
Mechanism for Software Tamper Resistance: An
Application of White-Box Cryptography

Wil Michiels
Philips Research Laboratories

High Tech Campus 34
Eindhoven, The Netherlands
wil.michiels@philips.com

Paul Gorissen
Philips Research Laboratories

High Tech Campus 34
Eindhoven, The Netherlands

paul.gorissen@philips.com

ABSTRACT
In software protection we typically have to deal with the white-box
attack model. In this model an attacker is assumed to have full ac-
cess to the software and full control over its execution. The goal of
white-box cryptography is to implement cryptographic algorithms
in software such that it is hard for an attacker to extract the key by
a white-box attack. Chow et al.[8, 7] present white-box implemen-
tations for AES and DES. Based on their ideas, white-box imple-
mentations can be derived for other block ciphers as well. In the
white-box implementations the key of the underlying block cipher
is expanded from several bytes to a collection of lookup tables with
a total size in the order of hundreds of kilobytes.

In this paper we present a technique that uses a white-box imple-
mentation to make software tamper resistant. The technique inter-
prets the binary of software code as lookup tables, which are next
incorporated into the collection of lookup tables of a white-box im-
plementation. This makes the code tamper resistant as the dual
interpretation implies that a change in the code results in an unin-
tentional change in the white-box implementation. We also indicate
in the paper that it is difficult for an attacker to make modifications
to the white-box implementation such that its original operation is
restored.

Categories and Subject Descriptors
H.3.2 [Information Systems]: Information Storage and Retrieval—
Information Storage

General Terms
Security

Keywords
Software protection, software tamper resistance, white-box cryp-
tography

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DRM’07, October 29, 2007, Alexandria, Virginia, USA.
Copyright 2007 ACM 978-1-59593-884-8/07/0010 ...$5.00.

1. INTRODUCTION
As the need for flexibility and complexity grows, the functional-

ity of devices is more and more implemented in software instead of
in hardware. This trend makes it increasingly important to develop
techniques for protecting software. The problem with software pro-
tection is the severe attack model that we have to deal with. Instead
of the conventional ‘black-box attack model’ in which an attacker
has at most access to the input and output of the program, we have
to deal with the ‘white-box attack model’ [8, 7]. This attack model
is the strongest conceivable one in which an attacker is assumed
to have full access to the software and full control over the exe-
cution environment. The reason we have to deal with this strong
attack model is that, while the black-box attack model assumes in
a communication that the end-points are trusted, a software attack
comes generally from the inside; the attacker is typically the user
of the software or a virus that has installed itself on the device that
is running the software.

Two important problems in software protection are obfuscation
and tamper resistance. In the former problem the goal is to protect a
software program against reverse engineering by transforming the
program into a functionally equivalent one that is harder to under-
stand. In the latter problem, we have to protect against an attacker
who tries to make a modification to a software program, such that
the software gets a particular, different functionality. As an illus-
trative example, we mention software that contains a routine for
implementing access and permission control. The user of the soft-
ware may try to disable or change this routine.

Both obfuscation and tamper resistance are very hard problems,
and methods with a provable security for practical programs are far
beyond the state of the art [2, 17]. This implies that in practice one
has to resort to applying multiple complementary tools to tackle the
problems. In this paper we present a tool in the toolbox for making
software tamper resistant.

The method we propose is an application of ‘white-box cryptog-
raphy’ and can be implemented completely in software. White-box
cryptography is the discipline that aims at solving the obfuscation
problem of how to implement a cryptographic algorithm in soft-
ware, such that the key cannot be extracted by a white-box attack.
This problem is, for instance, relevant for a content provider who
broadcasts encrypted content and who wants to prevent a licensed
user from illegally putting the decryption key on the Internet. An
implementation of a cryptographic algorithm that tries to resist a
white-box attack on its key is called a white-box implementation.
Chow et al. present white-box implementations for the block ci-
phers AES and DES [8, 7]. These white-box implementations are
based on ideas that can be easily extended to other block ciphers.
The white-box implementations of Chow et al. hide the key of the
implemented block cipher in a large collection of lookup tables. As

82

a result, a white-box implementation can be viewed as stand-alone
cryptographic algorithm the key of which is given by this collection
of lookup tables. This view on a white-box implementation is used
when we refer to the key of a white-box implementation. To avoid
confusion with the key of the implemented block cipher, the key of
a white-box implementation is also called white-box key. The total
size of the lookup tables is in the order of hundreds of kilobytes.

The software tamper-resistance technique presented in this pa-
per is an application of white-box cryptography in the sense that
the technique makes the correct operation of the white-box imple-
mentation of a block cipher dependent on the integrity of software.
That is, if an attacker modifies the software, the white-box imple-
mentation stops decrypting/encrypting properly. As a result, the
tamper-resistance technique requires that the system on which we
want to protect software uses a block cipher implementation for
which we can derive a white-box implementation. When referring
to the security of the technique, we assume that it is the goal of an
attacker to modify the protected software without losing the abil-
ity to decrypt/encrypt properly. As attack model we assume the
white-box attack model.

As a possible application of our technique we mention a DRM
client that is implemented in software and that has to validate con-
ditions in a DRM license before it decrypts the corresponding con-
tent. The content can, for instance, be encrypted by AES as this
block cipher allows a white-box implementation. In a content rental
model the DRM license typically prescribes that content may only
be decrypted during a specific time window. An attacker may try
to get around the license by tampering with the program code that
verifies the license. Hence, we want to make this code tamper resis-
tant. It is to be preferred to not only protect the license verification
routine, but also (part of) the software that calls this routine. This
in order to prevent an attacker from removing calls to the routine.

