
Data Structures for Limited Oblivious Execution of
Programs while Preserving Locality of Reference

Avinash V Varadarajan
Computer Science Division

UC Berkeley
avinash@cs.berkeley.edu

Ramarathnam
Venkatesan

Microsoft Research
Redmond, WA

Bangalore, India
venkie@microsoft.com

C Pandu Rangan
Department of Computer

Science
Indian Institute of Technology

Madras
rangan@cse.iitm.ac.in

ABSTRACT
We introduce a data structure for program execution un-
der a limited oblivious execution model. For fully oblivious
execution along the lines of Goldreich and Ostrovsky [2],
one transforms a given program into a one that has totally
random looking execution, based on some cryptographic as-
sumptions and the existence of secure hardware. Totally
random memory access patterns do not respect the locality
of reference in programs to which the programs generally owe
their efficiency. We propose a model that limits the obliv-
iousness so as to enable efficient execution of the program;
here the adversary marks a variable and tries to produce a
list of candidate locations where it may be stored in after
T -steps of execution. We propose a randomized algorithm
based on splay trees, and prove a lower bound on such lists.

Categories and Subject Descriptors
E.2 [Data]: Data Structures; F.m [Theory of Computa-
tion]: Miscellaneous

General Terms
Algorithms, Security, Performance, Theory

Keywords
Oblivious Execution, Software Protection, Secure Data Struc-
tures, Oblivious Data Structures, Secure Hardware, DRM

1. INTRODUCTION
Software Protection is one of the most challenging prob-

lems, both to define and to solve in a manner that is prac-
tically attractive. In one of its forms, which is called the
obfuscation problem, impossibility results in the polynomial
time adversary model have been shown in [4]. The other
form, called oblivious simulation problem [2], is studied in
this paper; here purely software solutions are impossible in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DRM’07, October 29, 2007, Alexandria, Virginia, USA.
Copyright 2007 ACM 978-1-59593-884-8/07/0010 ...$5.00.

the sense that software (no matter how encrypted) is just a
binary sequence which a pirate can copy bit by bit and run
on his own machine. Hence to protect software we need some
support from hardware that can hold secrets, decrypt and
execute, encrypt, add authentication tags to code and data
touched, and put it back in main memory. This is needed
since one needs both actual code and data to be hidden. If
one uses simple encryption and authentication of the code,
the attacker can gain information about the code by ob-
serving its memory access patterns. Given such a hardware,
thus many issues simplify and one is left with the problem of
making the memory accesses of data appear random, where
it becomes a data structure problem: efficiently managing
data in memory and accessing it with a given set of per-
formance requirements, to which we now add some security
requirements as well.

Goldreich and Ostrovksy [2] gave the first simulation with
polynomial factor overhead. In this model, given a program

P one constructs a new program P
′

such that P and P
′

are essentially equivalent in terms computations and input
and output, but P ′ has additional security properties. Un-
der suitable security assumptions, they show that a polyno-
mial time adversary can not distinguish between the mem-

ory access pattern of P
′

and the memory access pattern of a
dummy program R which just accesses random locations in
the memory. They prove that if the number of data blocks
in the programs memory is M and the number of memory

accesses is T , P
′

needs to take Ω(T log M) steps, and their
solution actually runs for O(T (log3 T)) steps . We face two
problems that affect the performance significantly.

1. To meet the basic requirement of having to simulate a
sequence of random memory accesses, P ′ has to move
data around in the memory heavily which is costly.

2. Usually, a program P has a lot of its efficiency depen-
dent on the locality of reference (spatial or temporal).
This is a widely used and somewhat a vague concept,
which means that data and code which are visited in
recent past are likely to be visited again. For P the
entropy in an access sequence (formally defined later),
which is a lower bound on the cost per access, can be
a small constant; however, random patterns of P ′ will
have much higher non-constant entropy. Our formal
parameter for quantifying the locality of reference is
the entropy of an access sequence. For typical pro-
grams this quantity is small.

