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ABSTRACT
A software obfuscator is a program O to transform a source
program P for protection against malicious reverse engineer-
ing. O should be correct (O(P ) has same functionality with
P ), resilient (O(P ) is resilient against attacks), and effec-
tive (O(P ) is not too much slower than P ). In this paper we
describe the design of an obfuscator which consists of two
parts. The first part extracts the control flow information
from the program and saves it in another process named
Monitor-process. The second part protects Monitor-process
converting it into an Aucsmith like self-modifying version.
We prove the correctness of the obfuscation scheme. We as-
sess its resilience and efficiency to show that both are high.
This supports the claim that our approach is practical.

Categories and Subject Descriptors: D.2 [Software En-
gineering]: Miscellaneous

General Terms: Security, Design, Experimentation.

Keywords: software obfuscation, control flow.

1. INTRODUCTION
In 2005, the IDC and Business Software Alliance(BSA)’s

annual study on software piracy [2] shows that, although the
world piracy rate decreased slightly to 35%, $31 billion was
lost due to piracy globally. Computer scientists and software
companies have invested significant money and energy to
protect intellectual property (IP) embedded in software.

Collberg & Thomborson [8] provide an overview of soft-
ware protection techniques. The three main technologies
for software protection are watermarking, obfuscation, and
tamper-resistance. Software Obfuscation generally refers to
the process of transforming a program P through an ob-
fuscator O into O(P ) such that an adversary can derive
no more information from a white-box observation of O(P )
than from a black-box observation of P . Of course, P and
O(P ) must have equivalent functionality. A robust widely-
accepted definition of obfuscation does not exist. The ambi-
guity in the preceding description of obfuscation has to do
with the quantification of “information”, “white-box”, and
“black-box”. Barak et al. [3] proved that an obfuscator does
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not exist if the obfuscated program needs to serve as a “vir-
tual black box”, which means that the obfuscated program
reveals nothing more than its functionality. Although this
result may imply the nonexistence of an obfuscater, the “vir-
tual black box” requirement of an obfuscator is very restric-
tive. With more relaxed constraints, obfuscators do exist,
and several researchers have achieved positive results.

There are three broad categories of obfuscation methods.
Lexical Obfuscation typically tries to scramble the identi-
fiers and is used in software like KlassMaster and JZipper
for java program protection. Data Obfuscation modifies
data structures to gain security [7]. Control Flow Obfus-
cation hides the control flow information of the program.
CloakwareTM [4] is an example of the control flow obfusca-
tion category through introduction of a dynamic dispatcher.
Collberg et al. [6] proposed another way to obfuscate the
control flow of an application by inserting redundant condi-
tionals and loops.

Diversity which is important for a species to survive is
also used in software obfuscation. Forrest et al. proposed
diversity technology as a tool to develop more robust and
secure program [10]. Diversity is also used by CloakwareTM

[4]. Aucsmith [1] proposed another powerful obfuscation and
anti-tamper mechanism by combining Integrity Verification
Kernels and Interlocking Trust Mechanism.

In this paper, we develop a control flow obfuscation paradigm
based on a two-process model. The control flow information
(CFI) is stripped out of the obfuscated program through a
permutation of static blocks of program/text. Another con-
current monitor process is created which contains the static
permutation. The obfuscated program (program process or
P-process) queries the monitor process (M-process) for the
correct address at each obfuscated juncture. The P-process
and the M-process communicate with each other through
inter-process communication (IPC) mechanism supported in
Linux. Since the monitor process is a much smaller program
than the program process, more expensive and elaborate
protection mechanisms can be applied to it. We use a self-
modifying version of monitor process, which is a simplified
version of Aucsmith’s scheme [1]. This obfuscator was im-
plemented in gcc. We have tested it on a variety of programs
to assess the performance overhead.

The self modifying image of the M-process protects it from
dynamic reverse engineering. Dynamic reverse engineering
is a widely-used attack method. An adversary runs the ob-
fuscated program repeatedly to observe the program’s im-
age in the memory, to trace and analyze its control flow
and data flow, and reverse-engineer the program image into
a high level language. Without hardware support, the dy-
namic attacks seem to be hard to prevent. Static analysis
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based reverse engineering of our schema can be shown to be
PSPACE-complete along the lines of [25]. The reachability
problem within the M-process can be reduced to the ac-
ceptance problem for a linear bounded deterministic Turing
machine (LBDTM) which is PSPACE-complete. The self-
modifying code schema of M-process provides resistance to
dynamic attacks. The main idea behind the self-modifying
schema is to always hide most of the source program’s code
by modifying it continuously. M-process is compiled in such
a way that it is divided into several cells (groups of basic
blocks) of the same size. Each cell is obfuscated with one
or several keys. When M-process is initially loaded into the
memory, only the entry cell is open in plain text. All the
other cells are encrypted. During the execution, every time
the control flow goes from cell Ca to another cell Cb, the
M-process (the text section of its image in the memory)
modifies itself, encrypts Ca, decrypts Cb, and continues ex-
ecuting the instructions in Cb. During the self modification,
cells other than Ca and Cb are also modified but still kept
encrypted.

The rest of this paper is organized as follows. Section 2
provides the background and related work in software obfus-
cation. Section 3 describes the CFI-hiding scheme. Section
4 discusses the self-modifying scheme for M-process. Section
5 evaluates the efficiency of the obfuscator implementation.
Finally, Section 6 summarizes and concludes the paper.
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Figure 1: CFI Extraction & Embedding into
Monitor-Process

2. BACKGROUND & RELATED WORK
Three main kinds of malicious host attacks on software

embedded IP are: software piracy, malicious reverse en-
gineering, and software tampering. Software obfuscation
prevents the second kind of attack, malicious reverse engi-
neering. Software obfuscation is a kind of code transforma-
tion [19]. It transforms an executable into a new one which
has the same functionality but is hard to reverse-engineer.

