Public Protection of Software

AMIR HERZBERG and SHLOMIT S. PINTER
Technion—Israel Institute of Technology

One of the overwhelming problems that software producers must contend with is the unauthorized
use and distribution of their products. Copyright laws concerning software are rarely enforced, thereby
causing major losses to the software companies. Technical means of protecting software from illegal
duplication are required, but the available means are imperfect. We present protocols that enable
software protection, without causing substantial overhead in distribution and maintenance. The
protocols may be implemented by a conventional cryptosystem, such as the DES, or by a public key
cryptosystem, such as the RSA. Both implementations are proved to satisfy required security criteria.

Categories and Subject Descriptors: D.4.6 [Operating Systems]: Security and Protection—crypto-
graphic controls; E.3 [Data]: Data Encryption—public key cryptosystems; K.5.1 [Legal Aspects of
Computing): Software Protection

General Terms: Algorithms, Design, Security

Additional Key Words and Phrases: Cryptographic protocols, protected CPU, security protocols,
single key cryptosystems, software authorization, software distribution, software piracy

1. INTRODUCTION

Great losses to software producers are currently incurred owing to the ease of
copying most computer programs. It is common practice for one user to buy a
software product, and, without the producer’s consent, to give or sell it to other
installations. The economic importance of software protection has resulted in
many products that supply the means for protecting software. It is shown in {6}
that many commercially available means suffer from some of the following
deficiencies:

(1) Insufficient protection.

(2) Impaired backup and networking capabilities (for the innocent user).

(3) Narrow range of applicable systems (i.e., methods that protect only firmware).

(4) Obstacles for distribution and maintenance of the computers and the
software.

(5) Excessive overhead in total costs or in execution time.

One common protection scheme uses special “signature” information in the
storage media, which cannot be duplicated by conventional methods (e.g., [3]).

Authors’ address: Technion-Israel Institute of Technology, Department of Electrical Engineering,
Haifa 32000, Israel.

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.

© 1987 ACM 0734-2071/87/1100-0371 $01.50

ACM Transactions on Computer Systems, Vol. 5, No. 4, November 1987, Pages Pages 371-393.

372 -+ A. Herzbergand S. S. Pinter

The major faults of such methods are 1, 2, and 5 above. Another method attaches
a hardware device to the CPU, which is used for identification. An attempt has
been made to standardize this method (see [1]). The major faults of those systems
are 1, 3, 4, and 5.

This paper describes and proves the security of a software protection system
that does not suffer from the deficiencies indicated. A preliminary version of
PPS (Public Protection of Software) has been presented, with other software
protection methods, in [6]. In contrast with the deficiencies outlined above, PPS
provides

(1) Provable, hence reliable, protection (under acceptable and well-defined
assumptions).

(2) Undisturbed backup and networking capabilities (by limiting execution only
to a specific CPU).

(3) Applicability to virtually all systems.

(4) Simple, undisturbing protocols for distribution and maintenance.

(5) Reasonable overhead in total costs and execution speed.

PPS requires modifications to the architecture of the processor: However, a
special coprocessor could implement PPS and operate with existing processors.
The protected routines of the software would be run on the PPS coprocessor. In
recent papers [2, 13, 14], two other software protection methods (henceforth
referred to as AM and SPS) were presented. These methods require similar
modifications to the internals of the processor. PPS differs mainly in the
protocols used. The PPS protocols require less communication between the
parties and minimal intervention of the key-generating body (denoted Z) and
the software producer. For example, communication between the software pro-
ducer and the system integrator before the protection of each product is not
required. This communication is essential in AM. In addition, PPS provides
protocols for replacing malfunctioning CPUs and indirect software distribution
(via a dealer}. AM and SPS do not provide protocols for those functions. A
detailed comparison of PPS versus AM and SPS may be found in Section 2.1.

PPS is the combination of three protocols, two for the distribution of software
and one for replacement of malfunctioning CPUs. PPS may be implemented
either by public key cryptosystems or by conventional cryptosystems. Section 2
discusses the protection supplied by PPS. In Section 3 we describe how PPS may
be implemented by public key cryptosystems (PPS/PK). In Section 4 a formal
model for discussing the security of PPS is presented. The security of the public
key cryptosystem implementation is then proved. This implementation is
straightforward, but the conventional cryptosystem implementation (PPS/C)
presented in Section 5 seems to be much more realistic. Section 6 discusses the
practical aspects of a PPS system and Section 7 gives the final conclusions.

