Proteus: Virtualization for Diversified Tamper-Resistance

Bertrand Anckaert

Bertrand.Anckaert@UGent.be
Electronics and Information Systems
Department
Ghent University
Sint-Pietersnieuwstraat 41
9000 Ghent, Belgium

ABSTRACT

Despite huge efforts by software providers, software protec-
tion mechanisms are still broken on a regular basis. Due to
the current distribution model, an attack against one copy of
the software can be reused against any copy of the software.
Diversity is an important tool to overcome this problem. It
allows for renewable defenses in space, by giving every user
a different copy, and renewable defenses in time when com-
bined with tailored updates. This paper studies the possibil-
ities and limitations of using virtualization to open a new set
of opportunities to make diverse copies of a piece of software
and to make individual copies more tamper-resistant. The
performance impact is considerable and indicates that these
techniques are best avoided in performance-critical parts of
the code.

Categories and Subject Descriptors

K.5.1 [Legal Aspects Of Computing]: Hardware/Soft-
ware Protection—-copyrights;licensing; D.2.0 [Software En-
gineering]: General—protection mechanisms

General Terms
Design, Legal Aspects, Security

Keywords

Copyright Protection, Diversity, Intellectual Property, Ob-
fuscation, Tamper-Resistance, Virtualization

1. INTRODUCTION

The value contained in and protected by software is huge.
According to the Business Software Alliance and the Inter-
national Data Corporation [9], $31 billion worth of software
was installed illegally in 2004. Digital containers are in-
creasingly used to provide controlled access to copyrighted
materials. The value of virtual characters and assets in mas-
sively multi-player online games is becoming more and more

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DRM’06, October 30, 2006, Alexandria, Virginia, USA.

Copyright 2006 ACM 1-59593-555-X/06/0010 ...$5.00.

47

Mariusz Jakubowski
Ramarathnam Venkatesan

[mariuszj,venkie] @ microsoft.com
Cryptography and Anti-Piracy Group
Microsoft Research
One Microsoft Way
Redmond, WA 98052, USA

real. For example, a virtual space resort in the game En-
tropia Universe sold for the equivalent of $100,000!. It is
clear that the stakes in protecting software from tampering
are rising, be it to protect copyrighted software or content
or to prevent players from cheating.

When the incentive to tamper is that high, we should
no longer expect to build one super-strong defense that will
withstand attack for an extended period of time. Even hard-
ware solutions are not safe [3]. In the arms race between
software protectors and attackers, the one that makes the
last move often has the winning hand. Acknowledging this
might be a first important step for software providers. If we
accept that a system will be broken, the remaining defense
is to minimize the impact of a successful attack. We need to
make sure that an attack has only local impact, both spa-
tial and temporal. Reducing the impact of an attack might
furthermore reduce the very incentive that leads to attacks.

Diversity is a key enabler in minimizing the impact of an
attack. If we can sufficiently diversify the installed base,
an attack against one instance will not compromise other
instances (spatially renewable defense). If we can further-
more discriminate between legitimate and illegitimate copies
when updating software (temporally renewable defense), an
attacker will ultimately need to revert to time-consuming
manual reverse engineering to craft a specific attack for ev-
ery instance and every update [1]. This can be compared
to the field of cryptography, where, despite major advances,
most keys are short-lived. Conversely, in the domain of soft-
ware, which is not as easily formalized as arbitrary messages,
we may have to rely on renewable security.

The fundamental idea behind diversity is simple: In na-
ture, genetic diversity provides protection against an entire
species being wiped out by a single virus or disease. The
same idea applies to software, with respect to resistance
to the exploitation of software vulnerabilities and program-
based attacks [36]. Existing applications of diversity include
address space layout randomization as a defense against
buffer-overflow attacks and other memory-error related ex-
ploits [8] (available on Linux through PaX and Windows
Vista Beta 2) and instruction-set randomization against bi-
nary code injection attacks [7].

Initially, computer security research was mainly concerned
with protecting the integrity of a benign host and its data
from attacks from malicious code. In recent years, a num-
ber of techniques to defend code against a malicious host
have been introduced, including watermarking [17], obfus-

"http://news.bbe.co.uk/1/hi/technology /4953620.stm

cation [19] and tamper-resistance [4]. Note that we will use
the term software security in the context of the malicious
code paradigm, while we will use the term software protec-
tion in the context of the malicious host paradigm. The
same evolution can be observed with diversity: Most sug-
gested applications are security-oriented, while only recently
diversity has been suggested as a valid approach for soft-
ware protection [1, 41]. It is worth noting that DirecTV,
the largest satellite digital broadcaster, is already fighting
piracy through software updates, which provide a lower cost,
software-based renewable security over traditional smart-
card approaches [41].

While research in diversity for software security benefits
research in diversity for software protection, different rules
apply. For example, most of the run-time diversification
introduced for security could easily be turned off when an
attacker has physical access to the program and execution
environment, unless additional measures are taken. This pa-
per is focussed on the application of software-based diversity
in the context of software protection.

Diversity for software protection presupposes defending
against tampering: If an attacker only wants to gain knowl-
edge about how a certain feature was implemented, it is
sufficient to inspect one instance. This concept of physi-
cal tampering with the program itself is not required in the
context of software security, where some security flaws can
be exploited by crafting inputs using knowledge about the
specific implementation. This is due mainly to the failure of
certain programming languages to capture semantics fully.

Diversity can be introduced at any point between the
specification of the desired user-observable behavior of the
program and the execution of the program. Diversity for
fault tolerance, for example, has typically been obtained by
letting different groups of programmers create different im-
plementations of a module given only its specifications. Di-
versity for security is typically introduced during the loading
or execution of a program. This has the advantage that the
same version of the software can be distributed, which al-
lows software providers to leverage the near-zero marginal
cost of digital duplication.

In this paper, we look at automated diversification of the
distributed copies. As Internet distribution of software gains
adoption, we believe this to be increasingly economically vi-
able. However, many issues remain, including more complex
debugging, more complex maintenance and updating proce-
dures, etc. These aspects are beyond the scope of this paper.

We are developing a framework, PROTEUS, to study the
practical limitations and possibilities of diversification. PRO-
TEUS targets a managed, portable and verifiable environ-
ment. This stems from our belief that protection should not
come at the cost of these productivity-increasing features.
Moreover, we will show that managed code can be as pro-
tected as native code running in an emulatable environment.