An obfuscator should have three important properties.
(1) The most important requirement is that it should re-
tain the functionality of the program. (2) The obfuscated
program should not be too much slower or use too much
more space than the original one. (3) It should take the at-
tackers more time to reverse-engineer the application than
developing a new one by themselves. We give a definition of
software obfuscator, adapted from [5] and [3].

An algorithm O is a Software Obfuscator if the follow-
ing three conditions hold: (i) For any given source pro-
gram P , O transforms P into another protected program
P ′ such that (a) if P fails to terminate with an error con-
dition, then P ′ may or may not terminate. (b) Otherwise,
P ′ must terminate and produce the same output as P . If the
functionality is maintained, we say that P is correct. (ii)
The run time of P ′ should be at most polynomially larger
than that of P . (iii) The time taken by an attacker to re-
cover P from P ′ should be at least as large as the time to
develop P from scratch.

As we had stated earlier, the three general styles of ob-
fuscation are lexical, data and control-flow obfuscation. Al-
though the lexical obfuscation and data obfuscation frus-
trate attackers to some extent, control-flow obfuscation is
by far the most resilient obfuscation method, because most
attack efforts are spent on the control flow analysis. Con-
trol flow obfuscation methods falls into two main categories.
The first category introduces spurious code blocks into the
source program to obscure the real CFI. Collberg et al. [6]
implemented such an obfuscator. In their work opaque con-
structs are manufactured to embed intractable static analy-
sis problems into the obfuscated program. The second cate-
gory extracts CFI from the code and hides it somewhere else.
In Stanley Chow et al.’s work [4], the obfuscator divides the
source program into several pieces, adds new dummy chunks
into it, disperses these chunks, and generates a dispatcher
aware of the true control flow between all the code chunks.
They proved that the CFI-hiding dispatcher is resilient to
static analysis based reverse-engineering attacks.

To evaluate an obfuscator, we focus on its functionality,
efficiency and resilience. It goes without saying that an
obfuscator must maintain the original functionality. In a
CFI obfuscation scheme, we could prove that the obfusca-
tion scheme is correct by showing that the CFI is preserved
during the process of obfuscation.

For efficiency, we use simple definitions of cost (adapted
from [5]) to account for the extra execution time and space
of O(P ) compared to P .

Definition 1 (Obfuscator Cost). Given an obfus-
cator O and a program P , the Time Cost Ct(O, P ) and
the Space Cost Cs(O, P ) are defined as

Ct(O, P ) =
T (O(P ))

T (P )
− 1 (1)

and

Cs(O, P ) =
S(O(P ))

S(P )
− 1 (2)
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where T (M) is the execution time of program M and S(M)
is the space taken by M .

One way to establish an obfuscator’s resilience against
static attacks is to show that a known hard problem would
have to be solved in order for reverse-engineering to succeed.
For example, Zakharov [25] reduced a PSPACE-Complete
problem to the reachability problem of cloak program dis-
patcher, which hides the control flow information of the
source program. A similar method is used in [21]. In his
Ph.D thesis, Wang developed a one-way transformed com-
piler which hides the static control-flow graph of the source
program and showed that analyzing the the transformed
program is NP-hard. We adapt Zakharov’s reduction in
Section 3.6 to show that reverse-engineering of M-process
is PSPACE-complete.

3. CFI EXTRACTION FROM P-PROCESS
TO M-PROCESS

Our approach towards software obfuscation focuses on
control flow obfuscation and consists of two parts. The first
part hides the CFI of the source program by compiling it into
two co-processes: a main program (P-)process and a monitor
(M-)process. The two processes together are the obfuscated
program. The P-process implements the main functional-
ity and it is similar to the source program. A part of P-
process’ CFI is extracted and stored in a table named Jump
Table. This jump table is embedded into the M-process.
P-process communicates with M-process requesting a jump
table lookup whenever it reaches a point with missing CFI.

Section 4 will discuss the second part of our obfuscator,
where a self-modifying scheme is deployed to ensure that
only a small part of the code is observable to an adversary.

3.1 Basic Structure
The basic structure of our CFI hiding scheme is illustrated

in Figure 1. Several definitions are given first.

Definition 2 (Hot Node). A Hot Node is a group of
one or more adjacent basic blocks that are kept together in
their original static form during the obfuscation. The entire
hot node is shuffled as a unit. The size of a hot node is the
number of basic blocks in the hot node.

Definition 3 (Hot Block). A basic block B in P-process
is called a Hot Block if B is executed with high probability
(a user supplied threshold) during the execution of P-process.
Each hot block forms a seed of a hot node as its start block.

There are four steps in the CFI extraction as shown in Fig-
ure 1. We first profile the source program to determine ba-
sic block instantiation probabilities to derive hot blocks and
hot nodes. With the help of Machine-SUIF ( [18], [12], [24])
infrastructure for constructing compiler back ends, we devel-
oped passes to derive profiling information. We also ensure
that the generated assembly code contains only labeled ad-
dresses instead of relative or absolute addresses. This allows
for relocatability for the later compiler passes.

The second step is to extract hot blocks and hot nodes.
Based on the profiling information, we select a set of hot
blocks. The hot nodes automatically follow from the selec-
tion of hot blocks. Given the efficiency implications of hot
blocks (each hot node in P-process initiates one communica-
tion with the M-process), the user can specify the maximum
number of hot blocks n the obfuscator can use.