At a high level, the software tamper-resistance technique works
as follows. Let B be the binary of the software that we want to
protect. Binary B can be linked and compiled code obtained from
higher lever source code, such as C, but it can also be the binary
representation of interpreted code, such as byte code in Java. As
binary B is just a string of bits, we can also interpret it as a col-
lection of lookup tables. A code fragment of 1024 bytes can, for
instance, be interpreted as a lookup table consisting of 256 rows of
4 bytes.

The tamper-resistance technique generalizes the techniques for
implementing a block cipher by a white-box implementation. The
generalization enables us to add arbitrary tables to a white-box im-
plementation without changing the cryptographic function that it
implements. This implies that we can implement the block ci-
pher that runs on the system by a white-box implementation, such
that the executable code B, interpreted as a collection of lookup ta-
bles, is included into the collection of lookup tables that defines the
white-box key. After applying the technique, the code has a dual
interpretation: it is both program code and key.

Fig. 1 visualizes how the technique can be applied to the DRM
application mentioned above. The decryption algorithm is imple-
mented by a white-box implementation consisting of a collection of
lookup tables (the white-box key) and a decryption routine that uses
the white-box key to decrypt. In the figure, binary B is the complete
software image of the DRM client, i.e., the complete software im-
age is protected by including it in the white-box key. The software
image includes the license verification routine and the white-box
decryption routine.

If we now make a modification to the program code that we in-
cluded in the white-box key, then this results in an undesired mod-
ification of the cryptographic key: this turns the key into an in-

DRM client

license
verification

client software

white-box key

decryption
routine

Figure 1: Tamper resistance technique applied to DRM appli-
cation.

valid one. That is, the code is tamper resistant in the sense that its
integrity is checked each time that the cryptographic key is used.
Moreover, the technique presented includes code into a white-box
key in such a way that it is difficult for an attacker to repair the cor-
rect operation of a white-box implementation after its key has been
invalidated. Compared to existing tamper resistance techniques,
this method has the advantage that the protected software program
remains in the clear. It does not require that, besides the white-box
implementation, parts of it are hidden by code obfuscation tech-
niques.

This paper is organized as follows. First, we present in Sect. 2
related work on software tamper resistance. In this paper we use
the white-box AES implementation of Chow et al. as a carrier to
explain our software tamper resistance technique. However, in-
stead of AES the technique can also be applied to any other block
cipher that allows a similar table-based white-box implementation.
In Sect. 3 we briefly discuss the white-box AES implementation.
In Sect. 4 we introduce our tamper resistance technique, which we
named ‘Medusa’ after the female character from Greek mythology
whose glimpse turned any living creature into stone. The security
of Medusa is discussed in Sect. 5. We end with some concluding
remarks in Sect. 6.

2. RELATED WORK
In this section we discuss related work on software tamper re-

sistance techniques. We restrict ourselves to techniques that, as
Medusa, can be fully implemented in software and need no hard-
ware support. The two main approaches for tackling the problem of
software tamper resistance are code obfuscation and cryptographic
hashing. The goal of code obfuscation techniques is to make it hard
for a reverse engineer to understand the program. The idea behind
applying obfuscation to achieve tamper resistance is that it is dif-
ficult to realize an intended change in functionality if we do not
know where and how to change the code.

A possible obfuscation technique is to store the program in en-
crypted form. The decryption can then be done in either hard-
ware or software. Software solutions are given by Aucsmith [1]
and Wang, Kang, and Kim [20]. Their approaches divide the pro-
gram into cells. At any stage of the execution all but one cell is
encrypted. The only cell that is exposed unencrypted is the one the
program counter points into. Obfuscation by encryption only pro-
tects against a static analysis and not against a dynamic analysis.
Furthermore, it implies a severe execution-time penalty.

An alternative approach for obfuscating a program is to apply
code transformations that turn the program into one that is func-
tionally equivalent, but more complex and less readable. Coll-
berg, Thomborson, and Low [10] present many of such transfor-
mations. Other references are Cohen [9], Wang et al. [19], and
Wroblewski [21]. Although to a lesser extent than the encryp-
tion approaches, obfuscation by code transformation still incurs an
execution-time penalty.

83

Cryptographic hashing is a second main approach for making
code more tamper resistant. Hashing techniques compute hash val-
ues of code fragments and include checks in the program that com-
pare these hash values with the predefined values. An incorrect
value causes the program to stop working properly. To be effective,
hashing has to be combined with obfuscation because if we are
able to identify the computations of the hash values or the checks
on them, then it is easy to get around the protection mechanism.
However, by applying obfuscation, we also get the disadvantages of
it, such as an execution-time penalty. Furthermore, because hash-
computations and the checks on their outcome have a very typical
format, a good obfuscation is problematic.

Tamper resistance techniques that are based on hashing are pre-
sented by Horne et al. [14], Chang and Atallah [5], and Chen et
al. [6]. Also the approach presented by Wang, Kang, and Kim [20],
to which we already referred to, employs hashing.

All techniques discussed in this section incur an execution-time
penalty. An approach to reduce this penalty is to construct small
secure processes that are used as verification engines for the entire
program. The costly techniques then only have to be applied to
these small processes. This approach is adopted by Aucsmith [1]
and Blietz and Tyagi [4].