In essence, PROTEUS compiles an existing bytecode bi-
nary into diverse, more tamper-resistant copies. The applied
techniques rely heavily on virtualization. Virtualization pro-
vides us with more freedom, allowing us to design our own
Instruction Set Architecture (ISA) and to abandon tradi-
tional execution models. This freedom is used for two main
goals:

e To increase tamper-resistance and

e To introduce diversity.

48

High-level concepts and techniques are presented in Sec-
tion 3, while more implementation specific details are given
in Section 4. Section 5 provides an evaluation of the time
implications of these techniques, and Section 6 concludes.
We begin with an overview of related work to situate ours
within the body of existing research.

2. RELATED WORK
2.1 Diversity

Diversity for Fault Tolerance:

Research in software diversity originates in the domain of
software-engineering. Software diversity is used for the pur-
pose of fault tolerance. As such, it is an extension of the
idea to use redundant hardware to detect and tolerate phys-
ical faults. The two main directions here are recovery-block
software [34] and N-version programming [5]. Recovery-
block software requires an acceptance test and the imple-
mentation with the highest priority to pass the test wins.
N-version programming compares the outputs produced by
several versions and propagates only consensus results.

Unlike our approach, fault tolerance is not intended to
protect against adversarial attacks.

Diversity in the Malicious Code Model:

Diversity as a security mechanism against malicious code
attacks was proposed by Cohen [15] under the term program
evolution. A number of code transformations which guar-
antee semantic equivalence are discussed, including equiv-
alent instruction sequences, code reordering, variable sub-
stitutions, inlining and outlining, adding garbage, encoding
and decoding, simulation and runtime code generation.

Pu et al. [33] describe a toolkit to manage diverse im-
plementations of software modules. The idea is to have a
set of specialized versions of a module. When an attack is
detected, modules are replaced by different versions.

Forrest et al. [23] focus on diversifying data and code lay-
out, with an emphasis on protection against buffer overflow
attacks. Examples include padding stack frames, random-
izing the location of local and global variables and treating
the stack more like a heap instead of a contiguous stack.

Address space layout randomization, which randomizes
the location of the stack, heap and shared libraries, has al-
ready made its way into widely distributed operating sys-
tems, mainly to fortify systems against the exploitation of
memory-related errors. This form of protection is available
on Linux via PaX and in Windows Vista Beta 2.

Chew et al. [12] have added diversification of system-call
mappings, while Bhatkar et al. [8] extend the idea of address
space layout randomization by randomizing the addresses of
datastructures internal to a process through: (i) Permuta-
tions of code and data and (ii) The insertion of random gaps
between objects.

Randomized instruction set emulation [7, 27] has been
proposed as a defense against binary-code-injection attacks.
The idea is to scramble the program using pseudo-random
numbers when it is loaded and to descramble it prior to
execution.

Diversity in the Malicious Host Model:

Diversity in the context of malicious code attacks has re-
ceived less attention. In this context, different rules apply:
One needs to make sure that the diversification cannot eas-
ily be turned off. This can be assumed in the malicious-code
model, since an attacker has no physical access to the code.

Anckaert et al. [1] discuss the application of diversity in
the context of software-piracy prevention. In their scheme,
different users receive different versions to assure that users
cannot share an attack. Tailored updates need to assure re-
newable defenses in time and protect against the case where
a full cracked version is distributed.

Zhou et al. [41] discuss an application under the Next
Generation Network Architecture and present code trans-
formations based upon algebraic structures compatible with
32-bit operations to diversify code.

Secured Dimensions® and their .NET obfuscation system
appear to have similar goals: Virtualization is used to make
the code more tamper-resistant and they offer vendor spe-
cific virtual machines. However, their methods and imple-
mentation details have not been publicly disclosed.

2.2 Defenses in the Malicious Host Model

Note that we will limit our discussion to software-only
approaches. We will not discuss defense mechanisms that
rely on hardware, such as dongles, smart cards or secure
(co)processors [24]. Likewise we omit techniques where crit-
ical parts of the application are executed by a server to pre-
vent the client from having physical access.

Software Fingerprinting:

Watermarking embeds a secret message in a cover mes-
sage. Fingerprinting is a specific form of watermarking where
a different message is embedded in every distributed cover
message. This should make it possible to detect and trace
copyright violations. As such, software fingerprinting [17,
21, 38] is closely related to software diversity, as it requires
unique versions. Collusion attacks are usually hindered by
diversifying other parts of the program.

Software Obfuscation:

The goal of software obfuscation [6, 19, 39] is to defend
against reverse engineering and program understanding. As
such, it can be used as a first layer of defense against intel-
ligent tampering. However, this is not the primary goal of
these techniques. For example, obfuscation could be used
to prevent the understanding and reuse of a proprietary al-
gorithm as well. Many transformations used for obfuscation
can be easily parametrized to generate different versions of a
program and thus reused in the context of software diversity.

Tamper-Resistance:

The goal of tamper-resistance [4] is to prevent modifications
in the behavior of the program. Techniques include check-
summing segments of the code [10, 25]. However a generic
attack against such schemes has been devised [40]. Other
techniques [11] hash the execution trace of a piece of code.

We refer to other overview articles for a more extended

discussion of related work [18, 30, 36].

3. VIRTUALIZATION

We are developing a framework to study the applicability
of virtualization for diversification and tamper-resistance.

The framework is targeted at rewriting managed MicroSoft
Intermediate Language (MSIL) binaries. We have chosen to
rewrite binaries in information-rich intermediate languages
because they are generally assumed to be more vulnerable
to attacks than native binaries and because we feel that pro-
tection should not come at the cost of decreased portability
or verifiability.

2http:/ /www.secureddimensions.com

49

3.1 Design Principles for an ISA Targeted at
Software Protection

Having the freedom to design our own ISA leaves us with
many choices to make. We would like to use this freedom
of choice to create a set of different versions of the program
with the following properties: (i) Each version in the set has
a reasonable level of defense against tampering and (ii) It
is hard to retarget an existing attack against one version to
work against another version.

