈ IN.

In other words, an oracle which computes h(x) with probability significantly
greater than 1/2, given only ϕ(x), can be used to invert ϕ efficiently.

Goldreich and Levin [11] showed that any one-way function ϕ can be trans-
formed into a one-way function ψ which has a hard-core predicate. Their con-
struction is as follows. Define the function ψ by ψ(u, x) = (u, ϕ(x)), where u is
a binary string of the same length as x. Then ψ is also a one-way function and
h(u, x) =

⊕
(u, x) is a hard-core predicate for ψ.
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3 Program Obfuscators

By program obfuscation we mean any semantic-preserving transformation aimed
at bringing a program into such a form which impedes as much as possible the
extracting of some valuable information from the plaintext of a program.

Definition 1. A probabilistic algorithm O is a program obfuscator if for every
program π, π ∈ U , the following conditions hold:

(1) π ∼ O(π) (functionality preserving);
(2) size(O(π)) ≤ poly(size(π)) (polynomial expansion);
(3) comp(O(π)) ≤ poly(comp(π)) (polynomial slowdown).

But the most important issue which characterizes the capability of O to
hide the specific properties of programs is security. Informally, an obfuscator
O is called secure w.r.t. an ensemble of programs H and a secret property P
if any (possible) adversary, when being granted a random access to obfuscated
programs O(π), π ∈ H, can extract in reasonable time only a negligibly small
amount of information on P .

An ensemble of programs is a sequence H = {(Sn, Dn)}n∈IN, where Sn, n ∈
IN, is a sample set of programs from U , and Dn is a probability distribution on
Sn. Denote by SH the set

⋃
n∈IN Sn of all programs that appear in H.

Let H be an ensemble of programs. We call a secret property any predicate P
defined on SH. For every n ∈ IN such P can be considered as a random variable
defined on Sn. We write Pr

π
R←Dn

[P (π) = σ], σ ∈ B, for the probability of a
randomly chosen program π from Sn satisfying (case σ = 1) or not satisfying
(case σ = 0) the secret property P . If for every pair of programs π1, π2, the
equivalence π1 ∼ π2 implies P (π1) = P (π2) then P is called a semantic property.

By an adversary we mean any set A of PPAs; the elements from A will be
called attacks. Each attack takes programs from U as inputs and outputs one bit.
Thus, an attack A can be viewed as a randomized checker of a secret property of
programs. To hamper the deducing of the secret property one could apply some
obfuscator O to the source programs. When an ensemble H is fixed, this forces
an adversary A to deal with the set of programs {O(π) : π ∈ SH}. The result
A(O(π)) of an attack A on a randomly chosen obfuscated program O(π) can be
considered as a random variable defined on the sample set of triples (π, x, y),
where π is a program from O(Sn) and x, y are random bit strings used by the
PPAs A and O. We denote by Pr

π
R←Dn

[A(O) = δ], δ ∈ B, the probability of the
attack A completing with the result δ on obfuscated programs O(π), where π
is distributed over Sn. In what follows we will write Prn instead of Pr

π
R←Dn

to
simplify notation.

Definition 2. Let H be an ensemble of programs, P be a secret property, A be
an adversary, and O be an obfuscator. We say that O securely obfuscates P
w.r.t. H and A if for every attack A ∈ A the following condition holds

(4) In(P,A(O)) = neg(n), (security)
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where In(P,A(O)) is the mutual information of random variables P and A(O),

In(P,A(O)) =
1∑

α=0

1∑

β=0
Prn[P (π) = α,A(O(π)) = β]×

× log Prn[P (π)=α,A(O(π))=β]
Prn[P (π)=α]Prn[A(O(π))=β]

.

Clearly, the possibility of designing secure obfuscators depends highly on the
secret properties to be obfuscated and the capability of an adversary. For exam-
ple, if P (π) is specified by the assertion ”the program π uses the variable PSI”
then P can be readily and securely obfuscated w.r.t. any ensemble of programs
and any set of attacks by renaming variables in π. Nontrivial cases are that of
a secret property P being semantic, since such predicates are invariant with re-
spect to any obfuscation O. It is easy to see that some semantic properties P
admit no obfuscation at all (e.g. when P (π) is specified by Fπ(0) = 0).

4 The Main Result

To demonstrate that the requirements (1)–(4) can be satisfied by some compiler
we consider the obfuscation problem for the fixed password identification scheme
as the case study.

Suppose that a software engineer Alice eventually decides to protect from
unauthorized access certain of the programs she designed. When selecting a
program to be protected she chooses randomly a binary string for a password and
adds to the program a fixed password identification scheme. A tamper engineer
Bob, given a program designed by Alice, attempts to compromise the software
protection. To obstruct his activity Alice may apply some obfuscator to her
programs so that Bob could not distinguish the programs that actually use
password identification from those having free access.