2. THE PROTECTION PROVIDED BY PPS

PPS attempts to render unprofitable the effort required to copy protected
software. PPS relies upon mechanisms embedded in the CPU; therefore PPS
cannot prevent the CPU producer from making secret trap-doors in the CPU
that will enable software duplication. PPS requires a key-producing body, which
ACM Transactions on Computer Systems, Vol. 5, No. 4, November 1987.

Public Protection of Software . 373

installs the initial keys in the CPU and enables replacement of failing CPUs.
This body may be the CPU producer, and it is represented by Z or the center in
this paper. PPS enables Z to distribute the keys in such a manner that prevents
other bodies from creating valid keys. If the system’s Original Equipment Man-
ufacturer (OEM) is Z, then the above feature might help to prevent the creation
of “clones” (compatible computers) by other OEMs.

Intuitively, PPS provides three levels of protection. The first level is against
simple piracy attacks. Such attacks use legal procedures and attempt to duplicate
software by some unforeseen manipulation of those procedures. The second level
is against more determined attacks that include the faking of a CPU failure. For
obvious reasons, a new CPU, which runs all the software bought for the failing
CPU, should be provided quickly. It is obvious that if the CPU did not really fail,
and is not returned, the attackers will have two CPUs that run the same software.
Although an appropriate procedure should protect against this hazard, PPS
ensures that no further gain may be achieved by faking a CPU failure. PPS’s
third level of protection is against attackers that physically violate the CPU’s
enclosure, and discover (literally!') the keys held within. This approach is quite
extreme, but it has been argued that such attacks may be attempted by parties
that desire to cause distrust in the center or in the CPU. Only when implemented
by a public key cryptosystem, does PPS provide some protection against this
attack. After violating the integrity of a CPU, the attackers will only be able to
decrypt protected code encrypted for that CPU.

2.1 PPS versus AM and SPS

(1) The modifications of PPS to the architecture of the CPU can be like those
detailed in [2]; other solutions are being tested too (see Section 6).

(2) The three methods provide sufficient protection, undisturbed backup
capability, wide range of applicable systems, and reasonable overhead in total
costs and execution time.

(3) PPS may be implemented either by using public key cryptosystems or by
using conventional cryptosystems, whereas AM requires public key cryptosys-
tems, and SPS requires conventional cryptosystems. The implementation of
public key systems is much harder, but by using it PPS may provide additional
protection.

(4) PPS does not require communication between the software producer and
the customer during the purchase of the software. Rather, an untrusted dealer
may sell the software with no need for immediate communication with the
software producer (see Section 3.2). This communication is essential in AM and
SPS and may present quite an obstacle in software distribution.

(5) PPS does not require communication between the software producer and
the system integrator before the protection of each product. This communication
is essential in AM, and presents another obstacle in software distribution.
Also, the added transmissions may be tapped and altered, and the security is
endangered.

(6) PPS provides a protocol that enables the replacement of a malfunctioning
CPU by untrusted servicemen, without requiring the physical transfer of a

ACM Transactions on Computer Systems, Vol. 5, No. 4, November 1987.

374 . A. Herzberg and S. S. Pinter

new CPU from the producer. AM and SPS require the physical transfer of
a new CPU.

(7) The motives of all the parties involved in the usage of the protection
method (CPU producers, system integrators, software producers, etc.) are similar
in the three methods. Those motives are discussed in depth in [2]. We will not
repeat these arguments.

(8) AM allows the system’s OEM to require a fee from software producers for
each usage of the system to protect software. By a simple variant to PPS, the
same result may be achieved. We will not discuss this here.

(9) Both AM and SPS explicitly use an execution key in order to protect the
programs; thus they each transfer only the key that uses cryptographic protocols.
The program itself, enciphered by the above execution key, is distributed. When
the execution key is used, the size of the communicated message is reduced, and
the program may be decoded more efficiently than the key. The protocols of PPS
may be used to transfer the execution key (instead of the program itself) to
accomplish the same results.

3. IMPLEMENTATION OF PPS WITH PUBLIC KEY CRYPTOSYSTEM
(PPS/PK)
The implementation of PPS requires encrypting functions inside the CPU. The
encryption may be done by a public key cryptosystem (PKCS), such as {12] or
by ordinary encryption methods, such as [11]. In this section, we will describe
the implementation by a PKCS, denoted PPS/PK. This implementation is more
straightforward; however, since no implementation of a PKCS seems both secure
and quick, the implementation by conventional cryptosystems seems to be more
reasonable. The concept of PKCSs was first suggested in [5], and several
implementations, as well as numerous applications, have been published since
then.
A PKCS is based on a set of pairs of functions {(E;, D;)} such that

Cl DiEi = EiD,' =1

C2. For every message M, knowing E;(M) and E;, but not D;, does not reveal
anything about M. We use E; to denote the encrypting function (or key),
and D, or E;! for the decrypting function (or key).