We will use some of the freedom to achieve the first goal,
while the remainder will be used to create sufficiently di-
verse versions. This involves a tradeoff: The many choices
result in a large space of semantically equivalent programs
that we can generate. We can consider this entire space to
allow for more diversity. Alternatively, we can consider only
parts of this space which we believe to be more tamper-
resistant than other parts. The design principles to steer
towards tamper-resistant properties are: (i) Prevent static
analysis of the program; (ii) Prevent dynamic analysis of the
program; (iii) Prevent local modifications and (iv) Prevent
global modifications.

The first two are closely related to the problem of ob-
fuscation, while the latter two are more tamper-resistance
oriented. However, intelligent tampering requires at least
some degree of program understanding, which is typically
gained from observing the static binary, observing the run-
ning executable or a combination and/or repetition of the
two previous techniques.

3.2 Evolution of Design Principles for ISAs

It seems as if these design principles conflict with the trend
in general purpose ISA design: The concept of the Com-
plex Instruction Set Computer (CISC) has lost ground to
Reduced Instruction Set Computer (RISC). Because of the
complexity of CISC instruction sets, often accompanied by
fewer restrictions on the binary, CISC binaries are usually
more complex to analyze than RISC binaries. The com-
plexity of CISC architectures can complicate analysis and
allows for a number of tricks that cannot be used as eas-
ily on RISC architectures. For example, Linn et al. [28]
have exploited variable instruction lengths and intermixing
of code and data to try and get the disassembler out of syn-
chronization. Self-modifying code [2, 29] is facilitated on
the TA32 because explicit cache flushes are unnecessary to
communicate the modifications to the CPU.

Other research, such as control-flow-graph flattening [13,
39], does not rely on architecture or CISC-specific features,
and can thus be applied to RISC architectures as well.

More recently, the advent of Java bytecode and managed
MSIL has promoted ISAs that are even more easily ana-
lyzed. This is due to a number of reasons. First, binaries
are typically not executed directly on hardware, but need
to be emulated or translated into native code before exe-
cution. To enable this, boundaries between code and data
need to be known and there can be no confusion between
constant data and relocatable addresses. This, of course,
comes with the advantage of portability. Besides portability,
design principles include support for typed memory manage-
ment and verifiability. To assure verifiability, pointer arith-
metic is not allowed, control flow is restricted, etc. To enable
typed memory management, a lot of information needs to
be communicated to the executing environment about the
types of objects.

All of these design principles have led to binaries that
are easy to analyze by the executing environment, but are
equally easy to analyze by an attacker. This has led to
the creation of decompilers for both Java (e.g., DejaVu and
Mocha) and managed MSIL binaries (e.g., Reflector).

As a result of this vulnerability, a vast body of valuable
research can be found in the protection of Java bytecode [6,
16, 19, 20]. Note that most of the developed techniques
are theoretically applicable to CISC and RISC binaries as
well, while in practice their application is complicated by
the absence of rich information.

One can clearly observe a trend where the design prin-
ciples of ISAs are increasingly in conflict with the design
principles that would facilitate software protection.

Surprisingly, one way to counter this trend is to add an
additional layer of virtualization. We will emulate our own
ISA on top of the portable, verifiable, managed Common
Language Runtime (CLR) environment. This idea has been
mentioned in academic literature as table interpretation [19].

3.3 Managed Binaries can be as Protected as
Native Binaries Running on an Emulat-
able Environment

While this can be easily proved by the following construc-
tion, it is somewhat contrary to common beliefs. Further-
more, it might facilitate the adoption of a managed envi-
ronment, which is now often avoided by software providers
because of the fear of losing their investment if their code
can easily be reverse engineered.

Consider the following construction: (i) Write an emulator
for the environment which runs on top of the CLR; (ii) Take
the binary representation of a binary and add it as data
to the emulator and (iii) Have the main procedure start
emulation at the entry point of the original executable.

Clearly, this is now a managed, portable and verifiable
binary. Furthermore, it is as protected as a native binary,
as the attacker of a native binary could easily take the native
binary and follow the above construction himself.

3.4 Reuse Experience from CISC era

Experience and intuition tell us that the average IA32 bi-
nary is far more complex to understand and manipulate than
the average managed binary. One might wonder what the
cause is for the observed complexity. Clearly, there must be
some underlying reasons. We believe that three key factors
are in play: (i) Variable instruction length; (ii) No clear dis-
tinction between code and data and (iii) No clear distinction
between constant data and relocatable addresses.

Since instructions (opcode + operands) can have variable
length (1-17 bytes), instructions need only be byte-aligned,
and can be mixed with padding data or regular data on the
TA32, disassemblers can easily get out of synchronization.
This has been studied in detail by Linn et al. [28].

As there is no explicit separation between code and data,
both can be read and written transparently and used inter-
changeably. This allows for self-modifying code, a feature
that is renowned for being difficult to analyze [14] and has
previously been exploited to confuse attackers [26, 29].

The feature that the binary representation of the code can
easily be read has been used to enable self-checking mech-
anisms [10, 25]. The absence of restrictions on control flow
has enabled techniques such as control flow flattening [13,
39] and instruction overlapping [15].

50

While we know of no explicit publication which specifi-
cally exploits this feature, the fact that addresses can be
computed, that they cannot easily distinguished from reg-
ular data, complicates the tampering with binaries: An at-
tacker can only make local modifications, as he does not
have sufficient information to relocate the entire binary.

These observations are an important source of ways to
generate a hard to analyze ISA. So far, we have provisions
for variable length of instructions (see Section 4.1.2). Intro-
ducing self-modifying code in the ISA is considered future
work. A technique which uses the binary representation of
parts of the program for increased tamper-resistance is dis-
cussed in Section 4.1.4 and could thus be considered related
to some self-checking mechanisms. Clearly, the restrictions
on the control flow for managed code are not present in the
custom ISA; and we consider it future work to implement
techniques related to control-flow flattening and instruction
overlapping.

4. PROTEUS

Proteus, son of Oceanus and Thetys, is a sea-god from
Greek and Roman mythology. He can foretell the future,
but will change shape to avoid having to; he will answer
only to someone who is capable of capturing him. Likewise,
software often “knows” things it does not want to share in an
uncontrolled manner. For example, trial versions may con-
tain the functionality to perform a given task, but a time
limitation might prevent from using it for too long. In dig-
ital containers, software is often used to provide controlled
access to the contents. Mobile agents may contain crypto-
graphic keys which need to remain secret. Our approach will
be to change shapes as well, to make sure that the attacker
has a hard time attacking the program. We will: (i) Make
the program different for different installations; (ii) Differ-
ent over time through tailored updates and (iii) Different
for every execution through runtime randomizations (future
work). Hence, we have named our framework PROTEUS.