To help Alice to attain these ends we consider an ensemble of programs
H0 = {(Sn, Dn)}n∈IN, where Sn = {π0} ∪ {πw

1 : w ∈ Bn}, and the probability
distribution Dn is defined by Dn(π0) = 1/2 and Dn(πw

1 ) = 1/2n+1. The pro-
grams π0 and πw

1 are depicted in Fig. 1. The program π0 simulates free access,
whereas the programs πw

1 implement a simple identification scheme.

prog π0; prog πw
1 ;

var x: string, y: bit; var x: string, y: bit;
input(x); input(x);
y:=0; output(y); if x=w then y := 1 else y:=0;
end of prog; output(y);

end of prog;

Fig. 1.

Bob is aimed at checking whether a program contains some identification
scheme. Therefore, the secret property P0(π) to be obfuscated is specified by the
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predicate ∃x(Fπ(x) = 1). Clearly, P0(π0) = 0 and P0(πw
1 ) = 1. Bob is allowed to

apply any algorithm running in polynomial time to achieve his goal. Hence, by
the adversary A0 we mean the set of all PPAs.

Theorem 1. If one-way permutations exist then the secret property P0 can be
securely obfuscated w.r.t. H0 and A0 .

Proof. Suppose ϕ is a one-way permutation computed by some deterministic
polynomial time algorithm ONE WAY . We will assume that it is implemented
as a built-in function. A compiler O, given a program π from Sn, computes a
quadruple (w, u, v, σ) and builds the programΠw,u,v,σ (see Fig. 2). This program
uses values u, v and σ as constants. The quadruple (w, u, v, σ) is computed as
follows. If π = π0 then O chooses uniformly at random a pair of bit strings
w, u ∈ Bn and sets v = ϕ(w), σ =

⊕
(w, u). If π = πw

1 then O chooses uniformly
at random a string u ∈ Bn and sets v = ϕ(w), σ = 1⊕⊕

(w, u).

prog Πw,u,v,σ; function SUM (X,Y : string);
var x: string, y: bit; var Z: bit, i : integer;
const u, v : string, σ : bit; Z:=0;
input(x); for i=0 to n do Z:=Z ⊕ X[i] * Y [i];
if ONE WAY (x) = v then return Z;

if SUM(x,u) = σ then y:=0 end of function;
else y:=1

else y:=0
output(y);
end of prog;

Fig. 2.

It is easy to see that O is an obfuscator: for every program π from SH0 a
program O(π) is equivalent to π, the size of O(π) is almost the same as that of π,
and the time complexity of an obfuscated program O(π) is at most polynomially
larger than that of π.

To show that O securely obfuscates P0 w.r.t. H0 and A0 one should notice
that O(π) = Πw,u,v,σ implies P0(π) = σ ⊕⊕

(w, u). Hence, if by applying some
attack A to programs Πw,u,v,σ one could extract a “significant” amount of infor-
mation on P0 then A could be used for computing h(u,w) =

⊕
(w, u) efficiently

on a “significant” amount of inputs u, ϕ(w). But the latter is impossible, since
h(u,w) is a hard-core predicate for the one-way function ψ associated with the
one-way function ϕ (see Sect. 2).

These intuitive considerations give rise to the formal proof as follows.
Suppose the obfuscator O doesn’t satisfy security requirement (4) (see Defi-

nition 2), i.e. there exists a PPA A such that In(P0, A(O)) > 1/poly(n) holds for
infinitely many n ∈ IN. In view of the definition of In(P0, A(O)) and the facts
that

Prn[P0(π) = 0] = Prn[P0(π) = 1] = 1/2
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and

Prn[A(O(π))=δ] = Prn[P0(π)=0, A(O(π))=δ] + Prn[P0(π)=1, A(O(π))=δ]

this implies that for some pair α, β ∈ B

Prn[P0(π) = α,A(O(π)) = β] > 1/poly(n),
Prn[P0(π) = α,A(O(π)) = β]− Prn[P0(π) = 1− α,A(O(π)) = β] > 1/poly(n)

hold infinitely often. Consider an attack A′ which operates as follows. Given a
program π′ ∈ O(SH0), it first applies A to π′. If A(π′, x) = 1 − β (recall that
x is a random string used by A) then A′ decides by tossing a coin. Otherwise,
A′ outputs α. It is easy to see that Prn[A′(O(π)) = P0(π)] > 1/2 + 1/poly(n).
Thus, A′ can be used for computing

⊕
(w, u) with a “significant” probability

on infinitely many inputs u, ϕ(w). Taking into account the result of [11] (see
Section 2), we arrive at the contradiction with the assumption that ϕ is a one-
way permutation.

Thus, O is a secure obfuscator of the secret property P0 w.r.t. the ensemble
H0 of the password identification programs and the set A0 of the probabilistic
polynomial-time attacks. 
�

Theorem 2. If the secret property P0 can be securely obfuscated in polynomial
time w.r.t. H0 and A0 then one-way functions exist.