We conclude this section with the remark that our approach for
making software tamper resistant is related to a paper of Yuval. Yu-
val [23] also proposes to interpret software as lookup tables within
a block cipher. In order to save on storage space, he suggests to de-
fine the lookup table that implements an S-box as a code fragment.

3. WHITE-BOX AES IMPLEMENTATION
As mentioned in the introduction, we use the white-box AES im-

plementation of Chow et al. [7] as a carrier to explain Medusa. Our
technique is, however, not restricted to AES. The ideas of Chow et
al. can be applied to other block ciphers in order to derive table-
based white-box implementations to which we can apply Medusa.

We note that attacks have been published for extracting the 128-
bit AES key or the 56-bit DES key from the white-box AES and
the white-box DES implementations of Chow et al. [3, 13, 15, 16,
22]. However, these implementations can still provide an effec-
tive protection of the key; by intertwining the large collection of
lookup tables and by applying code obfuscation techniques to the
white-box implementation the task of extracting a key can be com-
plicated considerably. In Sect. 2 we provided references to papers
describing code obfuscation techniques. Although a formal met-
ric to express the quality of an obfuscation lacks, we believe that a
white-box implementation allows a more effective obfuscation than
a regular implementation of a block cipher. Intuitively, it is easier
to hide the exact value of the individual lookup tables in a white-
box key of several hundreds of kilobytes than to hide a standard
DES and AES key of only 56 and 128 bits, respectively.

Instead of diving directly into the details of the white-box AES
implementation as proposed by Chow et al. [7], we first give a
higher level discussion to explain its basic idea. First, each round
of AES is implemented by a series of lookup tables. That is, the
output of a round is computed by performing table lookups only,
where the input to a lookup table is either the input to the round or
the output of another lookup table. Such an implementation can be
modeled by a network of lookup tables, where an arc from table T
to T

�
means that the output of table T is used as input to table T

�
.

To arrive at a white-box implementation, Chow et al. next ob-
fuscate the lookup tables by encoding their input and output. En-
coding the input and output of a table T with bijective functions
fin and fout , respectively, corresponds to replacing table T by fout

�
T � f

� 1
in . Hence, into the table, an input decoding and an output

encoding are incorporated. To see that the application of encodings
realizes obfuscation, observe that encoding the input of a lookup
table changes the order of its rows and that encoding the output
changes the value of the rows. The encodings are applied such
that the operation of the overall implementation does not change.
The collection of obfuscated lookup tables can be considered as the
cryptographic key of the white-box implementation.

As indicated above, we propose to obfuscate the white-box im-
plementation to protect against the attack of Billet et al. [3]. This
attack extracts the AES key from a white-box AES implementation
in a time complexity of 230. However, for the sake of simplicity and
because an arbitrary set of obfuscation techniques can be applied,
we present the white-box AES implementation and next Medusa
without this additional layer of obfuscation.

We now give a brief treatment on the details of the white-box
AES implementation of Chow et al. AES is a block cipher consist-
ing of 10 rounds and with a 128-bit block size [11]. The 16 bytes of
the 128-bit blocks on which AES operates are arranged into a 4 � 4
array of bytes. Such an array is called ‘state’. If the state is denoted
by a, then ai � j and

�
i � j � specify the byte in row i and column j. In

this paper, indices are taken modulo 4.
AES encrypts and decrypts by applying transformations to its in-

put state. The transformations are grouped into 10 rounds. A basic
round consists of four transformations: AddRoundKey, SubBytes,
ShiftRows, and MixColumns. The first 9 rounds of AES are basic
rounds. The final round deviates from a basic round in that the
MixColumns transformation is replaced by AddRoundKey.

The white-box AES implementation proposed by Chow et al. [7]
implements each round as a sequence of table lookups and obfus-
cates the lookup tables by encoding their input and output. We first
discuss the table-lookup implementation of AES that underlies the
white-box implementation. As Medusa only operates on the white-
box implementation of the basic rounds, we here focus on these
rounds.

Instead of having AddRoundKey and SubBytes as two separate
transformations, we can merge them into a single S-box operation
by partial evaluation. Let κr

i � k be byte
�
i � k � in the round key of

round r, where, similarly as for the state, we refer to the 128-bit
round key as a 4 � 4 array of bytes. For byte ai � k of the input state
a of round r, the two transformations correspond to an application
of the S-box T r

i � k that is defined by

T r
i � k
�
ai � k �	� S

�
ai � k
 κr

i � k ���
We refer to these S-boxes as T-boxes.

Let M j be the 32 � 32 bit matrix that implements the MixColumns
transformation MC j of column j, and let Mi � j be the eight succes-
sive rows 8i � 8i 1 ��������� 8 � i 1 ��� 1 of M j . The output xi � k of a T-box
T r

i � k contributes to exactly one column j of the output of round r.
The contribution is that MCi � j

�
xi � k � is XORed with output column

j, where MCi � j
�
xi � k �	� xi � k � Mi � j . If we implement both MCi � j

�
xi � k �

and the XOR of two nibbles by lookup tables, then we can derive
an implementation of round r that consists of lookup tables only.
Fig. 2 depicts the computation of one output column in this imple-
mentation.

Chow et al. obfuscate the lookup-table implementation obtained
by encoding the input and output of the tables. This is done by non-
linear nibble encodings and linear mixing bijections. Non-linear
nibble encodings are applied to the input and output nibbles of all
the tables. The effect of these encodings is canceled out by choos-
ing matching output and input encodings for successive tables in
the lookup-table network. Linear mixing bijections are applied to
the input and output of each table MCi � j � T r

i � k in the following way.
A mixing bijection MBr

j encodes the output by multiplying it with

84

MC0,j T0,j
r° MC1,j T1,j+1

r° MC2,j T2,j+2
r° MC3,j T3,j+3

r°

X X X X... X X X X...