63

In any such transformation, one is bound to have over-
heads. Our goal is to suggest a parameter that is sensitive
to performance by preserving the locality of reference, and
lower the overheads as much as possible. However finding
such a parameter is a non-trivial task. A few words of cau-
tion and caveats are in order. We would need to have com-
plex enough programs, where the number n of variables are
large enough. Given that some programs may have too few
variables, at times it may be necessary to increase the num-
ber by introducing some shadow variables (defined later).
Ideally one would want a model where the adversary does
not know any information other than its run time or pro-
gram’s efficiency i.e., the entropy H(SP) of its access se-
quence to the memory; but even this may be an overkill in
many applications. From efficiency considerations, if a pro-
gram P accesses memory using a sequence whose entropy is
H , we want the access sequence of P ′ to have entropy close
to H . Our model is a step in that direction.

Now we return to the question of a proper model and its
motivation. Consider a simple data access sequence a1, ...am.
It may be helpful to view this as an input to some compres-
sion algorithm, as it clarifies the entropy considerations. As-
sume that this sequence is generated by a stochastic source
with q symbols {σ1, ...σq} each with probability pi, 1 ≤ i ≤ q
and that the sequence is identically distributed and indepen-
dent. We think of storing the sequence in a linked list. At
each time j we look for the symbol aj = σi in the linked
list. If it is already present, we output its position in the
list and we move it to the front. Otherwise, we add it to
the front of the list and output the item. (This is the move
to front compression algorithm [6]). Let us assume that
σi reappears at time j + τ. By standard calculations, ex-
pected value of inter-arrival time τ is 1/pi. (Kac’s theorem
extends this phenomenon to a vastly larger class, namely
stationary ergodic sources). Clearly, it will take ≤ log τ + 1
bits to encode the integer τ , and thus the expected length of
the output sequence

P

i
pi log 1

pi

, this is the entropy of the

source, and is thus optimal. This example strongly suggests
that the inter-arrival times will be an effective parameter
characterizing the achievable efficiency here. There are two
problems in this example:

1. Stochastic vs. Arbitrary inputs: The data (ac-
cess) sequence is stochastic, which may be too simplis-
tic even for standard data structure issues without any
security properties imposed. We need to be able to an-
alyze arbitrary access sequences in P . (Hereafter we
refer to a memory access sequence by P as a program
access sequence and denote by SP).

2. Tampering vs Non-Tampering Adversary: The
adversary must be able to adaptively insert new mem-
ory access requests during its access, after some steps
of P ′ (and thus some information on the coin flips of
the transformation P 7−→ P ′ and that of P ′ may be-
come available); we need to consider this since some
programs may protect only parts of a program or an
attacker may have partially successfully attacked some
portions, where we desire graceful degradation.

To address the first issue, we use splay trees, which of-
fer a very efficient and indeed a practical alternative to
the linked list above. They are self-adjusting and provably

(nearly) optimal in terms of amortized cost for arbitrary se-
quences. We could potentially use other data structures, but
one should expect some extra complications. From a practi-
cal view point the amortized overhead other structures may
be higher. In addition, formal amortized analysis for arbi-
trary access sequences becomes an issue.

Taking a cue from this, our weakening of the model is
based on inter-arrival time (and related quantities) but it
applies to arbitrary sequences SP . Our transformation to
P ′ will add N new variables and will result in SP ′ that will
contain SP but many other random accesses. In SP let a
variable be accessed at the jth step, and then next at time
τ + j, and which will happen in the same order in SP ′ also.
Roughly, we want the adversary who is watching the exe-
cution of P ′ not to be able to predict the location of the
variable correctly during steps i < j + τ : in fact, we want a
suitable lower bound L = L(τ, M, n), on the list of possible
locations given a data that has been accessed by a program.
Here M is the main memory size and n is the number of
variables. Such a lower bound applies to each variable. In
fact, one can amplify the uncertainty by splitting a variable
into k pieces and storing them (at the expense of perfor-
mance) ; for complex enough programs we suggest that this
will suffice. For programs that need more uncertainty, one
may boost N, and the randomization parameters prescribed
below, which in the limit will approach that of [2], thus giv-
ing one a performance tradeoff.