PROTEUS is written on top of the Phoenix RDK?, a soft-
ware optimization and analysis framework. The overall de-
sign is given in Figure 1. The frontend reads a managed
MSIL binary, runs a few times over the code to determine
the ISA, and produces an XML description of the virtual
machine. Once the ISA has been determined, it can rewrite
the original binary into the custom bytecode language.

The backend of PROTEUS reads the XML description and
creates a managed d11 for the custom virtual machine. The
separation in a backend and frontend is somewhat artificial,
but it does allow for a more modular design and facilitates
debugging. For example, the backend can be instructed to
output C# code instead of compiling a d11 directly, which
can then be inspected and debugged separately.

In the current implementation, parts of the original bi-
nary are retained: We will simply rewrite every function
into a wrapper which calls the VM, passing the necessary
arguments. This has been illustrated in Figure 2. Note
that we pass all arguments in an array of Objects. For in-
stance functions, this includes the this pointer as well. As
all functions will be in a single structure, we need to pass an
identification of the entry point of the function. Finally, the
returned Object may needs to be cast to the return type of
the original function.

3http:/ /research.microsoft.com /phoenix

ORIGINAL
MSIL
BINARY

S
PROTEUS
FRONTEND

w v
w»

|

=)

r(///

VM
DESCRIPTION @

CUSTOM
BYTECODE
BINARY

s\

03

PROTEUS *

BACKEND

Wl v N~

S
CUSTOM
VM

L

RESULTING BINARY

Figure 1: The Overall Design of PROTEUS

public static void main(string []
Object [] array = {args};

args) {

InvokeVM (array, PCyx=
} L
function

Entry point of

public Int32 foo(Int32 i, Int32 j){
Object [] array = {this, 1, 3J);
Object ret = InvokeVM(array, PC);
return (Int32) ret;

REWRITTEN MSIL BINARY

CUSTOM
CUSTOM W
BYTECODE
—

VM.dil

Figure 2: Converting Functions into Stubs

Rewriting the original program on a per-function basis
has the advantage that we do not have to worry about
things like garbage collection at this time, as datastructures
are still treated as in the original program. Future work
will include obfuscating, diversifying and making data more
tamper-resistant as well.

We have already argued the choice for managed code. The
choice between managed MSIL for the CLR and Java byte-
code for the Java Runtime Environment is somewhat ar-
bitrary. Managed MSIL is very similar to Java bytecode.
As such, the results from this research can easily be trans-
ferred to that domain. Likewise, results from obfuscating
Java bytecode can be applied to managed MSIL binaries.
Therefore, we will focus our attention on the concepts that
have not been studied in the context of Java bytecode. In
particular, we will focus on the techniques that are a re-
sult of the added virtualization layer. We refer to the work
of Collberg et al. [16] and the results of the Self-Protecting
Mobile Agents project [6, 22] for other techniques for the
protection of bytecode binaries.

4.1 Automated Protection

However much we want to protect software, we do not
want it to complicate the software development cycle too
much. Therefore, we introduce protection automatically at
a point where human interaction is no longer required.

51

It is theoretically possible to generate an unmanageable
number of diverse semantically equivalent programs: Con-
sider a program with 300 instructions and choose for every
instruction whether or not to prepend it with a no-op. This
gives us 2% different semantically equivalent programs and
2300 is larger than 10%7, the estimated number of particles
in the universe.

However, uniqueness is not enough: The resulting pro-
grams should be diverse enough to complicate the mapping
of information gained from one instance onto another in-
stance. Furthermore, the resulting programs should prefer-
ably be non-trivial to break. While it is unreasonable to ex-
pect that the codomain of our diversifier will include every
semantically equivalent program, we do want to maximize
the codomain of the diversifier. The bigger the space is, the
easier it will be to obtain internally different programs.

We need to start from an existing implementation of the
semantics, rather than from the semantics itself. Through
a number of parametrizable transformations we want to ob-
tain different versions. In order to keep the diversity man-
ageable, we have identified a number of components of the
ISA that can be individualized independently. These com-
ponents can be individualized in an orthogonal way, as long
as the interfaces are respected. This allows for a modular
design and independent development. These components
are (see Figure 3):

1. Instruction semantics;

2. Instruction encoding;

3. Operand encoding;

4. Fetch cycle and

5. Program counter and program representation.

The above components are sufficient to generate a binary
in the custom bytecode language; i.e., these determine the
ISA. We can further diversify the virtual machine itself.

6. Diversifying the implementation of the VM.

The code in Figure 3 gives a high-level overview of the
execution engine. The main internal datastructures of the
VM are shown as well. The arrows indicate interface de-
pendence. For example, DecodeOpcode expects to be able
to fetch a number of bits. The diversifiable parts have been
numbered in the order they will be discussed.

For each of these components, we will now discuss what
the choices are and how these choices could be used to steer
towards more tamper-resistant features.

4.1.1 Instruction Semantics

Freedom of choice:

To allow for the diversification of instruction semantics,
we use the concept of micro-operations. An instruction in
the custom bytecode language can be any sequence of a
predetermined set of micro-operations. The set of micro-
operations currently includes verifiable MSIL instructions
and a number of additional instructions to: (i) Communicate
meta-information required for proper execution and (ii) En-
able additional features such as changing semantics (see Sec-
tion 4.1.2). This can be compared to the concept of micro-
operations (pops) in the P6 micro-architecture [31]. Each
TA32 instruction is translated into a series of pops which are
then executed by the pipeline. This could also be compared
to the super-operators by Proebsting [32]. Super-operators
are virtual machine operations automatically synthesized
from smaller operations to avoid costly per-operation over-
heads and to reduce executable size.

We have provided stubs to emulate each of the micro-
operations and these can simply be concatenated to emu-
late more expressive instructions in our custom bytecode
language. Note that many of these emulation functions rely
heavily upon reflection.