The third step is to shuffle/permute the hot nodes so as
to hide the true static layout of the source program. The
shuffling is performed at assembly level code. Hot nodes are
shuffled randomly. The correspondence between the original
ordering of the hot nodes to the shuffled ordering constitutes
the hidden CFI. This is recorded in the jump table. New in-
structions are inserted at the hot node boundaries to request
CFI from the M-process.

M-process is initialized right after P-process is started. It
then enters a finite wait-loop waiting for P-process’ address
(CFI) requests. M-process has exclusive access to the jump
table. The M-process exits just before the P-process termi-
nates.

3.2 Implementation Steps
In our implementation, we developed several compiler passes

to fulfill the task of program obfuscation. Most passes are
generated in the following way. At first, the CFG Intermedi-
ate Representation (IR) of the source program is generated
with the help of Machine-SUIF. Then annotations are added
at proper locations of the CFG IR such as the beginning and
the end of each basic block. Machine-SUIF then generates
assembly code with the annotation. Generally each anno-
tation is identified with the unique ID of the basic block to
which it is attached. One thing to note here is that the as-
sembly code is generated so that all the targets of Control
Transfer Instructions (CTI, such as jmp, jc) are labeled ad-
dresses. Keeping the hot blocks and hot nodes relocatable
through labeling simplifies the shuffling process.

Several other passes were developed in Perl to manipulate
the assembly code generated by Machine-SUIF passes. All
the code insertion, modification and shuffling are completed
in Perl except for the annotation. Perl was chosen because of
its powerful text processing and regular expression support.

We also developed several other Perl scripts to process
the data generated during obfuscation. For example, the
program profiling generates profiling information in a format
not suitable for later passes. A Perl script was written to
refine the data into a more manageable format.

3.3 Hot Blocks and Hot Nodes Extraction
The n most frequently instantiated blocks are chosen as

hot blocks, where n is the maximum number of hot nodes
specified by the user. Recall that these hot blocks form the
start blocks in the hot nodes.

The choice of a hot block is important for both obfuscation
and performance. Our goal is to maximize both resilience
and efficiency. First, we need to choose an appropriate num-
ber of hot nodes. A higher number of hot nodes leads to a
higher level of obfuscation, but at the cost of higher over-
head. This is why we let the user be the decision maker. Let
shuffling rate denote the ratio of the number of hot nodes to
the number of total blocks n/N for a program with N basic
blocks.

There are some additional constraints on the size and po-
sition of a hot node. First, a node should not straddle the
border of functions. That is, all the blocks of a node should
belong to the same function. Second, a node should not con-
tain more than one hot block. Otherwise the control relation
between the two hot blocks is not hidden well.

Once a hot block b is chosen, it corresponds to a hot node
of certain size starting at b. The hot node starting with b
has size s(b) given by:

s(b) = min(d, max(1, d(b) ∗ n/r(b))) (3)

Here r(b) is the node b’s rank in the profiling data, d(b) is
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the maximum possible size of the node starting at b. This is
bounded by the location of the next hot block, the number
of basic blocks between b and the next hot block. n is the
number of selected hot nodes. Note that s(b) is proportional
to r, because smaller the rank, more frequently the node is
accessed. Due to spatial locality in block accesses, it is very
likely that the blocks in the vicinity of b are also accessed
equally frequently. s is also proportional to d. This tries to
make nodes as large as possible.

3.4 Shuffling/Permuting the Hot Nodes
The hot nodes are shuffled randomly. The extracted hot

nodes are shuffled by the fisher-yates shuffling algorithm
[17]. Once the shuffling permutation is finalized, the hot
nodes are moved to reflect this permutation in the assembly
code.

We generate another Machine-SUIF pass for annotations
to help the shuffling of the nodes. This time each block
is marked by two annotations, one at its beginning and
one at its end. Each node Ni is marked with two anno-
tation, stti and endi. After the annotation, the assembly
code is processed by a script named shfl.pl. Table 1 is the
pseudo-code shfl.pl generated at the location where Ni

is originally located. In the shuffling, Ni is substituted by
Nj . Function getAddr is implemented in another source file
whose task is to contact M-process (MP) for address queries.
All the examples in this paper use Intel X86 assembly.

Table 1: Pseudo-code After The Shuffling Where Ni

Is Substitute by Nj

1. push flags and registers onto stack

2. push stti onto the stack, call function getAddr and
clean argument stti

3. jmp %eax

4. label gl sttj :

5. restore flags and registers

6. code of Nj

7. push endj onto the stack, call function getAddr and
clean argument endj

8. jmp %eax

9. label gl endi :

10. restore flags and registers

11. original code after Ni

Before calling getAddr, flags and registers used by getAddr
are pushed onto the stack (step 1). Then getAddr is called
with stti as the argument (step 2). After returning from
getAddr, %eax holds the start address of Ni, so the jmp in-
struction in step 3 directs the control flow to the new address
of Ni.

After step 3, code similar to step 4 - 8 (with j substituted
by i) is executed at Ni’s new location. Step 5 restores the
flags and registers before running code of Ni. After Ni’s
code is finished (step 6), the control flow should return to
the code that originally follows Ni. This is done in step 9
where getAddr is called again with argument endi. Then

the flags and registers are restored at step 10. At last the
original code after Ni is executed at step 11. This maintains
equivalence of control flow before and after shuffling. The
only difference is that the addresses of the hot nodes are
hidden after shuffling.