...

X X X X
...

a0,j a1,j+1 a2,j+2 a3,j+3

b0,j b3,j
...

Figure 2: Network of lookup tables for computing the jth output column
�
b0 � j � b1 � j � b2 � j � b3 � j � of the rth AES round from input state

a. Table X implements the XOR of two nibbles.

⊕
in

out

in

out out out out out out out

Ti,k
r(Ai,k

r)-1

Type II

(MBr
j)i

-1
in

out

in

out out out out out out out

A1,j
r+1A0,j

r+1 A2,j
r+1 A3,j

r+1

Type III

in

in
out

Type IV

MBr
j MCi°

Figure 3: The Type II, III, and IV tables occur in a round of a white-box AES implementation.

...

Type
II

...

Type
IV

...

Type
III

...

Type
IV

Figure 4: Overview of a single round in a white-box AES im-
plementation.

a 32 � 32-bit invertible matrix, and a mixing bijection Ar
i � k encodes

the input by multiplying it with an 8 � 8-bit invertible matrix. The
resulting lookup table, which is called a Type II table, is depicted in
Fig. 3. To cancel out the effect of the mixing bijections introduced,
additional lookup tables are included in the implementation. These
lookup tables are called Type III tables; see Fig. 3. As for MC j , the
linear function

�
MBr

j �
� 1 is implemented by splitting it into four 8-

bit to 32-bit linear functions
�
MBr

j �
� 1
i . An obfuscated XOR table

is called a Type IV table. Fig. 4 depicts the overall structure of a
round in the white-box AES implementation of Chow et al.

This completes the white-box implementation proposed by Chow
et al. [7]. With respect to its performance, Chow et al. indicate that
we lose a factor 10 in number of operations in comparison with a
non-white-box implementation. The size penalty is more severe.
The overall size increases from several kilobytes to 770,048 bytes.
However, for many applications, such as in the PC domain, this size
is still acceptable.

4. MEDUSA
Consider two white-box AES implementations that differ in the

encodings applied and/or the keys that underly them. It can be
verified that the lookup table networks associated with the two im-
plementations only differ in the content of the lookup tables. The
structures of the networks are the same. Hence, the only variability
of a white-box AES implementation is in the content of its lookup
tables. This implies that we can consider a white-box AES imple-
mentation as a cryptographic algorithm in its own right: its key is
given by the collection of lookup tables and the cryptographic al-
gorithm describes the employment of these tables, i.e., it describes
for each table where to get its input from.

The idea of Medusa is to make binary program code tamper re-
sistant by incorporating the code into the key of a white-box im-

plementation, i.e., into the collection of lookup tables. This is done
as follows. We partition the executable program code into frag-
ments of 1024 bytes. Besides executable code, we interpret each
fragment as a lookup table consisting of 256 rows of 4 bytes. The
lookup table is included in the lookup table network that models the
white-box implementation. By giving code an interpretation within
the white-box implementation we make it tamper resistant since a
change in the program code now implies an unintentional change in
the key of the white-box implementation. Furthermore, we include
the program code in the key in such a way that after changing the
program repairing the key is complicated.

In its basic form, Medusa is only able to incorporate programs of
limited size. In the full version of this paper we show how we can
generalize the basic implementation such that programs of arbitrary
size can be protected.

4.1 Medusa: a simplified version
Before we explain how Medusa includes code fragments into a

white-box AES implementation, we show how we can include code
fragments in the non-obfuscated lookup table network depicted in
Fig. 2. This network, which implements the computation of a 32-
bit output column b j in an encryption round, simply XORs the four
32-bit values returned by the four lookup tables MCi � j � T r

i � k with
i � 0 � 1 � 2 � 3. Let Cr

i � k with i � 0 � 1 � 2 � 3 be a lookup table that defines
a 1024-byte code fragment Ĉ r

i � k. We define lookup table W r
i � k , such

that row x is given by W r
i � k

�
x ��� MCi � j � T r

i � k
�
x �
 Cr

i � k
�
x � . We then

have that row x of lookup table MCi � j � T r
i � k from Fig. 2 is given by

Cr
i � k

�
x �
 W r

i � k
�
x � .

We now make two copies N0 � N1 of the network depicted in Fig. 2.
In N0 we replace each table MCi � j � T r

i � k by W r
i � k and in N1 we replace

each table MCi � j � T r
i � k by Cr

i � k . Network N0 computes 32-bit value

x0 � W r
0 � j

�
a0 � j �
 W r

1 � j � 1
�
a1 � j � 1 �
 W r

2 � j � 2
�
a2 � j � 2 �
 W r

3 � j � 3
�
a3 � j � 3 �

and network N1 computes 32-bit value

x1 � Cr
0 � j

�
a0 � j �
 Cr

1 � j � 1
�
a1 � j � 1 �
 Cr

2 � j � 2
�
a2 � j � 2 �
 Cr

3 � j � 3
�
a3 � j � 3 ���

Furthermore, b j � x0
 x1. Implementing the XOR of x0 and x1 via
a network of XOR-tables X gives us a network N with the same
functionality as the original network of Fig. 2. This network N

85

...
Type

V

...

Type
IV

...

Type
III

...

Type
IV

...

Type
IV

...

Type
IV

code fragments

N0

N1 ...