For example, consider the following MSIL instructions
(addition, load argument and load constant) and their em-
ulation stubs (simplified):
ldarg Int32:

EvaluationStack.Push(

ArgsIn.Peek(getArgSpec(insNr));

ldc Int32:
EvaluationStack.Push(

getInt32Spec(insNr));

add:
EvaluationStack.Push(

(Int32)EvaluationStack.Pop() +

(Int32)EvaluationStack.Pop());

Suppose that, during the instruction selection phase, we
want to create a custom bytecode instruction with the fol-
lowing semantics: CustomIns n i: load the n* argument,
load the constant i and add these two values.

This instruction is then assigned to a case-statement, e.g.
1, in a large switch-statement. The case-statement is the
concatenation of the different emulation stubs of the micro-
operations:
switch(insNr){
case 1:
//Concatenation of stubs
break;

}

Tamper-resistance:

Not knowing the semantics of an instruction will compli-
cate program understanding, as opposed to having a manual
in which semantics is specified. We can however go one step
further and choose our instruction semantics to adhere to
some design principles for a tamper-resistant ISA.

Conditional Ezecution:

To further promote merging slightly differing pieces of code,
we use conditional execution. In the presence of conditional
execution, instructions can be predicated by predicate regis-
ters. If the predicate register is set to false, the instruction is
interpreted as a no-op, otherwise, it is emulated. The idea
is to set these registers on or off along different execution
paths to be able to outline slightly different pieces of code.

Limited Instruction Set:

The VM is tailored to a specific program. Therefore, we
can make sure that the VM can only emulate operations
that are required by that program. We can further limit the
instruction set. A common way for an attacker to remove
undesired functionality (e.g., a license check or decreasing
the health of a wounded game character) is to overwrite that
functionality with no-ops. There is little reason to include
a no-op instruction in our custom ISA and not having this
instruction will complicate padding out unwanted code.

Statistics furthermore show that, for example, of the in-
teger literals from some 600 Java programs, 1.4 million lines
in all, 80% are between 0-99, 95% are between 0 and 999
and 92% are powers of two or powers of two plus or minus
1 [21]. This allows us to limit the number of representable
operands, again limiting the freedom of the attacker.

Another example can be found with conditional branches.
Usually, there are two versions for each condition: Branch
if condition is set and branch if condition is not set. Since
this is redundant, we could rewrite the code so that only
one version is used and not include its counterpart in the
ISA. This may be useful, for example, when a license check
branches conditionally depending on the validity of the serial
number: It will prevent the attacker from simply flipping the
branch condition.

4.1.2 Opcode Encoding

Freedom of choice:

Once instruction semantics has been determined, we need
to determine an opcode encoding for those instructions. The
size of all opcodes for traditional architectures is usually con-
stant or slightly variable. For example, MSIL opcodes are
typically one byte, with an escape value (Oxfe) to enable
two byte opcodes for less frequent instructions. The limited
variability facilitates fast lookup through table interpreta-
tion. But, more generally, any prefix code (no code word
is a prefix of any other code word) allows for unambiguous
interpretation.

CODE

DATASTRUCTURES

While
{

(true)

(4)

CUSTOM
BYTECODE
BINARY

(5)

DecodeOpcode

()
(©)
DecodeOperands

EmulatelIns

Fetch

.
1) <{;anipulateMethodState _—

PC

Local Local
Variables Allocation
(6)
Evaluation w
Stack

CURRENT METHODFRAME

Figure 3: The Execution Model and the Interfaces

In its most general form, decoding opcodes to semantics
can be done through a binary-tree traversal. Decoding starts
in the root node; when a ’0° bit is read, we move to the left
child node; when a ’1° bit is read, we move to the right child
node. When a leaf node is reached, we have successfully
decoded an opcode. This is illustrated in Figure 4. The leaf
node contains a reference to the case-statement emulating
the semantics of the instruction.

If we allow arbitrary opcode sizes, without illegal opcodes,
the number of possible encodings for n instructions is given
by the following equation:

e)
n

The fraction represents the number of planar binary trees

with n leaves (Catalan number), while the factorial repre-
sents the assignment of opcodes to leaves.

If we choose fixed opcode sizes with the shortest possi-

ble encoding, i.e. [logz2(n)] bit, we might introduce illegal

opcodes. In this case, the number of possible encodings is

given by:
gltogz(n)]
n .

Many more possibilities would arise if we allowed illegal
opcodes for other reasons than minimal fixed opcode sizes.
However, this increases the size of a binary written in the
custom ISA without any clear advantages. Therefore we do
not consider this option.

We currently support the following modes: (i) Fixed length
opcodes with table lookup; (ii) Multi-level table encoding to
enable slightly variable instruction sizes (escape codes are
used for longer opcodes) and (iii) Arbitrary-length opcodes
with binary-tree traversal for decoding.

Tamper-resistance:

Again, not knowing the mapping from bit sequences to se-
mantics introduces a learning curve for the attacker, as op-
posed to having that information in a manual. Again, there
are a number of additional tricks to choose this mapping in
such a way that it allows for tamper-resistance properties.

Variable Instruction Sizes:

nl.

53

We already know that variable instruction sizes introduce
complexity in disassembling CISC binaries. When designing
our own ISA, we can introduce even more variance in the
length of opcodes.

Variable instruction sizes can also be used to make local
modifications more complicated. It is easy to see how a
larger instruction cannot simply replace a smaller instruc-
tion, because it would overwrite the next instruction. We
can also make sure that smaller non-control-transfer instruc-
tions cannot replace larger instructions. This can be done by
making sure that they cannot be padded out to let control
flow to the next instruction.

For example, if we have 64 instructions, we could assign
each of them a unique size between 64 and 127 bits. Clearly,
larger instructions do not fit into the space of smaller in-
structions. Smaller instructions do fit in the space of larger
instructions, but when control falls through to the next bit,
a problem arises: There is no instruction available to pad
out the remaining bits with no-ops to make sure that control
flows to the next instruction. Under this scheme it is useful
to make control-transfer instructions the longest, to keep an
attacker from escaping to another location where he can do
what he wants.