3.5 M-process Generation
The main task of M-process is to handle address requests

from P-process. Since the M-process contains the program
secret in the form of the jump table, it needs the extra pro-
tection. We describe the self-modifying code scheme in Sec-
tion 4. Here we only show M-process’s interface, i.e., its
creation and activation in P-process and its functionality.

Instructions are added into the P-process to create the
M-process, and to send jump table lookup requests. The
code modification is done by the same script that shuffled
the code, shfl.pl. M-process is initialized (forked) at the
entry point of P-process’ main(). Recall that there is a
special annotation there so that shfl.pl could insert an
instruction call startMp at the correct point. Function
startMp is implemented as a C program which creates the
M-process.

Every time the M-process gets a block id, it returns the ad-
dress of the hot node through a jump table lookup. At the P-
process side, the boundaries of the hot nodes are the places
where the CFI is hidden and instructions call getAddr are
inserted by shfl.pl, as described in step 2 and step 7 of Ta-
ble 1. The function getAddr sends address lookup requests
to the M-process. The address returned by getAddr (re-
turned in turn by M-process) is stored in register %eax so
that instruction jmp %eax can redirect the control flow to
the new address of the hot node. (See step 3 and step 8
in Table 1). The insertion of call getAddr is described in
step 2 and step 7 in Table 1.

3.6 Resilience of the CFI-hiding Scheme
This section discusses the resilience the CFI-hiding scheme.

We first prove that a specific reachability problem within
our obfuscator required of any static analysis driven reverse
engineering is PSPACE-Complete.

A linear bounded deterministic Turing machine (LBDTM)
(see [11]) M is an conventional Deterministic Turing Ma-
chine (DTM) (see [14]) with the restriction that no com-
putation uses more than n + 1 tape cells. There are input
boundary markers, left marker ` and right marker a, at the
two ends of the input string. The head of the machine is
not allowed to move left of ` or right of a. Note that a
language L is PSPACE-complete if L is in PSPACE and
for every language L′ ∈ PSPACE, L′ ≤p L. The PSPACE-
complete language which is reduced to our obfuscator reach-
ability problem is Linear Bounded Automaton Acceptance
(LBTM-ACC) [11]: LBTM-ACC = {< x,M > : x is ac-
cepted by M , where M is a LBTM and x is an input to
M}. In [16], Karp proved that LBTM-ACC is in PSPACE-
complete.
Reachability Problem for M-process: The essence of
M-process behavior is to receive an address lookup request
and to return the looked-up address to the P-process. Hence,
it is a deterministic automaton with an output function.
The input of this automaton is the ID of a hot node and
the output is the address of the hot node. Because the
total number of blocks in the obfuscated software is limited
(finite), the M-process is a Deterministic Finite Automaton
(DFA) A, which is a 6-tuple: < S, Λ, Ψ, ς, s0, F, τ >, where
S is a finite set of states, Λ is the input alphabet (hot node
label space), Ψ is the output alphabet, ς is the transition
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function, ς : S × Λ → S, s0 is the initial state, F is a set of
final states and τ is the output function, τ : S → Ψ.

Given two states s and s′, we say that s′ is reachable from
s if there exists a sequence of transitions of M-process DFA
leading from state s to s′. Intuitively, any assertion dealing
with the reachability of basic blocks within the obfuscated P-
process (“is the basic block B′ reachable from the basic block
B?” is the kind of question at the heart of static reverse
engineering) translates into the aforementioned reachability
problem within the M-process.

Theorem 3.1. M-process reachability (MPROCESS-REACH)
∈ PSPACE.

Proof omitted.

Theorem 3.2. LBDTM-ACC ≤p MPROCESS-REACH.

The proof is very similar to the one used in [25], and we
omit it for brevity.

4. SELF-MODIFYING MONITOR-PROCESS
SCHEMA

Many previous research efforts in obfuscation assume that
there is a secure component [26] which is hidden from obser-
vation. The secure component may reside in a smart card
or in a secured server. In this section, we describe a self-
modifying code schema, in which the M-process image in
memory keeps modifying itself. This protection approach
offers good obfuscation without any specialized hardware
support.

4.1 Basic Structure
The binary executable of the obfuscated program (obfus-

cated M-process in this case) is divided into several pieces,
each of which contains one or more basic blocks. Each piece
of code is called a cell. During M-Process execution, the con-
trol flow sometimes exits from one cell and enters another.
We call this a control flow switch. The source of control
flow switch is called a source block. The block executed af-
ter the control flow switch is called a target block. The cell
containing the source block is called a source cell and the
one containing the target block is called a target cell. The
cell containing the entry block of the M-process is called the
entry cell. An exit block of the M-process is contained in
an exit cell. Note that there is only one entry block and one
entry cell, but there may be many exit blocks and exit cells.

There are keys embedded at the end of each source block.
If there is only one branch target leading outside the source
cell B, only one key is embedded in B. If there are two
branch targets leading to cells outside B, B contains two
keys. Each key corresponds to a control flow switch. All
the keys have an important property that after XOR’ing a
proper key with the whole M-process’ image, the source cell
is encrypted, the target cell is decrypted and all the others
are changed but still remain encrypted.