2. RELATED WORK
The problem of oblivious simulation (with polynomial over-

head) of a random-access machine(RAM) was first addressed
in [2]. They show a method for on-line simulation of an ar-
bitrary RAM input by a probabilistic oblivious RAM with a
poly-logarithmic slowdown in the running time. This method
requires a trusted hardware to house and execute the pro-
gram. Furthermore, they provide a lower bound for the slow-
down factor, which makes it prohibitive to use in practice.
In a practical vein, this is studied in [9] and [10]. In [9], they
study address-space randomization(introducing artificial di-
versity by randomizing the memory location of certain sys-
tem components) as a technique to prevent buffer overflow
attacks. In [10], they propose a hardware-assisted method
to hide memory access patterns, and control graphs of pro-
grams. Our contribution is a novel model for “measuring”
the resource requirements of an attack, which we believe is
both general and permits practical solutions. We introduce
new types of adversaries, with appropriate motivations. We
use splay trees to construct a efficient solution in the above
model for the adversaries that we define.

The paper is structured as follows. In Section 2 we for-
mally describe our model. In Section 3 we present our algo-
rithm for limited obliviousness, along with its formal anal-
ysis. In Section 4, we present results of simulations of our
model, to demonstrate its practical value, and in Section 5,
we conclude by describing some applications of our ideas to
problems in DRM.

3. THE MODEL
It is clear that it is not possible to hide the access pattern

of a program by purely software solutions. Hence we intro-
duce an additional piece of hardware in a Random Access
Machine ram called the Oblivious Machine om which func-

64

tions between the CPU denoted as cpu and the Memory
denoted as mem.

A program consists of variables identified by unique name;
for our purposes, as in [2], the values in these variables will
not play a significant role; this can be justified by using
suitable cryptographic primitives, namely, encryption and
authentication. When the program runs in the cpu, these
variables are accessed in a specific order in order to copy
their values to a register or in order to update their values.
These variables are stored in the mem. So, we can view the
cpu sending a sequence of variable names to the om. This
sequence of variable names is called the program access
sequence SP of the program P . Every time the om receives
a variable name, it accesses the location in the mem where
the variable is stored. Hereafter, when we refer to a variable
vi we mean the variable with variable name vi. We proceed
to give more formal definitions.

Definition 1 (RAM). A random access machine ram
consists of a cpu, mem, om interacting with each other as
described below.

Definition 2 (CPU). cpu is the processor of the ram
that runs a program having the variables named v1, v2. . . vn,
that generates a sequence of m variable names ∈ {v1, v2, . . . vn}
called the access sequence. Note that the variable names
form a total order, namely v1 < v2 < . . . < vn.

Definition 3 (Memory). mem is the memory of the
ram having cells of size s bits each. Each cell has a unique
address. The contents of any cell can be directly accessed
using its address. Each cell stores one unique variable, pos-
sibly along with other control information. The following
two operations are possible on mem

1. read(Address a) - returns the contents of the cell with
address a.

2. write(Address a, Cell-Value v) - Copies the s bit value
in v into the cell with address a.

Before the cpu starts generating the access sequence, the
mem is initialized with all the n variables v1, v2, . . . vn, op-
tionally along with some shadow variables.

Definition 4 (Oblivious Machine). om is a “black
box” processor with internal memory cells. Whenever the
om receives a variable name vi in the access sequence, it
must issue a read(addr) call to mem where addr is the ad-
dress of the cell in mem containing vi, possibly along with
read calls to other cells.

Definition 5 (Shadow variables). Before the cpu starts
generating the access sequence, k additional variables for
each variable vi named vi1, . . . vik are also (optionally) added
to mem. These are called shadow variables. These variables
are accessed internally by om in between accessing the actual
variables v1, v2, . . . vn.