Type
VI

Figure 6: White-box implementation in which program code
has been incorporated in the key.

has the property that four of its tables are given by program code.
However, it is still not very complicated to change a single bit in
the program code. To compensate for a bit flip in a table Cr

i � k, we
only have to flip the bit that is at the same location in W r

i � k .

4.2 Basic implementation of Medusa
Above we based Medusa on the non-encoded version of the white-

box AES implementation. This non-encoded white-box implemen-
tation is given by the network depicted in Fig. 2. In Sect. 3 we
transformed this network into a white-box AES implementation by
applying non-linear nibble encodings and linear mixing bijections.
More specifically, the linear encodings are such that the 8-bit input
of a table MCi � j � T r

i � k is encoded by an 8-bit mixing bijection Ar
i � k

and the 32-bit output is encoded by a 32-bit mixing bijection MBr
j.

To compensate for the linear encodings, the lookup table network
is extended with tables that remove the effect of MBr

j and that in-
troduce the input encoding Ar � 1

i � j assumed in the next round. The
network obtained is further obfuscated by non-linear nibble encod-
ings.

A similar obfuscation is applied to the network N discussed
above. To the tables W r

i � k in network N0 we apply the same lin-
ear encodings Ar

i � k and MBr
j as to MCi � j � T r

i � k . Hence, table W r
i � k is

transformed into

MBr
j
� W r

i � k �
�
Ar

i � k �
� 1 �

In the same way as for MCi � j � T r
i � k we compensate for these linear

encodings by including tables in N .
The tables Cr

i � k in network N1 are encoded by the linear input
encodings Ar

i � k but not by the linear output encodings MBr
j. Because

we omit MBr
j , we do not need to extend the table network of N1 to

compensate for it. The linear input encodings Ar � 1
i � j assumed in

column j of the next round are incorporated in the table Cr
i � k. Let

A � �
Ar � 1

0 � j � Ar � 1
1 � j � Ar � 1

2 � j � Ar � 1
3 � j � . Then this means that table Cr

i � k is
replaced by

A � Cr
i � k �

�
Ar

i � k �
� 1 � (1)

After applying non-linear nibble encodings to the network obtained,
we get that the tables W r

i � k and Cr
i � k are transformed into the Type V

and Type VI tables depicted in Fig. 5. Fig. 6 gives an overview of
the obfuscated version of N .

By obfuscating a table Cr
i � k, we lose the property that it is equal

to Ĉ r
i � k. To recover this property, we redefine the underlying table

Cr
i � k , such that Cr

i � k equals the code fragment Ĉ r
i � k after the obfus-

cation instead of before the obfuscation. To formalize this, let the
non-linear nibble encodings that are applied to the input and output
of Cr

i � k be given by F � �
F0 � F1 � and G � �

G0 � G1 ��������� G7 � , respec-
tively, where Fl : 24 � 24 is the encoding of the lth input nibble
and Gl : 24 � 24 is the encoding of the lth output nibble. Then it

follows from (1) that the obfuscated version of Cr
i � k is given by

G � A � Cr
i � k �

�
Ar

i � k �
� 1 � F

� 1 �

Hence, we get that the obfuscated version of Cr
i � k is given by Ĉ r

i � k if
we define Cr

i � k as

Cr
i � k � A

� 1 � G
� 1 � Ĉ r

i � k � F � Ar
i � k � (2)

In other words, if we define Cr
i � k as (2), then binary code fragment

Ĉ r
i � k is included in the white-box key in its original, unobfuscated

form. This concludes the definition of the basic version of Medusa.
The amount of program code that can be included in a white-box
implementation by this basic version of Medusa is given by the total
size of the Type VI tables, which is 16,384 per round and 147,456
bytes in total.

We now briefly discuss the performance penalty that is incurred
by Medusa compared to a standard white-box implementation. It
can be shown that if we apply Medusa to all 9 rounds, then the
number of table lookups performed in an execution of the white-
box implementation increases by 1,296. This is 9 per kilobyte of
protected code. The increase in size is 294,912 bytes. Of this size
overhead, 147,456 bytes are given by code. Hence, if we do not
count the code that is protected as size overhead of the white-box
implementation, the size overhead induced by Medusa is equal to
the number of bytes that we want to protect. We emphasize that the
program code that is protected is not affected by Medusa and thus
neither is its execution time.

To put Medusa to practice, we have developed an automatic tool.
The input to the tool is the binary B of the software that has to be
protected and an AES key K. In linear time in �B � , the tool derives
a white-box implementation with a white-box key that contains B
and which implements AES with key K. If desired the algorithmic
part of the white-box implementation is also included in the white-
box key. The binary B is activated by a jump or jump to subroutine
instruction, where the argument of the instruction is an address in
the table.

5. SECURITY OF MEDUSA
In this section we discuss the security of Medusa, where we as-

sume the white-box attack model. As mentioned in the introduc-
tion, this attack model is the most realistic one for software protec-
tion.

Because Medusa only checks the integrity of software during en-
cryption/decryption, it is essential for the system to which Medusa
is applied that encryption/decryption plays an important role. Cor-
respondingly, we assume in this section that it is the goal of an
attacker to modify the software protected by Medusa without los-
ing the ability to decrypt/encrypt properly. Furthermore, the mod-
ifications made in the software have to be such that they result in
an intended change in functionality. Changing the software to a
meaningless bitstring is not considered to be a successful attack.