Unary Encoding:

To entangle the program further, we could try and maxi-
mize physical overlap. We want to be able to jump into the
middle of another instruction, and start decoding another
instruction. We could facilitate this by choosing a good en-
coding. For example, we could use unary encoding to encode
the opcodes (0,01, 001, ..., 0%%1); there is a good chance that
we find another instruction when we jump one bit after the
beginning of an instruction. This has been illustrated in
Figure 5. Four instructions have been assigned an opcode
using unary encoding. We can see that if decoding is started
at the second bit of the 'divide’ instruction, the ’subtract’
instruction is revealed. Likewise, looking at the last bit of
the ’divide’, ’subtract’ and 'multiply’ instruction reveals the
’add’ instruction.

Non-Local Semantics:

Having a unique bytecode language for every distributed
copy is clearly a major barrier for attackers. There is no
documentation available on: (i) The mapping from bit pat-

Root

Level 3

O Q Leaves

Figure 4: Prefix Code Decoding with Binary Tree

add

Figure 5: Unary encoding to promote physical over-
lap

terns to instructions; (ii) The semantics of instructions; (iii)
The mapping from bit patterns to operands; (iv) The rep-
resentation of data-structures; Etc.

However, this can eventually be learned through static or
dynamic inspection. We can further complicate this process
by making sure that a bit pattern has different meaning
along different execution paths.

A binary program is just a sequence of ’1’s and ’0’s,
which is given meaning by the processor. The meaning be-
tween bit patterns and interpretation is typically fixed by
the ISA. On traditional architectures, if the opcode of a cer-
tain instruction is represented by a given bit pattern, this
pattern is constant for every binary, everywhere it occurs.
We want to make this variable.

A bit pattern should only be assigned meaning depend-
ing on previously executed code. The first observation we
need to make if we want the interpretation to depend on
previously executed code is that, depending on the (fully
specified) input, we can get to a program point along differ-
ent execution paths. However, we still want to have control
over the interpretation of bits at a given program point. To
accommodate this variability, we have chosen to make inter-
pretation changes explicit in the ISA, rather than implicit
as a side effect of some other event.

Another consideration that we need to make is that it
should not be overly complex to get the executing environ-
ment in a specific interpretation state. That is to make
sure that, if we can get to a program point from different
execution paths in different interpretation states, we can rel-
atively easily migrate to a single target interpretation state
no matter what those different interpretation states are.

The approach we have taken is the result of the following
observation: If we look back at Figure 4, it is easy to see that
changing interpretation is nothing more than rearranging
the decoding tree.

Taking into account the previous observations, we can
only allow a limited form of diversification. To this end, we
have chosen a level at which subtrees can be moved around.
This choice is a trade-off between how many different inter-
pretations are possible and how easy it is to go to a fixed
interpretation from a set of possibly different interpretation
states. We have chosen the third level. Assuming that the
shortest opcode is 3 bit, this allows for 8! interpretation
states, while any interpretation state is reachable in at most
8 micro-operations.

The micro-operations we have added to the set of MSIL
micro-operations to enable this are:

e Swap(UInt3 positionl, UInt3 position2), which ex-
changes the nodes at position positionl and position2
and

e Set(UInt3 label, UInt3 position), which exchanges
the node with label label (wherever it may be) and
the node at position position.

In the case of table interpretation, this is implemented as
a two-level table interpretation. The first level simply refers
to other tables which can be swapped.

4.1.3 Operand Encoding

As our micro-operations largely correspond to MSIL in-
structions, the operand types correspond largely to MSIL
operand types. Micro-operation emulation stubs that use
operands use function calls to ensure that opcode encoding
can be diversified orthogonally to what we have previously
discussed. These callbacks furthermore pass an argument
insNr identifying the custom VM instruction from which
it was called (see example Section 4.1.1). This allows us
to encode operands differently for different custom VM in-
structions. Note that due to the concatenation of stubs, an
arbitrary number of operands can follow the opcode.

Similar observations on diversifying the opcode encoding
can be made as for instruction encoding.

4.1.4 Fetch Cycle

Diversifying the fetch cycle is really an artificial form of
diversification. In its most simple form, the fetch cycle sim-
ply gets a number of bits from the custom bytecode binary,
depending on the current Program Counter (PC). However,
we will allow a number of filters to be inserted into this
phase to allow for improved tamper-resistance. Basically,
they will transform the actual bits in the binary to the bits
that will be interpreted by the VM.

These filters will typically combine the requested bits with
other information. For example, the actual requested bits
may be combined with other parts of the program. This way,
the program becomes more inter-dependent as changing one
part of the program may impact other parts as well. Other
applications include combining it with a random value de-
rived from a secret key, or combining it with the program
counter to complicate pattern matching techniques.

4.1.5 Program Representation and Program Pointer

We are very familiar with the traditional representation of
the code as a linear sequence of bytes. The program counter
then simply points to the next byte to execute, and control
transfers typically specify the byte to continue execution at
as a relative offset or an absolute address. This could be
seen as representing the code as an array of bytes.

However, it is worth noting that an array is not the only
datastructure that can be used to represent code. In fact,
almost any datastructure will do. We could represent the
code as a hash table, as a linked list, as a tree structure, etc.

So far, we have implemented representing the code as a
splay tree [35]. Related research includes keeping data in a
splay tree [37]. Splay trees have a number of advantages:
They are self-balancing, which will allow for automatic re-
location of code. Furthermore, they are nearly optimal in
terms of amortized cost for arbitrary sequences. Finally, re-
cently accessed nodes tend to be near the root of the tree,
which will allow us to partially leverage temporal locality
present in most executables.

Because of the self-balancing property, a piece of code
could be in many different locations in memory, depending
on the execution path that led to a certain code fragment.
Code fragments can be moved around, as long as there is
a way to refer to them for control-flow transfers, and we
can retrieve them when control is transferred to them. We
will use the keys of the nodes in the splay tree to make this
possible: Control transfers specify the key of the node to
which control needs to be transferred.

As such, it is required that targets of control flow be
nodes. We cannot jump into the middle of the code con-
tained within a node. In practice this means that we start
a new node for each basic block. We deal with fall-through
paths by making all control flow explicit. All control flow
targets are specified as the keys of the node containing the
target code. The size of the code in a node is constant. If
a node is to small to contain an entire basic block, it can
overflow to another node and continue execution there.