When M-Process starts, one or more blocks in the entry
cell C0 are executed until the first control flow switch s oc-
curs. Let Bnew be the target block, Cnew be the target cell
of s, and the key corresponding to s be k0,new . Before Bnew

is executed (in fact Bnew can not be executed at this mo-
ment because it is encrypted), k0,new is used to XOR the
whole image. The XOR operation will close C0, open Cnew ,
and change all the other cells. Then the control flow goes
to Bnew and executes one or more blocks until another con-
trol flow switch occurs. This process continues until an exit
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An Execution of the Protected Program, with the Control Flow of
Start −> Cell 0 −> Cell j −> Cell k −> ...... −> Cell i −> End

Figure 2: An Example Execution of the Protected
M-Process

block is executed and the M-Process terminates. At each
point in execution, there is always exactly one cell that is
observable.

Figure 2 illustrates an example of the execution of the
protected M-Process which contains n cells. At the begin-
ning of the execution, only cell C0 is exposed as plain text
(machine code). After the execution of some blocks in C0, a
control flow switch s1 whose source cell is Cj occurs. Then
the key corresponding to s1 is used to XOR the whole im-
age. It closes C0, opens Cj , and changes all the other cells.
After the encryption and decryption, the target block of s1

is executed. At this moment, Cj becomes the only cell that
is observable. When the second control flow switch s2 hap-
pens, Ck is the target cell. The key corresponding to s2 is
used to close Ci, open Ck and modify all the others. Then
the target block in Ck is executed. This process is repeated
until an exit block in Ci is reached.

4.2 Encryption Key Assignment
The keys are crucial in this self-modifying scheme. An

important property that the keys need to satisfy is defined
as open-close property.

Definition 4 (Open-close Property). Given a pro-
gram P which is divided into a group of cells and an en-
cryption method E, let S be the set of all the control flow
switches in P. A function f on S is said to have open-close
property for P with encryption method E if the following
requirements hold:

(i) There is a way to initialize P so that only the entry
cell is in plain machine code.

(ii) After the initialization of P, P begins to execute. Every
time a control flow switch s occurs, apply E on the
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whole image of P with the key k = f(s). The target
cell of s is decrypted, the source cell of s is encrypted
and all the other cells are modified but not decrypted.

Theorem 4.1. Given any program P and a cell parti-
tion (let S be the set of all the control flow switches in P
with this cell partition), there exists at least one function f
on S that satisfies the open-close property with encryption
method XOR.

Proof. Sketch: For each cell Ck, let C0
k be its initial

state, let Cs
k be state of Ck after control flow switch s takes

place. Let sb(s) be the id for the source block of s, sc(s) be
the id for the source cell of s, tb(s) be the id for the target
block of s, and tc(s) be id for the target cell of s.

First we build a Control Flow Graph whose nodes are
the cells and interpret it as an induced undirected graph.
We call this graph a Control Flow Graph in terms of Cell
(CFGC). For each edge in the CFGC, a key is assigned.
For any s, the value of f(s) is decided by Csc(s) and Ctc(s).
That is, for any two control flow switches s1 and s2, if their
source blocks are in the same cell and they also share the
same target cell, the keys assigned to s1 and s2 are the
same. We first convert the CFGC into a complete graph
and then assign keys for all the edges in the graph. Let ki,j

denote the key assigned to edge between Ci and Cj in the
CFGC. Suppose there are n cells C0, C1, . . . , Cn−1 in the
CFGC of the M-process. We generate n − 1 keys randomly
for k0,1, k0,2, . . . , k0,n−1. All the other keys ki,j are derived
as follows.

ki,j = ki ⊕ kj (4)

Function f is defined by

f(s) = ksc(s),tc(s) (5)

, and the initialization of P is defined as follows: entry cell
C0 is not changed; any cell Ci other than C0 is obfuscated
as Ci ⊕ k0,i.

Now we are ready to show that f satisfies the two re-
quirements listed in the definition of open-close property. It
is obvious that the initialization mentioned above satisfies
requirement (i). The main job is to prove the requirement
(ii). Given any control flow switch s which occurs during
the execution of the M-process at time t (right before s oc-
curs), let p = Cp1

Cp2
. . . Cpn

denote the sequence of cells on
the control flow path by which the program reached s from
the beginning. Note that Cp1

= C0, Cpn
= Csc(s) and there

may be some duplicate cells.
At time t, every cell has been XOR’ed with a series of keys

which correspond to all the control flow switches on path p.
The value of XOR of all of these keys is

Ks = kp1,p2
⊕ kp2,p3

⊕ . . . ⊕ kp
n−1,pn

= k0,p2
⊕ kp2,p3

⊕ . . . ⊕ kp
n−1,sc(s)

= k0,p2
⊕ (k0,p2

⊕ k0,p3
) ⊕ . . . ⊕ (k0,p

n−1
⊕ k0,sc(s))

= (k0,p2
⊕ k0,p2

) ⊕ (k0,p3
⊕ k0,p3

) ⊕ . . .⊕

(k0,p
n−1

⊕ k0,p
n−1

) ⊕ k0,sc(s)

= 0 ⊕ 0 ⊕ . . . ⊕ 0 ⊕ k0,sc(s)

= k0,sc(s)

After applying key f(s) = ksc(s),tc(s) on the whole image
of P , the cells are modified as follows:

1. The target cell of s

Cs
tc(s) = C0

tc(s) ⊕ Ks ⊕ ksc(s),tc(s)

= (Ctc(s) ⊕ k0,tc(s)) ⊕ k0,sc(s) ⊕ ksc(s),tc(s)

= Ctc(s) ⊕ k0,tc(s)) ⊕ k0,sc(s) ⊕ k0,sc(s) ⊕ k0,tc(s)

= Ctc(s)

which means that Ctc(s) is decrypted.