C3. For every message M, knowing M and its encryption (decryption) does not
reveal the encryption or decryption keys.

In some cryptosystems, the keys are composed of several parts (in RSA [12], for
example, E; = (n;e;)).

With each computer unit C, a pair of keys (E,, D,) is associated, and a pair
of keys (E,, D.) is associated with Z. Every computer unit C, contains the
following information:

(1) D,—the decrypting (secret) key of C,.

(2) E,—the encrypting key of Z (not a secret).

(3) D.G(E,)—the encrypting key of C,, signed by Z (not a secret). The signature
of Z involves, first, the verification that E, is a proper encryption key. This

ACM Transactions on Computer Systems, Vol. 5, No. 4, November 1987.

Public Protection of Software . 375

is done with the application of G (for example, checksum). Second, the secret
key D, is being applied. The resulting key D,G(E,) is the public key given to
the user.

We denote by G~ the inverse of G and use it to verify the validity of D,G(E,).
Therefore G must introduce a high degree of redundancy (say 100 bits) in order
to prevent the attacker from producing a faked D,G (a) by exhaustive search. For
each message a, G"'(G(a)) = a, and for each string b for which there is no message
a s.t. b= G(a), then G™1(b) = error.

For indirect distribution via a software dealer L, another key, Fz'(i), is required
in the dealer’s computer C;.

(4) Fr'(i)—the software producer sells software to the dealer with this key. The
key is changed between sales (i is the sale number). This key is replaced
by a counter in the modified indirect-distribution protocol, given in
Appendix B.

The keys D,, Fz'(i), and F.(i) are kept hidden inside the CPU itself. They
may not be accessed by the CPU instructions, except the special instructions
that implement PPS. The signature of Z, denoted D,, is even more secret: it is
not kept in the CPU at all. On the contrary, D,G(E,) and E, are not secret.
However, there is no need to publish E,.

A list of symbols used with their meaning is given in Table I.

The cryptosystem may be commutative, that is, E.E, = E,E,. It may also be
associative, that is, E,(E,E.) = (E,E,)E.. During the security analysis (see
Section 4) all the properties of the cryptosystem need to be considered.

3.1 Direct Software Distribution Protocol (PPS/PK)

The protocol that a user U with computer C, should follow in order to buy
PPS/PK protected software from its producer P is the direct distribution
protocol outlined below. Note that information should pass only once from
the user to the producer and vice versa. The notation used when a message M is
sent by user U to computer C,-or to another party B is (U, M, C,) or (U, M, B),
respectively.

D1. (U, D.G(E,), P)—The user U sends to P the encryption key E, signed
by Z.1

D2. (P, (D.G(E,), PGM), C,)—The encryption key of the customer’s computer
signed by Z and the program PGM to be distributed are entered into the
computer C, of producer P.

D3. (C,, [GT'E.D.G(E,)JPGM, P)—The encryption procedure E, and the veri-
fication procedure G™" are applied by C,.

D4. (P, E,PGM, U)—The user receives the software package.

D5. (U, E,PGM, C,)—The program is loaded.

! This protocol assumes the producer verifies the identity of the user who paid and always delivers
the software (i.e., the software was sold at the store). To enable distribution of software over a
network, small modifications to D1 and D2 are needed and are presented in Appendix A.

ACM Transactions on Computer Systems, Vol. 5, No. 4, November 1987.

376 « A. Herzbergand S. S. Pinter

Table I. Symbols Used

Symbol Meaning
Participants
U w Users.
C, Computer that belongs to party « of the protocols.
P The software producer.
Z The key generating body (the center).
L The dealer.
S The service shop. Its computer C, serves as replacement for failing CPUs.
Variables
M Set of messages known to the attacker.
K, The secret register for the key of computer C, (originally holds D,).
K, Secret key of the generating body Z (PPS/C).
D, Secret key of the generating body Z (PPS/PK).
null A special key that makes the CPU nonoperational.
Q. A secret register that holds the distribution key in C,.
a,b,c Variables used in Tables II and III to denote parameters set by the user of
a transaction.
CNT(i) Array of counters used in the alternative indirect distribution protocol
(Appendix B).
Operators
O(PGM) Operation (execution) of program PGM on a processor.
G Gt Redundancy generator (G) and verifier (G™') s.t. GT'G(M) = M.
Values
X Total expenses to the attackers.
PGM The program.
D, E, Decryption and Encryption keys (respectively) initially set for C,,.
R Expenses estimated for cheating Z by not returning replaced CPU.
1% Expenses estimated for violating the integrity of a CPU to get secret keys.
F,(3) A key for the ith distribution of software by dealer L.
key, prog, make, Strings signifying special operations when concatenated to an encrypted
order, copies, priced, block.
counter, replace,
master
COST The cost of a program.