3.1 Adversary
An adversary can view all communication between om and

mem and thus he has full knowledge about the memory loca-
tions to which the om performs read/write operation. This
model becomes more interesting in view of recent cache at-
tacks [11] and other side channel attacks using which an at-
tacker can get some information about the memory locations

accessed by a program. The idea is that, a program that
remains oblivious even after revealing its complete memory
transcript, must be secure against such side channel attacks.

The adversary cannot observe any computation performed
within the om nor the contents of its internal memory cells.
Also, the adversary cannot know the clear text of the con-
tents of any cell in mem, as they are encrypted with the
decryption key stored in the internal memory cells of om.
We define different types of adversaries, based on how much
he controls the access sequence SP .

Definition 6 (Adv1). This adversary generates SP and
sends it to cpu before the execution begins.

Definition 7 (Adv2L). This adversary generates the
access sequence SP and sends it to cpu before execution
begins. Further,during the execution he adaptively chooses
many variables u1, u2, ..., uL at execution instants t1, ...tL,
and asks the oblivious machine to reveal their locations in
the memory.

Note that this is a natural model reflecting that the ad-
versary may have gained partial information during execu-
tion; alternately the structure of the original program vari-
ables may be such that once a few variables are successfully
traced, rest of them may be easy to unravel. One model
would be to allow the adversary to insert access sequences
during the execution of P ′ (as if originally they were in P),
but the transformation of P into P ′ inserts its own variables
and accesses, and with out revealing the secret keys that
were involved in specifying how SP is embedded in S′

P , al-
lowing such insertions either does not increase the power of
the adversary significantly, or it would be hard to formalize.
For example allowing the adversary to access the memory
at some location of his choice does not increase his power.

We will later formulate a (T, r)-adversary. The adversary
marks a variable and then tries to make a list of candi-
date locations where that variable might be after T moves.
The above adaptive queries may help the adversary win the
game; in the event he asks for the variable he marked to be
revealed, we declare he loses. Thus without loss of gener-
ality, in that game, the adversary does not query a marked
variable.

Let SP = [a1, a2 . . . am] be an access sequence, where ai ∈
{v1, v2 . . . vn}. Let q(i) be the number of times variable vi

occurs in the access sequence A. The entropy of the access
sequence is defined as

H(SP) =
n

X

i=1

q(i)log(
m

q(i)
)

We use splay trees from [1]. Now we briefly survey the prop-
erties of splay trees relevant for us. They are self-adjusting
binary search trees with an operation called splaying, which
moves any item that is accessed to the root of the tree, and
re-arranges the tree so that it can be still searched as bi-
nary search tree. Certain randomized variations of it have
also been studied in [7] [8]. In this paper we stick to the
original deterministic version in [1]. It has many optimality
properties, and we quote the next two theorems.

Theorem 1 (Static Optimality). For any item i, let
qi be the access frequency of item i, that is, the total number
of times i is accessed. If every item is accessed at least once,
then the total access time is H(SP).

65

Figure 1: Block diagram of the model

By a standard theorem in information theory [12] this is
optimal (within constant factor) since it achieves the access
sequence entropy. What is important is that the analysis
is for any access sequence, not merely those generated ran-
domly & independently or some other stochastic manner.
The access times and depth of the nodes during an access
are closely related to the entropy of the sequence. In an
access sequence, let t(j) denote the total number of items
accessed since the last access of the item being accessed in
the jth access. Then we have the following:

Theorem 2 (Working Set). The total access time is

O(m + n log n +

m
X

i=1

log(t(i) + 1)

What this means is that the cost of accessing the item
at ith step is log(t(i) + 1), and the most recently accessed
items (those in the working set) are the easiest to access.
The term (t(i)+1) is can be viewed as an approximation to
the inter arrival time. Now we define our notion of limited
obliviousness.