2. The source cell of s is modified to

Cs
sc(s) = C0

sc(s) ⊕ Ks ⊕ ksc(s),tc(s)

= (Csc(s) ⊕ k0,sc(s)) ⊕ k0,sc(s) ⊕ ksc(s),tc(s)

= Csc(s) ⊕ ksc(s),tc(s)

which means Csc(s) is encrypted.

3. For any cell Ci other than Ctc(s) and Csc(s),

Cs
i = C0

i ⊕ Ks ⊕ ksc(s),tc(s)

= (Ci ⊕ k0,i) ⊕ k0,sc(s) ⊕ k0,sc(s) ⊕ k0,tc(s)

= Ci ⊕ k0,i ⊕ k0,tc(s)

= Ci ⊕ ki,tc(s)

ki,tc(s) 6= 0 because i 6= tc(s). Thus Cs
i 6= Ci, which

means that Ci is changed but is still encrypted.

Having considered the effect of applying f(s) to the whole
image, we know that f satisfies all the three requirements
in Equation 4 of the open-close property, which completes
the proof by successfully constructing f .

Cell 0

Cell j Cell l

Cell m

Cell 0

Cell j Cell l

Cell m

k0j k0l

kjl

klm

k0m

kjm

Figure 3: An Example of Key Assignment

Figure 3 shows an example of the key assignment process.
The graph on the left is the original directed CFGC. It con-
sists of four cells and five edges. After adding edges and
ignoring the directions of all the edges we get the complete
graph at the right. We are to generate six keys: k0j , k0l,
k0m, kjl, kjm and klm.

k0j , k0l, k0m are generated randomly. The other three
are calculated by equation (4). Note that the graph is undi-
rected so there is only one key k0m for the pair < C0, Cm >
even though there are two edges between them in the origi-
nal CFGC.

The initialization of the cells are

C0
i =



Ci if i = 0
Ci ⊕ k0,i otherwise
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4.3 Implementation Steps
In our implementation, the function mPrcs corresponds

to the M-process. We move mPrcs’ code from the text sec-
tion to an array (called the code array) in the data section.
This is because most operating systems including Linux en-
force read-only access to the text section. A helper function
xorAll performs XOR of the code image with a key. When a
control flow switch s occurs during the execution of mPrcs,
mPrcs calls xorAll. xorAll XOR’s the whole code array,
closes sc(s), opens tc(s), and redirects the control flow to
the beginning of tb(s).
Cell Partition: Given the overhead of inter-cell control
flow transfer (control flow switch), the determination of cell
partition for the M-process has severe repercussions on the
efficiency of the scheme. Ideally, more frequently instanti-
ated control flow edges should be absorbed within a single
cell. Only the infrequent control flow edges ought to be
inter-cell edges. Hence, once again, extensive profiling of
the M-process CFG with SUIF is performed.

There are two parameters about the cells that need to be
determined, the number of cells and their sizes. Since there
is exactly one cell open at any point in time, approximately
(n−1)/n fraction of the code is encrypted, where n is the to-
tal number of the cells. Higher the number of cells, the more
protects M-Process is from dynamic observation. However,
as the number of cells increases, function xorAll is called
more frequently, which leads to higher overhead.

Since mPrcs is small (it contains only twenty nine basic
blocks), we analyze its CFI manually to create the cell par-
tition. Another constraint on the cell partition is that the
total size of all the blocks in each cell should be approxi-
mately the same. This is so that XOR keys can be all the
same size. In such a case, much memory will be wasted
by the padding at the end of the non-uniformly sized cells.
One could always make XOR keys much smaller sized than
the cell size (such as 32-bits). That, however, reduces the
strength of XOR based encryption.

The specific cell partition for the specific M-process has
six cells, each of which contains three to six basic blocks.

4.4 Function xorAll

The XOR operation and control redirection in the self-
modifying scheme is performed by a function named xorAll.
When a control flow switch s occurs, mPrcs calls xorAll
with the key corresponding to s. xorAll XOR’s all the cells
to close the source cell and to open the target cell. There
are two arguments that xorAll needs to help in the self-
modifying scheme. The first argument is the key k(s) which
is used to XOR the whole code array. The second argument
is the offset of Btb(s) in Ctc(s). We use off(s) to denote the
offset. After XOR’ing the code array with k(s), the whole
Ctc(s) is opened. off(s) is used to calculate the starting
address of Btb(s).

The second part of xorAll’s job, the control transfer, is
a little tricky. After the XOR operation, the control flow is
directed to Btb(s). Each cell starts with a magic number so
that xorAll can distinguish the newly opened cell (Ctc(s)).
Then xorAll adds the address of Ctc(s) and offset off(s) to
get the address of tc(b). Finally, xorAll modifies the return
address in its stack frame, and returns so that the control
flow goes to the beginning of Btb(s). Note that xorAll does
not return to the end of Bsb(s) and then execute a jump
instruction from there to get to Btb(s). At this point Bsb(s)

is already encrypted by k(s).
In-line assembly in C is used to generate two instructions

at the end of the assembly code for xorAll:

movl -4(%ebp), %eax #code for redirection
movl %eax, 4(%ebp) #code for redirection

leave
ret

In this code, -4 (%ebp) contains the address of the begin-
ning of the Btb(s). 4(%ebp) contains the return address for
xorAll in the stack. After the modification of the return ad-
dress, instructions leave and ret redirects the control flow
to the beginning of Btb(s).