This has been illustrated in Figure 6 for the factorial func-
tion. When, for example, the function is called for the first
time, the node with key 1 will be referenced and percolated
to the root, as shown in part (2). Another thing that is
worth noting in this example is that calls no longer need
to specify the function signature, as this code will not be
subject to verification.

55

We also want to note that if this technique is implemented
naively: Only pointers will be moved around, and the actual
code will remain at the same place on the heap. To over-
come this, we can explicitly exchange the actual contents
(of primitive types) of the nodes, or alternatively, we can
allocate a new code buffer and copy the code buffer there,
possibly with re-encryption with different garbage padding.

4.1.6 Diversifying the Implementation of the VM

4.1.6.1 Hand-Written Exchangeable Modules.

The internal implementation of, e.g., the evaluation stack
is not determined by the ISA. The emulation stubs for the
micro-operations rely only on an interface which supports a
number of operations such as pop and push. The internal
implementation of this stack datastructure can be diversified
independently: It could be an array, a linked list, etc. We
could provide a number of different implementations of these
interfaces. Currently, we have made no efforts to diversify
the VM in this way, because it requires a lot of manual cod-
ing and is not that interesting from a research perspective.

4.1.6.2 VM Generation.

Once the parameters for the above specified forms of di-
versification are fully specified, the PROTEUS backend will
combine code snippets from various locations along with
some auto-generated code to assemble a managed C# rep-
resentation for the implementation of the custom VM. Al-
ternatively, it can directly output a d11.

4.1.6.3 Automatic Diversification.

The implementation of the VM has been generated by
combining many code snippets which have been hand-coded
and are therefore limited in diversity. While not currently
implemented, we suggest to diversify the resulting d11 using
randomizable versions of existing code transformations from
various domains such as software optimization, software ob-
fuscation, (non-virtualization-based approaches to) software
diversification, etc.

S. EVALUATION

The slowdown for some C# versions of benchmarks of the
Java Grande Benchmark suite is given in Table 1. The over-
head of the techniques is considerable, ranging between a
factor 50 and 3500. There are several reasons for this over-
head. Firstly, this slowdown is a worst-case slowdown. Ev-
ery function in the program has been transformed. The tool
has been configured to use binary tree decoding as opposed
to more optimal table interpretation to leave the instruc-
tion length completely randomizable. This results in a sig-
nificant overhead for every decoded bit. Furthermore, the
code is represented as a splay tree, which is clearly less op-
timal than an array representation. Secondly, PROTEUS is
a recently developed proof-of-concept evaluation framework
for research in software protection. As such, it hasn’t been
optimized in any way. The framework is under continuing
development and we expect it to be possible to significantly
reduce the overhead if these concepts were to be commercial-
ized. Thirdly, there is an inherent overhead involved with
adding an extra layer of virtualization.

There are applications in DRM and license systems where
this kind of slowdown could be acceptable. These applica-

LINEAR SPLAY TREE (1)

3:

SPLAY TREE (2)

int32 Fac(int32) :

ldarg

.0

1:

ldarg.0 ldarg.0 ldarg.0

ldc.14.1 ldc.i4.1 1dc.id.1
sub bne.un.s 3

bne.un.s call 1 br 2

ldc.i4.1
ret
ldarg.0
ldarg.0
ldc.14.1
sub

call

2:
ldc.i4.1
ret

int32 Fac(int32)
mul

ret

3:
ldarg.0
ldarg.0

ldc.i4d.1

sub

call 1

2:
ldc.i4.1
ret

Figure 6: Linear versus splay-tree representation for the factorial function.

Benchmark ArithBench | CastBench

CreateBench

LoopBench FFT SparseMatMult

Slowdown (factor) 50.38 284.02

1557.39

253.80 1823.39 3516.39

Table 1: Slowdown as measured for C# versions of the JGrande Benchmark Suite

tions typically boil down to some computations followed by
one or more Boolean checks. Computations that are too
time-consuming (e.g., asymmetric cryptography with large
keys) would need to be omitted from virtualization. Both
run-time profiling and programmer input could be used to
determine which parts are practically virtualizable.

The significant slowdown does show us that this level of

transformation will typically not be acceptable for performance-

critical parts of the program.

6. CONCLUSION

Virtualization opens up a wide range of possibilities for
both diversity and tamper-resistance. Controlling our own
execution environment gives us a lot of leverage to compli-
cate the task of the attacker. In this paper, we have outlined
the design of a framework for research in software protection
based on the concept of virtualization, and we have identi-
fied a number of locations in which diversity and/or tamper-
resistant features can be introduced in a largely independent
way. This separation allows for modular development. We
have discussed a number of techniques which intuitively lead
to a more tamper-resistant ISA.

The significant overhead indicates that these kinds of tech-
niques are to be used sparingly. Nevertheless, there are sit-
uations in which such an overhead can be tolerated.

7. REFERENCES

[1] Bertrand Anckaert, Bjorn De Sutter, and Koen
De Bosschere. Software piracy prevention through
diversity. In The 4th ACM Workshop on Digital
Rights Management, pages 63-71, 2004.

[2] Bertrand Anckaert, Matias Madou, and Koen
De Bosschere. A model for self-modifying code. In The

56

(10]

8th Information Hiding Conference, LNCS (to
appear), 2006.

Ross Anderson and Markus Kuhn. Tamper Resistance
- a Cautionary Note. In The 2nd Usenixz Workshop on
Electronic Commerce, pages 1-11, 1996.

David Aucsmith. Tamper resistant software: an
implementation. In The Ist Information Hiding
Conference, volume 1174 of LNCS, pages 317-333,
1996.

Algirdas Avizienis and L. Chen. On the
implementation of n-version programming for software
fault tolerance during execution. In The IEEE
Computer Software and Applications Conference,
pages 149-155, 1977.

Lee Badger, Larry D’Anna, Doug Kilpatrick, Brian
Matt, Andrew Reisse, and Tom Van Vleck.
Self-protecting mobile agents obfuscation evaluation
report, 2001.

Elena Gabriela Barrantes, David Ackley, Stephanie
Forrest, and Darko Stefanovi. Randomized instruction
set emulation. ACM Transactions on Information and
System Security, 8(1):3-40, 2005.

Sandeep Bhatkar, Daniel DuVarney, and R. Sekar.
Address obfuscation: An efficient approach to combat
a broad range of memory error exploits. In The 12th
USENIX Security Symposium, pages 105-120, 2003.
Business Software Alliance and International Data
Corporation. Second Annual BSA and IDC Global
Software Piracy Study, 2005.