Definition 8. ((T, r)-oblivious variable). Just before the
ith variable in the access sequence is accessed, let the adver-
sary label the variable stored in a particular memory cell as
l 1, and let that memory cell be read during the ith access.
If after the (i + T)th access, if the adversary can output a
list of r memory locations such that the current location of l
is present in the list with very high probability , then we say
that the adversary (T, r) breaks the variable. A variable is
(T, r)-oblivious if an adversary cannot (T, r) break it. i.e.,
there is a lower bound > r on the size of the list he has to
output

We do not insist that the variable to be uniformly dis-
tributed in those locations, as we do not assume any statis-
tical properties of the access sequence. Its distribution may
have an entropy proportional to that of access sequence. We
can get an alternate definition for obliviousness if we replace

1Note that this need not be the actual name of the variable
stored in that cell.

r in the above definition by this entropy. Let T = (T1, ..Tn),
and R = (r1, r2, ..., rn). A program is called (T, R)-oblivious
if each variable i is (Ti, ri)-oblivious. We say a program is
f -oblivious if each of its variable is i is (t, r)-oblivious where
t ≤ T, r ≥ f(t, n, M).

4. ALGORITHM SPLAY-RAND(K)
The variables v1, v2 . . . vn are stored in mem in the form

of a splay tree. Each memory cell stores one variable, and
pointers 2 (addresses) to the cells which are its left and right
children in the tree. For analysis of security and perfor-
mance, the values of the variables play no role. We therefore
consider only the variable name to be stored in each cell. We
can think of each cell in mem as a node in the tree. The
pointer to the root cell is stored in one of the internal mem-
ory cells of the om. Therefore the size of each cell s in the
memory is sizeof(variable name) + 2(sizeof(pointer)). When
om receives a variable l ∈ {v1, v2 . . . vn} to be accessed, it
does the following.

1. Starting from the root node, read all the nodes in the
path from the root node to the node containing l, into
the internal memory cells of om.

2. Perform splay at the node containing l, by adjusting
the child pointers in all the nodes in the path, and also
the root pointer

3. Randomly permute the cell addresses of these nodes
before rewriting them back, also adjust the root pointer,
to point to the new address of the root.

For every k variables accessed by the cpu, randomly choose
one of the variable vr ∈ {v1, v2 . . . vn} and perform the same
operations enumerated above.

4.1 Analysis
We now analyze the efficiency of the splay tree operations.

2This could be null.

66

Figure 2: Explaining what permuting a path means in the memory

4.1.1 Performance :
Let the cpu y make T accesses. Let m = T (1 + 1/k).

Let qi be the number of times the variable vi occurs in the
T accesses made by the Adversary. Let xi be the number
of times the vi variable occurs in the T/k random accesses.
Note that xi are distributed according to binomial distribu-
tion each with bias 1

n
. From 1, the expected running time

Splay-Rand(k) is

E(
n

X

i=1

(qi + xi) log(
m

qi + xi

))

=
n

X

i=1

E((qi + xi) log(
m

qi + xi

)))

≤

n
X

i=1

(qi + T/nk) log(
m

qi

)

This can lead to an overhead of O(log n) in the worst case.

4.1.2 Security :
We analyze security for the adversary Adv1. In order to

prove that a variable is (T, r)-oblivious, we need to get a
lower bound on the number of cells which must appear in
the list produced by the adversary for any variable v. We
view the problem as following. In the splay tree, let the
node containing v be marked “red” before it is accessed. Let
every other node be “white”. In view of the adversary, the
red nodes are where the variable v could possibly be, and
white nodes are where it cannot be. When v is accessed for
the first time, all the nodes in the path are permuted, so
every node in the path becomes red after the access. We
analyze how the number of red nodes in the tree increase.
We additionally note that the red nodes in the tree do not
decrease.

Claim (By Induction): The root is always red.
After the first time v is accessed, we can inductively see

that the root of the tree is always red. This is because, after

every access, the accessed node becomes the new root, and
it is red.

We first obtain a lower bound on the expected increase in
the number of red nodes when a random node in the tree is
splayed. Whenever a node is splayed, all the white nodes in
the path from the root to that node become red.