However, we are not done yet. We still need to guarantee
a healthy stack before and after calling xorAll. Before a
function call, all the live registers should be saved; after
the call, they should be restored. In an ordinary function
call, the stack cleaning and register restoring instructions
follow the call instruction. However, after the function call
to xorAll, the control flow will return to the beginning of
Btb(s), not the end of the call instruction at the end of
Bsb(s). Thus the code to clean the arguments on the stack
and restore the registers should be moved to the beginning
of Btb(s). Also notice that Btb(s) may be a target block
of a set S of control flow switches and Btb(s) is only one
of them. When the control flow goes to the beginning of
Btb(s), mPrcs cannot know which control flow switch in S
is the one that just occurred. Because of this, the register
set R saved for each control flow switch in S should be the
same. Each control flow s requires the protection of a set of
registers. Let r(s) denote this set. To get good performance,
we should analyze all the switches in s to get the union of all
the sets r(s). For the sake of simplicity, we save and restore
all the general purpose registers and flags for every call to
xorAll.
Basic Block Modifications: The basic blocks that are
source or target blocks for control flow switches need to be
modified to enable them to interact with xorAll. Code may
be added at the beginning and at the end of a block. First
let us consider the modification at the beginning of a basic
block Bi. There are three cases:

1. If Bi is the entry block in mPrcs, no modification is
needed.

2. If Bi is the target block of a control flow switch s, i.e., i =
sb(s), code is inserted at the beginning of Bi as follows.

lbl_clnStk_i:
clean_the_stack
restore_the_registers

lbl_thru_i:
B_i
....

3. Else the code is modified as follows.

lbl_thru_i:
B_i
...

In the pseudo-code above, lbl clnStk i is the label at the
beginning of the code which cleans the stack and preserves
the registers for Bi. If the control flow enters Bi from other
cells, the return address of xorAll targets lbl clnStk i.
lbl thru is the label marking the beginning of the origi-
nal code for Bi. It is needed because Bi may be target of
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some CTI within the same cell. These in-cell CTIs should go
to Bi directly without executing the code for stack cleaning
and register restoration.

Another point to note is that the first block of each cell
is special. If Bi is at the beginning of a cell other than Cell
0, the control-flow from Bi−1 to Bi must go through mPrcs
even when the last instruction of Bi−1 is not a CTI. That’s
way the first block in a cell is categorized into case 2.

The modification at the end of the blocks is a little more
complicated than that at the beginning. For the code at
the beginning of Bi, we only consider whether Bi is a target
of a control flow switch or the first block in a cell. But
for the modification at the end of Bi, we need to consider
the last non-directive instruction instr of Bi. If instr is a
CTI, we check its target to see whether it is in the same cell
or not. If the target is in another cell, we substitute instr
by instructions which call xorAll. If instr is ret, nothing
need to be added. If instr is a general-purpose instruction
other than CTI (add and push for example, see [15]), we
check to see whether Bi is the last block in the cell. The
algorithm is described here briefly in several cases and sub-
cases. Suppose Bi is in cell Ci. The code modification at
the end of Bi is divided into four cases.

1. If instr is ret, then modify nothing.

2. If instr is jmp target, where target is in block Bk, then
there are two sub cases.

i. If Bk is also in Ci, then modify nothing

ii. If Bk is in another cell other than Ci, then substitute
instr with the following code

save_registers
pushl k_ik
pushl $0x7000000
call xorAll

3. If instr is jcc target (Jump if Condition Is Met such as
jc, jne), where target is in block Bk, there are four sub
cases.

i. If Bk is also in cell Ci and Bi is the last block in Ci,
then after instr append code to save the registers
and call xorAll, with ki(i+1) as the key argument.

ii. If Bk is also in cell Ci and Bi is not the last block
in Ci, then after instr append an instruction jmp
lbl thru (i+1).

iii. If Bk is not in cell Ci and Bi is the last block in
the cell, then instr is substituted by the following
instructions

jcc lbl_svRgs_i
save_registers
pushl k_i(i+1)
pushl $0x7000000
call xorAll

lbl_svRgs_i:
save_registers
pushl k_ik
pushl $0x7000000
call xorAll

iv. If Bk is in a different cell and Bi is not the last block
in the cell, then substitute instr with the following
code:

jcc lbl_svRgs_i
jmp lbl_thru_(i+1)

lbl_svRgs_i:
save_registers
pushl k_ik
pushl $0x7000000
call xorAll

4. If instr is a general-purpose instructions other than a
CTI, then there are two sub-cases.

i. If Bi is the last block in Ci, then append the following
code after instr

save_registers
pushl k_i(i+1)
pushl $0x7000000
call xorAll

ii. If Bi is not the last block in Ci, then after instr,
append instruction

jmp l_thru_i(i+1)

In this algorithm, save registers stands for the instruc-
tions to save the registers. There are two pushl before call
xorAll. The first argument is the key. The immediate num-
ber 0x7000000 should be the offset of the target block in the
target cell. Without generating the binary code, it is very
hard for us to get the real offset of a block in the cell where
the block is located. So we just push an arbitrary integer
here as a placeholder. The placeholder will be substituted
by the real offset when we copy the binary code to the code
array.

4.5 Copying Binary Code to the Code Array
We first generate assembly code with annotations for each

basic block with the help of Machine-SUIF. Once again, we
ensure that all branch targets are relocatable by labeling
them.

At the beginning of each cell Ci, we insert a magic num-
ber. All the binary code blocks in this cell are then copied
to the code array. During this step the placeholder num-
ber 0x7000000 at the end of Bsb(s) is substituted by the
real offset of Btb(s) in Ctb(s) with correct byte order (little-
endian or big-endian). Finally, several nop instructions are
appended after the last binary block in this cell. For the
sake of simplicity, we use nop for padding. In fact, what in-
struction is used for padding doesn’t matter for the correct
result, since they will never be executed. In future work, we
will put some fake blocks in the padding area to enhance
obfuscation.