In Sect. 5.1 5.2, and 5.3 we discuss several strategies for an at-
tacker to attack Medusa. We categorize them into three types. In
the first type of attack an attacker accepts incorrect encryptions or
decryptions. In the second type of attack an attacker tries to realize
a modification of protected code by repairing a white-box key after
it has been invalidated by the modification. In the third type of at-
tack an attacker tries to break the dual interpretation that has been
given to code.

From the security discussion in this section it will follow that,
besides its strengths, Medusa also has its limitations. However,
as mentioned in the introduction, the software tamper-resistance

86

in

out

in

out out out out out out out

(Ai,k
r)-1

Type V

Cr
i,k

in

out

in

out out out out out out out

A1,j
r+1A0,j

r+1 A2,j
r+1 A3,j

r+1

(Ai,k
r)-1

Type VI

MBr
j Wr

i,k°

Figure 5: The Type V and Type VI tables that are used in Medusa and not in a standard white-box AES implementation.

problem is tackled in practice by applying multiple complementary
tools instead of only one. Medusa is an effective new tool for the
toolbox.

5.1 Accepting incorrect encryptions and de-
cryptions

The idea of Medusa is that by including code in a white-box im-
plementation, the integrity of the code is checked each time that
the white-box implementation is executed. However, it is not the
case that the integrity of each individual bit of protected code is
checked each time the white-box implementation is executed. A
bit of a lookup table Ĉ r

i � k is only checked if the table row contain-
ing it is accessed, and Ĉ r

i � k contains 256 rows of which exactly one
is accessed during an execution of the white-box implementation.
Hence, if we would apply the white-box implementation to random
data blocks, the probability that a bit flip is detected in a single
run of the white-box implementation is only 1 � 256. This means
that if an attacker changes only one bit, then, on average, 256 en-
cryptions/decryptions are required before the incorrect white-box
implementation also results in an incorrect operation. This number
will decrease considerably for changes of the software that affect
multiple table rows. We note that the consequences of an incor-
rect operation of a white-box implementation can be made more
serious by choosing a block-cipher mode in which an encryption
(decryption) error propagates to further encryptions (decryptions).

5.2 Repairing a white-box key
As second type of attack we mentioned that an attacker may try

to realize a modification of protected code by repairing a white-
box key after it has been invalidated by a modification. In Sect. 4
we saw that an attack of this type is successful for the naive im-
plementation of Medusa where code tables are included in the non-
obfuscated network of Fig. 2. We indicated that we can compensate
for a bit flip in a table Cr

i � k � Ĉ r
i � k by flipping the bit that is at the

same location in W r
i � k .

By encoding the output of each table W r
i � k with a mixing bijection

MBr
j and by omitting this linear output encoding for each table Cr

i � k,
we have made it more complicated to repair the white-box key after
flipping a bit in a Ĉ r

i � k. It no longer suffices to flip a single bit in W r
i � k ,

but we have to change the value of a complete row in W r
i � k. This

follows from the following theorem, where we prove the relation
between a row in code Ĉ r

i � k and the corresponding row in W r
i � k .

THEOREM 1. Suppose that an attacker wants to XOR a row of
Ĉ r

i � k with a value ∆. Then the invalidated key can be repaired by
XORing the corresponding row in the obfuscated version of table
W r

i � k with the 32-bit value

H � MBr
j
� A

� 1 � G
� 1 � ∆ ��� (3)

where A � �
Ar � 1

0 � j � Ar � 1
1 � j � Ar � 1

2 � j � Ar � 1
3 � j � and G � �

G0 � G1 ��������� G7 � are
the linear encoding and nibble encoding applied to the output of

Cr
i � k and MBr

j and H � �
H0 � H1 ��������� H7 � are the linear encoding

and nibble encoding applied to the output of W r
i � k .

PROOF. From (2) it follows that as a result of change ∆ in Ĉ r
i � k,

the corresponding row p of Cr
i � k is XOR-ed with the value A � 1 �

G � 1 � ∆ � . To compensate for this change, the value A � 1 � G � 1 � ∆ �
also has to be XORed with row p of W r

i � k . However, the attacker
does not have W r

i � k to his disposal, but only its obfuscated version.
That is, a mixing bijection MBr

j and non-linear nibble encodings H
are applied to row p of W r

i � k . As a result, an attacker has to XOR
row p of W r

i � k with (3), which was to be proved.

A straightforward approach for finding the 32-bit value (3) is by
trial-and-error. Note that the linear and nibble encodings in (3) are
unknown to an attacker. In a trial-and-error approach, an attacker
only needs a very limited knowledge of the white-box implementa-
tion. He only has to locate the row in W r

i � k that has to be changed and
not, for instance, the precise content of one or more tables. This is
an advantage for the attacker as we proposed to obfuscate a white-
box implementation by intertwining the lookup tables by applying
code obfuscation techniques. Obviously, the time-complexity of
performing this trial-and-error attack is 232. We now show how
this complexity can be increased.