Let S denote a splay tree of n nodes. Let γ(S) be a color
assignment to the splay tree S, which results in a colored
splay tree S̃ with some of the nodes colored red, and the
remaining nodes colored white. Let ρ(S̃) be the operation

of splaying a random node in the tree S̃, and permuting the
nodes in the access path as described in Splay-Rand. Note
that after the operation ρ is performed, some of the white
nodes in the tree S̃ become red nodes. Let R(S̃) be the

number of red nodes in the colored splay tree S̃. We want
to find lower bound on E(S, r, γ) which is defined as the ex-
pected value E(R(ρ(γ(S)))|R(γ(S)) = r)−r . Given a color
assignment γ for a splay tree S, let Wγ,S(vi) be the number
of white nodes in the path from node vi to the root node

in S. Clearly E(S, r, γ) = (1/n)

n
X

i=1

Wγ,S(vi). Consider the

following “no hole”condition for any color assignment γ on S

C1 : In the tree there exists no path p from the root to
any node, with the nodes from the root being vp1, vp2, . . . vpk

where vpk is colored red and ∃i < k and vpi is colored white.

The condition means that in S colored with γ, the red
nodes form a connected subtree along with the root of S.
If R(γ(S)) = r, then there will be r + 1 subtrees of white
nodes ”hanging” from this subtree as ”external nodes”.

Lemma 1. If a color assignment γ1 for a tree S does not
satisfy C1, then E(S, r, γ1) ≥ E(S, r, γ∗). where γ∗ satisfies
C1.

Proof. If some coloring scheme γ1 exists with such a
path p, then by swapping the colors of vpk and vpi, we

67

get a new coloring scheme γ2 where for every node vi in
S Wγ1,S(v) ≤ Wγ2,S and so E(S, r, γ2) ≤ E(S, r, γ2). By
performing similar transformations we finally get a coloring
scheme γ∗ which satisfies C1.

Consider the following coloring scheme with r red nodes
for a tree S
A : Let S(vi) denote the number of white nodes in the sub-
tree rooted at vi. Color the node with maximum value of S
(breaking ties arbitrarily) red, and repeat the same until r
nodes are colored red.

Lemma 2. Let γ∗ be a color assignment obtained from A
. It will satisfy C1. Let γ1 be any color assignment, then
E(S, r, γ1) ≥ E(S, r, γ∗)

Proof. If γ1 does not satisfy C1, then the proof follows
from previous lemma. So, let us assume that γ1 satisfies C1
and is different from γ∗. There exists pairs of nodes u, v u is
colored red in γ1 and white in γ∗ and vice versa for v. Since
both γ1 and γ∗ satisfy C1 u and v are roots of subtrees with
every node (with the possible exception of the root node)
white. From the description of γ∗, Wγ∗,S(u) ≥ Wγ1,S(v),
hence if we swap the colors of u, v in γ1 we get a new scheme
γ2 with E(S, r, γ2) ≤ E(S, r, γ2), continuing we will get the
scheme γ∗.

Therefore, minimum value of E(S, r, γ) for a color assign-
ment γ occurs when γ is obtained from A. Now we char-
acterize the structure of a tree S of n nodes, which has a
minimum value of E(S, r, γ) among all possible tree struc-
tures on n nodes, where γ is obtained from running A on
S. We know that in S, after the color assignment, the r red
nodes form a subtree containing the root of S. Therefore,
the tree structure must have all the white nodes form r + 1
balanced subtrees of the same number of nodes. This fol-

lows from the fact that E(S, r, γ) = (1/n)
n

X

i=1

Wγ,S(vi) where

v′
is are the nodes in the tree. If we consider one particular

subtree S1 with k nodes vs1, vs2 . . . vsk, then the summation

(1/n)
k

X

i=1

Wγ,S(vsi) is minimized if S1 is balanced. One such

structure for S is when S is balanced i.e. a tree in which
all the levels with the possible exception of the last level
are completely filled with nodes. If we estimate the value
of E(S, r, γ) where S is a balanced tree on n nodes and γ is
obtained by running A on T , then it forms a lower bound
for all trees on n nodes and all possible color assignments
on them.