There is still one more difficulty in moving the binary code
into the code array. We need to be careful of the global
variables and functions used in mPrcs. If mPrcs uses them
directly, they wouldn’t be linked properly at runtime. The
linker and loader won’t relocate the symbols, function names
or global variables in a data section. If mPrcs is in text
section, information on the labels, function names and the
global variables is placed in the relocation table. Linker and
loader will find the correct address for them when the final
executable is generated.

Our workaround for this problem is to call mPrcs as a
function from main function which resides in the text sec-
tion. Before main calls mPrcs, it initializes two arrays: one
contains the pointers to all the function used by mPrcs; an-
other contains pointers to all the global variables used in
mPrcs. When main calls mPrcs, it passes the two arrays
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Table 2: Space Cost Efficiency in Terms of Assembly
Code
P Source Protected mPrcs CA

s C′A
s

Program Program size
size (A) size (A) (A)

tsort 36k 41k 16k 0.139 0.583
compress42 118k 131k 16k 0.110 0.246
test 182k 207k 16k 0.137 0.225
bunzip021 210k 226k 16k 0.076 0.152

Table 3: Space Cost Efficiency in Terms of Binary
Code
P Source Protected mPrcs CB

s C′B
s

program program size
size (B) size (B) (B)

tsort 28k 31k 33k 0.107 1.286
compress42 52k 55k 33k 0.058 0.692
test 62k 71k 33k 0.145 0.677
bunzip021 72k 74k 33k 0.028 0.486

as arguments. mPrcs accesses all these functions and the
global variables via the pointers in the arguments1. When
the linker and loader generate the executable, they will re-
locate addresses for all the pointers in the two arrays, since
they are located in the text section.

5. EXPERIMENTAL EVALUATION OF THE
OBFUSCATOR

We used experimental methods to evaluate the efficiency
of the obfuscator. The two metrics defined in definition 1,
space cost Cs(O, P ) and time cost Ct(O, P ), are calculated
for four different applications: tsort– topological sort from
GNU core-utils; compress42– compress data utility; test–
a program written by us; and bunzip021 – an early version
of bunzip utility.

For each application, we consider its space cost in terms
of the assembly code and the binary code. We also calculate
the cost with or without considering mPrcs, the M-process.

Table 2 records the space cost in terms of assembly code.
P is the source program, CA

s is the space cost without con-
sidering the size of mPrcs and C ′A

s is the space cost including
the size of mPrcs. ‘A’ stands for “in terms of assembly code”.

Table 3 shows the space cost in terms of binary code. P
is the source program, CB

s is the space cost without mPrcs
and C′B

s is the space cost inclusive of mPrcs. ‘B’ stands for
“in terms of binary code”.

From this data, we can draw the following two conclusions.

• The space cost both in terms of assembly code and bi-
nary code is around 1. That is, Cs(O, P ) = O(1). This
means that the space requirements of the obfuscated
program are linear in the space needs of the original
program.

• As the size of P increases, the relative space cost in-
clusive of mPrcs decreases. This is because the size of
mPrcs is fixed, and the size of P-process is proportional
to the space needs of the original program for a fixed
shuffling rate.

1In fact, the format strings of the printf statement should
also be passed as arguments in the pointer arrays

The execution time efficiency is shown in Table 4. Ct

is calculated for the real run time. For each application,
two types of run time are calculated. The first run time
is for P-process working with a non-obfuscated M-process
(we coded a function to simulate mPrcs without the self-
modifying scheme). The second run time is for P-process
working with the obfuscated M-process. This separates the
overhead incurred by the CFI-hiding scheme from the over-
head of the self-modifying scheme.

This data indicates the time cost to be less than 10. This
is with the shuffling rate of 20%, which is pretty high. When
the shuffling rate is set to 5%, the time overhead for the four
applications is shown in Table 5. Take tsort as an example.
The time cost drops 83.2% with plain M-process and 61%
with obfuscating M-process. With the small shuffling rate,
all the time costs are less than 4, which is acceptable for
most programs.

The relative overhead of the self-modifying scheme and
the CFI-hiding scheme seems to indicate that the self-modified
code based obfuscation costs more than the basic CFI-hiding
scheme. This is because the modification of the entire M-
process through XOR is pretty expensive. It is even more
expensive than IPC, the main overhead in the CFI-hiding
scheme.

6. CONCLUSIONS AND FUTURE WORK
We presented an implementation of a two-process obfus-

cation scheme. The static layout of the program process (P-
process) is randomly permuted from the original program’s
static layout at the boundaries of hot nodes – a group of
adjacent basic blocks. The permutation itself is stored in
jump table which is part of another process, monitor pro-
cess (M-process). M-process is forked as a co-process of
P-process. Control flow is normal within a hot node of
P-process. When a permuted instruction is encountered,
P-process communicates with the M-process to perform an
address translation through jump-table lookup. M-process
is a small program with a small wait loop waiting on jump-
table lookup requests from P-process. This allows for more
extensive protection for the M-process. Specifically, we use a
variant of Aucsmith’s scheme based on self-modifying code
to hide/obfuscate M-process. The entire system was im-
plemented with gcc and machineSUIF combination. We
present both the space and run time overhead data for a
collection of programs.

The main future work will involve reducing the cost of
inter-process communication between P-process and M-process.
Specifically, use of prefetching the address translations so as
to hide the latency of lookup can be explored.
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