De. (C,, O(D,E,PGM), U)—The computer C, (but not U) knows D,. While
executing, the code PGM is hidden inside the processor. The operation (run)
of software PGM by a computer is denoted by O(PGM).

It is assumed that knowing O(PGM) does not enlighten the intruder about
PGM.

3.2 Indirect Software Distribution Protocol (PPS/PK)

Usually software is not sold directly from the producer to the customer, but
rather it is sold via a third party, the software dealer. Even telephone connection
with the producer should, in these cases, be avoided. The direct software distri-
bution protocol, described in Section 3.1, is not suitable here, since the producer
may rarely rely on the honesty of all the dealers. PPS provides a special protocol

ACM Transactions on Computer Systems, Vol. 5, No. 4, November 1987.

Public Protection of Software . 377

for indirect software distribution. This protocol requires one extra key hidden
inside the dealer’s CPU. The extra key is used for decryption of a message from
the producer and is changed at each execution of the protocol. The protocol is
divided into two phases. In the first phase, the dealer L buys token programs
from the producer. The tokens are converted to useful programs by the dealer’s
computer C;, in the second phase. Each token produces no more than one useful
program, encrypted with the key of some buyer’s computer. The key used to
encrypt the ith token sent to dealer L is F1(i), and C}, decrypts the token using
F7'(i). The initial keys Fz!(0) are known only to the software producer. For
example, F;(0) may be initiated in C; by the producer before the computer C; is
given to the dealer.

The distribution protocol is outlined below.? Step I1 is done for each token i
to be used. Note that information should pass only once in each direction.

I1. (P, FL())[PGM, F7'(i + 1)], L)—The producer P gives the dealer L a token i.
This is the first step of the protocol, and it may be done independently of the
other steps.

12. (U, D,G(E,), L)—User U’s key is sent to the dealer.

13. (L, (FL(i))[PGM, F1'(i + 1)1, D;G(E,)), C.)—The computer C;, already con-
tains key Fz'(i) that corresponds to token i.

I4. (C., [G'E,D,G(E,)]PGM, L)—By applying F;'(i), computer C; finds PGM
and Fz'(i + 1). The encryption procedure E, and the verification procedure
G ! are being applied by C;. At the same time, C; changes register Q;, from
key Fz'(i) to the new key Fz'(i + 1). The new key is given in the token.

I5. (L, E.PGM, U)—From this step on, the protocol is the same as the direct
distribution protocol. The user receives the software package.

I6. (U, E,PGM, C,)—The program is loaded.

I17. (C,, O(D.E,PGM), U)—The computer C, (but not U) knows D,. While
executing, the code PGM is hidden inside the processor.

Several Fr(i) mechanisms may be implemented in the same processor to enable
the same dealer to deal with several producers.

3.3 The Replacement Protocol (PPS/PK)

If the CPU of a user malfunctions, a new CPU must be provided. An essential
property of the new CPU is complete compatibility: every software run on the
old CPU should also run on the new one. To enable the new CPU to run
PPS/PK protected software, it must have the same keys as the old one. A similar
requirement may appear in CPU upgrades.

The new CPU must be made available as soon as possible. It should be possible
for several service centers to make available a CPU to replace any malfunctioning
CPU in their territory. Obviously one cannot permit such service centers to
produce CPUs and determine their keys at will. We present a solution in which
deceptions are likely to be discovered or prevented, and even if deception is

2 Some variations on this protocol may be more suitable to other circumstances and also be more
efficient. They can be found in Appendix B.

ACM Transactions on Computer Systems, Vol. 5, No. 4, November 1987,

378 . A. Herzberg and S. S. Pinter

committed by the service center, no more than one illegal CPU will be obtained.
Those results are formally proved in Section 4.3.

The solution we suggest to this problem requires the remote help of Z. However,
this help is only remote (by communication), and does not require physical
interaction with Z, as in [2]. The protection will not fail, even if the communi-
cation is tapped or altered.

Every CPU replacement will require Z’s intervention. After the CPU has been
replaced, Z must verify that a replacement has in fact occurred (for example, by
receiving the malfunctioning CPU and verifying its identity). The service center
S uses the remote help of Z to convert a spare computer C;, (with keys E; and D;)
into a replacement for C,. After the successful completion of the protocol, C; will
have keys E, and D,. The replacement protocol is outlined below.