Hoi Chang and Mikhail Atallah. Protecting software
code by guards. In The 1st ACM Workshop on Digital
Rights Management, volume 2320 of LNCS, pages
160-175, 2002.

[11] Yuqun Chen, Ramarathnam Venkatesan, Matthew

Cary, Ruoming Pang, Saurabh Sinha, and Mariusz
Jakubowski. Oblivious hashing: a stealthy software
integrity verification primitive. In The 5th Information
Hiding Conference, volume 2578 of LNCS, pages
400-414, 2002.

Monica Chew and Dawn Song. Mitigating buffer
overflows by operating system randomization.
Technical Report CMU-CS-02-197, Department of
Computer Science, Carnegie Mellon University, 2002.
Stanley Chow, Yuan Gu, Harold Johnson, and
Vladimir Zakharov. An approach to the obfuscation of
control-flow of sequential computer programs. In The
4th Information Security Conference, volume 2200 of
LNCS, pages 144— 155, 2001.

Cristina Cifuentes and John Gough. Decompilation of
binary programs. Software - Practice & Experience,
25(7):811-829, 1995.

Frederick Cohen. Operating system evolution through
program evolution. Computers and Security,
12(6):565-584, 1993.

Christian Collberg, Ginger Myles, and Andrew
Huntwork. Sandmark - a tool for software protection
research. IEEE Security and Privacy, 1(4):40-49, 2003.
Christian Collberg and Clark Thomborson. Software
watermarking: Models and dynamic embeddings. In
The 26th Conference on Principles of Programming
Languages, pages 311-324, 1999.

Christian Collberg and Clark Thomborson.
Watermarking, tamper-proofing, and obfuscation -
tools for software protection. IEEE Transactions on
Software Engineering, 28(8):735-746, 2002.

Christian Collberg, Clark Thomborson, and Douglas
Low. Breaking abstractions and unstructuring data
structures. In The International Conference on
Computer Languages, pages 28-38, 1998.

Christian Collberg, Clark Thomborson, and Douglas
Low. Manufacturing cheap, resilient, and stealthy
opaque constructs. In The 25th Conference on
Principles of Programming Languages, pages 184—196,
1998.

Patrick Cousot and Radhia Cousot. An abstract
interpretation-based framework for software
watermarking. In The 30th Conference on Principles
of Programming Languages, pages 311-324, 2003.
Larry D’Anna, Brian Matt, Andrew Reisse, Tom Van
Vleck, Steve Schwab, and Patric LeBlanc.
Self-protecting mobile agents obfuscation report, 2003.
Stephanie Forrest, Anil Somayaji, and David Ackley.
Building diverse computer systems. In The 6th
Workshop on Hot Topics in Operating Systems, pages
67-72, 1997.

Oded Goldreich and Rafail Ostrovsky. Software
protection and simulation on oblivious RAMs. Journal
of the ACM, 43(3):431-473, 1996.

Bill Horne, Lesley Matheson, Casey Sheehan, and
Robert Tarjan. Dynamic self-checking techniques for
improved tamper resistance. In The 1st ACM
Workshop on Digital Rights Management, volume
2320 of LNCS, pages 141-159, 2002.

Yuichiro Kanzaki, Akito Monden, Masahide
Nakamura, and Ken ichi Matsumoto. Exploiting

self-modification mechanism for program protection.
In The 27th Annual International Computer Software
and Applications Conference, pages 170-181, 2003.
Gaurav Kc, Angelos Keromytis, and Vassilis
Prevelakis. Countering code-injection attacks with
instruction-set randomization. In The 10th ACM
Conference on Computer and Communications
Security, pages 272—-280, 2003.

Cullen Linn and Saumya Debray. Obfuscation of
executable code to improve resistance to static
disassembly. In The 10th ACM Conference on
Computer and Communications Security, pages
290-299, 2003.

Matias Madou, Bertrand Anckaert, Patrick Moseley,
Saumya Debray, Bjorn De Sutter, and Koen

De Bosschere. Software protection through dynamic
code mutation. In The 6th International Workshop on
Information Security Applications, volume 3786 of
LNCS, pages 194206, 2005.

Gleb Naumovich and Nasir Memon. Preventing piracy,
reverse engineering, and tampering. Computer,
36(7):64-71, 2003.

David Patterson and John Hennessy. Computer
Architecture: A Quantitative Approach. Morgan
Kaufmann, 1990.

Todd Proebsting. Optimizing an ANSI C interpreter
with superoperators. In The 22nd Conference on
Principles of Programming Languages, pages 322—-332,
1995.

Calton Pu, Andrew Black, Crispin Cowan, and
Jonathan Walpole. A specialization toolkit to increase
the diversity of operating systems. In The ICMAS
Workshop on Immunity-Based Systems, 1996.

Brian Randell. System structure for software fault
tolerance. SIGPLAN Notices, 10(6):437-449, 1975.
Daniel Dominic Sleator and Robert Endre Tarjan.
Self-adjusting binary search trees. Journal of the
ACM, 32(3):652-686, 1985.

Paul van Oorschot. Revisiting software protection. In
The 6th Conference on Information Security, volume
2851 of LNCS, pages 1-13, 2003.

Avinash Varadarajan and Ramarathnam Venkatesan.
Limited obliviousness for data structures and efficient
execution of programs. Technical report, Microsoft
Research, 2006.

Ramarathnam Venkatesan, Vijay Vazirani, and
Saurabh Sinha. A graph theoretic approach to
software watermarking. In The 4th Information Hiding
Conference, volume 2137 of LNCS, pages 157168,
2001.

Chenxi Wang, Jack Davidson, Jonathan Hill, and
John Knight. Protection of software-based
survivability mechanisms. In The 2nd International
Conference of Dependable Systems and Networks,
pages 193-202, 2001.

Glen Wurster, Paul van Oorschot, and Anil Somayaji.
A generic attack on checksumming-based software
tamper resistance. In The 26th IEEE Symposium on
Security and Privacy, pages 127-138, 2005.

Yongxin Zhou and Alec Main. Diversity via code
transformations: A solution for NGNA renewable
security. In NCTA - The National Show, 2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