A round of the white-box AES implementation consists of four
lookup table networks. Each of these four networks derives from
four input bytes a single output column, which also consists of four
bytes. We can increase the 232 complexity by merging the compu-
tation of multiple columns into a single lookup table network. This
means that we either derive a single network that derives all four
output columns from all 16 input bytes, or we derive two networks
in which one network derives the first two columns from the eight
corresponding input bytes and the other network derives the last
two columns from the other eight input bytes. The first option re-
sults in a complexity of 2128 for the trial-and-error attack discussed
and the latter option results in a complexity of 264 for this attack.
However, an increase in complexity is at the cost of an increase in
size and execution time of the white-box implementation. Hence, a
trade-off has to be made between security of the protected program
and performance of the cryptographic algorithm. We here indicate
how we can increase the complexity from 232 to 264. The 2128

complexity can be obtained similarly.
The white-box AES implementation is based on the lookup table

implementation depicted in Fig. 2. A table MCi � j � T r
i � k defines the

contribution of input byte ai � k to an output column b j . We redefine
table MCi � j � T r

i � k, such that it defines the contribution of ai � k to a
pair b j � b j � 1 of output columns. The resulting table is denoted by
T r

i � k. If ai � k contributes to b j , then the row of table T r
i � k consists of

64 bits, the first 32 bits of which are given by the corresponding
row in MCi � j � T r

i � k and the last 32 bits are given by zeros. If, on
the other hand, the input byte ai � k contributes to column b j � 1, then
the order of the 32 zeros and the value of the corresponding row
in MCi

� T r
i � k are swapped. The output columns b j � b j � 1 can now

87

be obtained by XORing the 64-bit values returned by their eight
corresponding tables.

We obfuscate the resulting network in the same way as before.
However, we now use a 64 � 64-bit mixing bijection MBr

j to encode
the rows of T r

i � k. If we next apply Medusa, the table T r
i � k is split into

two lookup tables that, as T r
i � k , consist of 256 rows of 64 bits. After

obfuscation, one of these two tables represents a code fragment.
It can be verified that Theorem 1 also holds for this implemen-

tation of Medusa, where H � MBr
j � A � and G are now 64-bit map-

pings. Hence, if an attacker wants to add a value ∆ to a row of Ĉ r
i � k,

then the complexity of repairing the white-box key by performing
a proposed trial-and-error approach to find the proper change for
table W r

i � k is 264. The increase in complexity is at the cost of a per-
formance penalty. We indicated in Sect. 4 that in a basic Medusa
implementation the additional number of table lookups that is per-
formed in comparison with a standard white-box AES implemen-
tation is 9 per kilobyte of protected code. By going to a complexity
of 264, the additional number of table lookups increases from 9 to
16.5 per kilobyte of protected code. The size penalty of Medusa
increases from being equal to the number of bytes that we protect
to 3 times the number of bytes that we protect, where we do not
count code as size overhead in a white-box implementation.

Above we discussed the complexity of achieving a software tam-
pering if an attacker repairs a white-box key by simply checking all
32, 64, or 128-bit values to find the value (3). More efficient ap-
proaches exist for finding the value (3). These approaches require
an attacker to determine a substantial part of the lookup-table net-
work in which the modified table Ĉ r

i � k is contained. For the basic
implementation of Medusa this means that the attacker has to deter-
mine a substantial part of the network depicted in Fig. 6. However,
we consider this to be hard as we assumed the white-box imple-
mentation to be obfuscated in order to protect against the attack of
Billet et al. [3]. We leave the discussion of other approaches that try
to find the value (3) by other strategies than trial-and-error outside
the scope of this paper.

5.3 Breaking the dual interpretation
As a third type of attack we mentioned attacks that try to break

the dual interpretation of protected code. As a first attack of this
type we consider one that tries to break the dual interpretation of a
code table by removing it from a white-box implementation. That
is, an attacker removes a code table and compensates this in the as-
sociated table W r

i � k . Note that removing all code tables corresponds
to going back to the standard white-box implementation to which
we applied Medusa. Compensating the removal of a code table Ĉ r

i � k
in a table W r

i � k means XORing Cr
i � k and W r

i � k . Above we showed that
repairing a key is difficult after XORing a row of a code table Ĉ r

i � k
with a value ∆. The reason is that it is difficult to find the value (3)
that we have to XOR with the corresponding row in the obfuscated
version of W r

i � k . It can be verified that to XOR tables Cr
i � k and W r

i � k ,
we have to XOR the obfuscated version of W r

i � k with the table

H � MBr
j
� A

� 1 � G
� 1 � Ĉ r

i � k ���
where we use the same notation as in Theorem 1. Similarly as
for finding the value (3), it can be argued that to derive this table
an attacker either has to perform a trial-and-error approach with a
complexity that can increased to a value as large as 2128, or the
attacker must be able to remove the obfuscation put on the white-
box implementation.

An alternative approach to break the dual interpretation of pro-
tected code is to use a ‘shadow image’. Suppose that an attacker
has enough free storage to his disposal to make a shadow image of

the protected software. Van Oorschot, Somayaji, and Wurster [18]
show that by modifying the kernel, calls to instructions that are used
as data can be redirected to the shadow image. The original code
image can subsequently be changed without affecting the use of it
as data, which is done to validate the integrity of the software. As
a solution to this problem Giffin, Christodorescu, and Kruger [12]
propose to let software modify itself. An alternative solution is to
dispose an attacker of the possibility to enlarge the software pro-
gram. This prerequisite is, for instance, satisfied is we have limited
storage.

This attack exploits a vulnerability that is shared by all tech-
niques that protect the integrity of software by including into the
software some kind of self-check. To see this, observe that in a
self-check program code is interpreted as data if it is is used in an
integrity check and that it is interpreted as code, otherwise. Hence,
the attack is not only a threat to Medusa, but also, for instance, to
the techniques that are based on hashing (see Sect. 2).

Instead of modifying the kernel, we can also redirect calls to
instructions that are used as data by implementing this redirec-
tion in the code that contains the calls. That is, in a white-box
implementation calls to data are replaced by calls to the shadow
image. This attack can be optimized such that we do not have to
copy the complete protected software program, but only parts of it
that are changed. Observe that the amount the software that has
to be changed increases if we include into the white-box key the
algorithmic part of the white-box implementation that specifies the
employment of the tables. The same solutions as presented for the
kernel-based attack are useful against this attack.