Lemma 3. E(S, r, γ) for a balanced tree on n nodes is
O(log(n/r))

Proof. We use the expression E(S, r, γ) = (1/n)
n

X

i=1

Wγ,S(vi)

to evaluate the required lower bound. To compute the lower
bound, value of Wγ,S(vi) for all nodes vi up to level ⌈log r⌉
to be at least 0, and 1, 2, . . . for each increasing level, up to
at least level ⌈log n⌉. Hence,

E ≥ 2(⌈log r⌉+1) × 1 + 2(⌈log r⌉+2) × 2 + ... +

2(⌊log(n+1)⌋−1)(⌊log(n + 1)⌋ − 1 − ⌈log r⌉)

= 2(⌈log r⌉+1)(1 + 2 × 2 + ... +

2(⌊log(n+1)⌋−2−⌈log r⌉) × (⌊log(n + 1)⌋ − 1 − ⌈log r⌉))

= 2(⌈log r⌉+1)(1 + (⌊log(n + 1)⌋ − 2 − ⌈log r⌉) ×

2(⌊log(n+1)⌋−1−⌈log r⌉)

Thus we have,

E ≥
2(⌈log r⌉+1) + (⌊log(n + 1)⌋ − 2 − ⌈log r⌉)2⌊log(n+1)⌋

n

= O(log
n

r
)

Lemma 4. In Algorithm Splay-Rand(k) any variable is
(n/2, n/2k − log(n/k)) oblivious for the adversary Adv1.

Proof. Let ∆i be the increase in the number of red nodes
after a random splay. Let pi be the probability that ∆i > 0.
If the total number of red nodes < n

2
, then pi > 1

2
. If

the length of the access sequence is m, then the number of
random splays is ℓ = m

k
. We need to find the lower bound of

S =
ℓ

P

i=1

∆i. But lower bound of S is greater than the lower

bound of another random variable T , where T =
ℓ

P

i=1

xi,

where xi are independent bernoulli random variables with
p = 1

2
. Therefore by Chernoff bound prob(T < ℓ

2
− logℓ) <

1
ℓ
. Hence the result.

We can amplify the uncertainty of a particular variable vi

by introducing l shadow variables vi1, vi2 . . . vil, whose access
probability is similar to the variable vi. This will increase
the overhead by a factor of l. These shadow variables are
particularly useful when there are only very few variables in
the program.

To counter Adv2L, the same algorithm is used. However,
in this case, suppose Adv2 asks om to reveal some L lo-
cations in the memory. If the variable vi the adversary is
tracking is one of the L locations, as the variable is declared
to be broken by the adversary, and he restarts the game of
tracking another variable. If the variable that the adver-
sary is tracking does not lie in any of those j locations, then
the number of red nodes for the variable vi is just going to
reduce by j.

5. EXPERIMENTAL RESULTS
We simulated the data structure for n = 1023, and com-

pute the number of red nodes as a function of the number of
accesses made, assuming that the variable being tracked is
the first variable in the access sequence. The average num-
ber of red nodes(in 1000 trials) as a function of number of
accesses is shown in Figure 5.These simulations give and idea
of how effective the random accesses made every k steps in
our algorithm are in causing uncertainty in the actual lo-
cation of the variable being tracked. We observe, than in
practice the number of red nodes after T random accesses
is well above T , and so in our algorithm the number of red
nodes after n/2 accesses is well above n/2k.