Proof. Suppose that PPA O securely obfuscates P0 w.r.t. H0 and A0. Consider
a function ϕ0 defined as follows:

ϕ0(σ,w, z) =
{O(π0, z), if σ = 0,
O(πw

1 , z), if σ = 1,
where σ ∈ B is a bit, and w, z ∈ B∗ are bit strings. Clearly, Im(ϕ0) = O(SH0),
and, moreover, for every pair w, z we have σ = P0(ϕ0(σ,w, z)). Suppose that
some PPA A correctly inverts ϕ0 for a “significant” amount of elements from
O(SH0). In such an event, there exists a PPA A′ which on inputs O(π) computes
σ = P0(π) more accurately than by random guessing. This implies that the
mutual information In(P0, A

′(O)) is non-negligible in contrary to the assumption
that O is a secure obfuscator.

More formally.
Suppose ϕ0 is not a one-way function. Then there exists a PPA A such that

Pr
σ

R←B,w
R←Bn,z

R←Bn
[ϕ0(A(ϕ0(σ,w, z))) = ϕ0(σ,w, z)] > 1/poly(n)

holds for infinitely many n ∈ IN. This inequality can be also written as follows:

Prn[ϕ0(A(O(π))) = O(π)] > 1/poly(n). (∗)

Now consider a PPA A′ which operates as follows. Given a program π′ ∈ O(SH0),
it first applies A to π′. If A inverts ϕ0 on input π′ correctly (this can be checked
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effectively) then A′ outputs the first bit of the string A(π′) which is σ = P0(π′).
Otherwise A′ tosses a coin to output a random bit. It follows from (∗) that

Prn[A′(O(π)) = P (π)] > 1/2 + 1/poly(n)

holds for infinitely many n. Hence, at least for one value α ∈ B the attack A′

guesses the secret property P0 of obfuscated programs with a significant accuracy,
i.e.

Prn[P (π) = α,A′(O(π)) = α]− Prn[P (π) �= α,A′(O(π)) = α] > 1/poly(n)

holds for infinitely many n ∈ IN. In view of the facts that

Prn[P0(π) = α] = 1/2

and

Prn[A′(O(π))=α] = Prn[P0(π)=α,A′(O(π))=α]+Prn[P0(π) �=α,A′(O(π))=α]

holds, this implies

Prn[P (π)=α,A′(O(π))=α]×log
Prn[P (π) = α,A′(O(π)) = β]

Prn[P (π) = α]Prn[A′(O(π)) = β]
> 1/poly(n)

for infinitely many n. It immediately follows that In(P,A′(O)) > 1/poly(n) in
contrary to the assumption that O is a secure obfuscator.

Thus, ϕ0 is a one-way function. 
�

5 Conclusions

We introduce a new formal definition of program obfuscation security which
enables us to judge the capability of tools intended for obscuring individual
semantic properties of programs. The essential feature required of a secure ob-
fuscation is that there be only a negligible “leakage” of information on the secret
property under the “pressure” of polynomial time algorithms. The new defini-
tion of obfuscation security agrees well with intuition, but at the same time it is
much weaker than that from [2]. This opens up fresh opportunities for invoking
complexity-theoretic and cryptographic techniques to software protection. To be
certain that our approach has some success we consider a meaningful example of
programs implementing a password identification scheme and demonstrate with
the commonly accepted assumptions that some key property of such programs
admits secure obfuscation. This simple case study results in the “perfect” obfus-
cator for the class of computer programs supplied with a password identification
scheme.

The obfuscating transformation presented in the proof of Theorem 1 can
be extended and adapted for strengthening tamper-resistance of an arbitrary
computer program which uses fixed password identification scheme.

Consider some one-way function ϕ. The extended obfuscator Oext, given a
program π protected by an identification scheme with a password w, operates
as follows:
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1. Oext decomposes π into separate fragments B1, B2, . . . , Bn and forms a set
of spurious fragments S = {B′1, . . . , B′k};

2. Oext computes v = ϕ(w) and adds to the program a new bit string variable
x;

3. for every i, 1 ≤ i ≤ n, the extended obfuscator Oext chooses randomly a
bit string ui such that |ui| = |w|, computes σi =

⊕
(ui, w) and replaces the

fragment Bi with a statement
if

⊕
(ui, x) then B1 else B0

such that Bσi = Bi and B1−σi ∈ S;
4. protects the program through the use of the conventional identification

scheme
input(x);
if ϕ(x) = v then ACCESS GRANTED else

ACCESS DENIED;

If we consider the limiting case, when each separate fragment Bi represents a
single bit operation, then Theorem 1 guarantees that no adversary can extract
any “significant” information on π from the plaintext of thus obfuscated pro-
gram. This means that the “perfect” secure obfuscation of programs supplied
with password identification scheme is possible. One could trace the parallels
between the above obfuscating transformation and one-time pad symmetric-key
cryptosystems [16].
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