6. CONCLUSION
Until now, the value of a white-box implementation has only

been in its ability to hide a cryptographic key. In this paper we
give a practical technique that uses a white-box implementation to
make code tamper resistant. Our technique works by giving code
a dual interpretation. It is executable code and key in a white-box
implementation of a block cipher at the same time. This makes
code tamper resistant as changing the code implies that we invali-
date the white-box key. Furthermore, we indicated that it is difficult
for an attacker to repair an invalidated white-box implementation.
Our technique has the advantage that the protected code need not be
modified. In this paper we only discussed a basic implementation
that is able to protect programs of limited size. In the full paper,
we show how to extend the implementation to protect programs of
arbitrary size.

7. REFERENCES
[1] D. Aucsmith. Tamper resistant software: an implementation.

In Proceedings of the 1st International Workshop on
Information Hiding, pages 317–333, 1996.

[2] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai,
S. Vadhan, and K. Yang. On the (im)possibility of
obfuscating programs. In Proceedings of Crypto 2001, pages
1–18, 2001.

[3] O. Billet, H. Gilbert, and C. Ech-Chatbi. Cryptanalysis of a
white-box AES implementation. In Proceedings of the 11th
Annual Workshop on Selected Areas in Cryptography, pages
227–240, 2004.

[4] B. Blietz and A. Tyagi. Software tamper resistance through
dynamic program monitoring. In Proceedings of the 1st
International Conference on Digital Rights Management:
Technology, Issues, Challenges and Systems, 2005.

88

[5] H. Chang and M. Atallah. Protecting software code by
guards. In Proceedings of the 1st ACM Workshop on Digital
Rights Management, pages 160–175, 2001.

[6] Y. Chen, R. Venkatesan, M. Cary, R. Pang, S. Sinha, and
M. Jakubowski. Oblivious hashing: a stealthy software
integrity verification primitive. In Proceedings of the 5th
International Workshop on Information Hiding, pages
400–414, 2002.

[7] S. Chow, P. Eisen, H. Johnson, and P. van Oorschot.
White-box cryptography and an AES implementation. In
Proceedings of the 9th Annual Workshop on Selected Areas
in Cryptography, pages 250–270, 2002.

[8] S. Chow, P. Eisen, H. Johnson, and P. van Oorschot. A
white-box DES implementation for DRM applications. In
Proceedings of the 2nd ACM Workshop on Digital Rights
Management, pages 1–15, 2002.

[9] F. Cohen. Operating system protection through program
evolution. Computers and Security, pages 565–584, 1993.

[10] C. Collberg, C. Thomborson, and D. Low. A taxonomy of
obfuscating transformations. Technical Report no. 148,
Department of Computer Science, University of Auckland,
1997.

[11] J. Daemen and V. Rijmen. The Design of Rijndael. Springer,
2002.

[12] J. Giffin, M. Christodorescu, and L. Kruger. Strengthening
software self-checksumming via self-modifying code. In
Proceedings of the 21st Annual Computer Security
Applications Conference, pages 23–32, 2005.

[13] L. Goubin, J. Masereel, and M. Quisquater. Cryptanalysis of
white box DES implementations. To appear in Proceedings
of the 14th Annual Workshop on Selected Areas in
Cryptography, 2007.

[14] B. Horne, L. Matheson, C. Sheehan, and R. Tarjan. Dynamic
self-checking techniques for improved tamper resistance. In
Proceedings of the 1st ACM Workshop on Digital Rights
Management, pages 141–159, 2001.

[15] M. Jacob, D. Boneh, and E. Felten. Attacking an obfuscated
cipher by injecting faults. In Proceedings of the 2nd ACM
Workshop on Digital Rights Management, pages 16–31,
2002.

[16] H. Link and W. Neumann. Clarifying obfuscation: improving
the security of white-box DES. In Proceedings of the
International Symposium on Information Technology:
Coding and Computing, pages 679–684, 2005.

[17] B. Lynn, M. Prabhakaran, and A. Sahai. Positive results and
techniques for obfuscation. In Proceedings of Eurocrypt
2004, pages 20–39, 2004.

[18] P. van Oorschot, A. Somayaji, and G. Wurster.
Hardware-assisted circumvention of self-hashing software
tamper resistance. IEEE Transactions on Dependable and
Secure Computing, pages 82–92, 2005.

[19] C. Wang, J. Hill, J. Knight, and J. Davidson. Software
tamper resistance: obstructing static analysis of programs.
Technical Report no. CS-2000-12, Department of Computer
Science, University of Virginia, 2000.

[20] P. Wang, S. Kang, and K. Kim. Tamper resistant software
through dynamic integrity checking. In Proceedings of the
2005 Symposium on Cryptography and Information Security,
2005.

[21] G. Wroblewski. General Method of Program Code
Obfuscation. PhD thesis, Wroclaw University of Technology,
Poland, 2002.

[22] B. Wyseur, W. Michiels, P. Gorissen, and B. Preneel.
Cryptanalysis of white-box DES implementations with
arbitrary external encodings. To appear in Proceedings of the
14th Annual Workshop on Selected Areas in Cryptography,
2007.

[23] G. Yuval. Reinventing the travois: encryption/MAC in 30
ROM bytes. In Proceedings of the 4th International
Workshop on Fast Software Encryption, pages 205–209,
1997.

89