68

Figure 3: Simulation Results

6. APPLICATIONS
Our techniques can be use in DRM as well general system

security issues.
First we consider the task of embedding an integer variable

x in software so that it remains oblivious during execution
in the sense defined earlier. We have relied on hardware
assistance which in practice in most cases is unavailable.
Hence we ask what can be done without the hardware sup-
port. Any solution can be used to hide secrets in software.
In its full generality, against polynomial time adversaries,
without secure hardware assistance this task is impossible.
See [4]. Our observation here can be useful when there is
a virtual machine implementation that simulates the hard-
ware feature or some operating system support is available.
In the former case, one may use a randomized virtual ma-
chine, that is individualized to each client and this may be
appropriate in some applications (See [5]). In such a case
our approach can be viewed as a modular development tech-
nique algorithmically and software-wise. Interestingly, even
the simulator’s data and code can be hosted on a limited
oblivious data structure, not unlike bootstrapping a com-
piler.

Since our methods introduce uncertainty only in a limited
sense, it is desirable to amplify by introducing many random
variables xi whose sum is x. Then we use each xi as a
variable in the oblivious data structure, where each of them
is initially stored at random locations. After T steps of the
algorithm each of the variables xi will be potentially stored
in one of many locations, thus x itself will be much harder
to track. It is an open problem to estimate the entropy of
x in such a case, but our empirical measurements indicate
this increases as the run proceeds.

A first application would be whiteboxing. Here one has to
embed the keys of a block cipher such as AES into its soft-
ware. Our techniques can be used to blur the boundaries
of the rounds and hide the secrets well. Another natural
application if this can be used to defend against side chan-
nel attacks that use cache misses and timing. In addition,
it can be reasonably expected that keeping certain critical
data in an oblivious data structure will make it for exploita-
tion by an external attack such as a virus. The last two
items require further research. Use of these data structures

with suitable message and control flow between those data
structures can be helpful in estimating the strength of the
protection schemes. See [3].

7. REFERENCES
[1] D.D. Sleator and R.E. Tarjan. Self-adjusting binary

search trees. Journal of the ACM, 32 : 652(686, 1985).

[2] R. Ostrovsky and O. Goldreich. Software Protection
and Simulation on Oblivious RAMs. Journal of the
ACM, Vol. 43, No. 3, May 1996, pp.431 − 473.

[3] Nenad Dedic, Mariusz Jakubowski, Ramarathnam
Venkatesan,A graph game model for software tamper
protection, Lecture Notes in Computer Science, Proc
of 9th Information Hiding, Brittany France, June
13-15, 2007

[4] B.Barak, O.Goldreich, R.Impagliazzo, S.Rudich,
A.Sahai, S.Vadhan and K.Yang, On the
(Im)possibility of Obfuscating Programs. CRYPTO
2001, LNCS 2139, p. 1 ff.

[5] Anckaert, B.; Jakubowski, M.; Venkatesan, R.
Proteus: Virtualization for Diversified
Tamper-Resistance. Proceedings of the Sixth ACM
Workshop on Digital Rights Management. 2006. pp.
47-57 October 30 2006..

[6] J.L. Bentley, D.D. Sleator, R.E. Tarjan, and V.K.
Wei. A locally adaptive data compression scheme.
Communications of the ACM, 29(4):320–330, 1986.

[7] S. Albers, M. Karpinski Randomized splay trees:
theoretical and experimental results. Information
Processing Letters archive Volume 81 , Issue 4
(February 2002)

[8] M. Furer, Randomized Splay Trees. Tenth Annual
ACM-SIAM Symposium on Discrete Algorithms,
Baltimore, Maryland, 17-19 January 1999

[9] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N.
Modadugu, and D. Boneh, On the Effectiveness of
Address-Space Randomization. 11’th ACM conference
on Computer and Communications Security (CCS),
pp. 298-307, 2004.

[10] X.Zhuang, T.Zhang, Hsien-Hsin S. Lee, S.Pande,
Hardware Assisted Control Flow Obfuscation for
Embedded Processors. CASES’04, September 22–25,
2004.

[11] D.A.Osvik, A.Shamir, E.Tromer, Cache attacks and
countermeasures: the case of AES, proc. RSA
Conference Cryptographers Track (CT-RSA) 2006, to
appear

[12] Abramson, N. Information Theory and Coding.
McGraw-Hill, New York, 1983.

69