R1. (U, D,G(E,), S)—User U requires a replacement CPU from service-
person S.

R2. (S, (D.G(E.), D.G(E,)), Z)—The Serviceperson asks Z for a transformation
key that will change the keys of the spare CPU—C, from (E,, D) to
(E,, D,).

R3. (Z, E«D,, replace), S)—For composing the message, Z applies on the message
accepted at R2 the encryption procedure E, and the verification procedure
G to obtain E, and E,. Then Z obtains D, from E, by using tables that
contain all the key pairs or by using a trap-door function. Then Z encrypts
D, concatenated with a predefined string replace and sends it to S.

R4. (S, E(D,, replace), C,)—Installation of a new key in C,. The key D, will be
installed only if it is concatenated with the correct string. The public key
D.G(E,) is installed too.

R5. The CPUs may be replaced. The replaced CPU ought to be returned to Z
and its number verified.

4. A FORMAL ANALYSIS OF PPS/PK

The presentation of any nontrivial security protocol or system would not be
complete without a formal representation of the assumptions and formal proof
of security. Therefore, we prove that, under acceptable assumptions, PPS/PK is
secure. This is done by using the Transaction System Model [7]. We proceed by
describing the essence of the model and the correspondence between the model
and PPS/PK. The model as described below is a simplified version of the
transaction model for systems in which the timing is irrelevant to the security.
Using the formal model of hidden automorphism [10] has been attempted but
found to be complicated. The model used for proving the ping-pong protocol [4]
cannot be used either. For example, modeling the replacement of keys in that
model is impossible.

The reader is encouraged to inspect whether the formal model of PPS is truly
derived from the assumptions and protocols, and if the proofs of security, based
on the model, are valid. When implementing a protocol, the implementation
should be checked for complete consistency with the formal model, for example,
no new capabilities should be given to the attacker because of the use of a specific
cryptosystem.

ACM Transactions on Computer Systems, Vol. 5, No. 4, November 1987.

Public Protection of Software . 379

4.1 The Essence of the Transaction Model

We present a simple model that is used for describing systems and explore its
security aspects. The model deals with exposed systems, that is, systems that
execute distributed protocols, in which the attackers have complete control over
the data transmitted. The attackers receive all messages and may alter or delete
them at will. Users cannot identify the origin of the messages, except by
recognizing information in the message itself. The model is used for ensuring
safe states of the system.

Exposed systems are viewed as composed of honest users, attackers, and
programmed processors. We are not concerned here with the correct execution
of any protocol, but only with the prevention of some illegal actions. Thus, the
model deals only with the capabilities of the attackers. The attackers can
cooperate and share information freely and secretly, and they can cause the
innocent users or processors to perform any operation that is included in the
protocol.

A Transaction System (T'S) is a partial algebra, defined by a domain and a set
of relations on that domain. The domain of a TS is the set of all the possible
states of some information system. A State is defined by a set of variables. One
of the variables is the set of all the messages transmitted so far. The set of
messages transmitted is known to the attackers, since they have complete control
over the communication lines. The relations on the domain represent the possible
inferences available for the attacker. The relations are grouped into meaningful
sets called Transactions. Each transaction is a set of ordered pairs of states. A
Transaction System TS = (T, S) is defined by a set of transactions T on a set of
states S.

The definition of a TS does not yet ensure that the TS represents the real
world correctly. A TS would be correct if all the possible inferences for the
attacker from a given state, and no impossible inferences, may be obtained by
executions of transactions from that state, for example, inferences include the
innocent activities of other participants, usage of properties of functions used,
and so forth.

A pair of states (s;, s;+1) of a TS is an ordered pair, with s; termed Tail and s;.,
termed Head, if s;+; is the result of applying some transaction of TS on s;.
A sequence of states s;, S, ... is a history starting from s;, if for all { > 0,
(s:, si+1) is an ordered pair. A state s; is reachable from state s;, iff there exists a
history H from s; to s;. Every state is also reachable from itself. If a state s; is not
reachable from state s;, we say that s; is harmless for s,.. A set of states is reachable
if any of the states in the set is reachable. A set of states B is harmless for a set
of states D if no state in D is reachable from a state in B.

We state without proof some elementary and intuitive results. The proofs are
simple and are given in [7].

LEMMA 4.1. The reachability relation is transitive.

An important property implied by the following theorem is that a secure
system, with some attackers and transactions, will surely stay secure if some of
the attackers turned honest or some of the transactions were limited. Thus
security results obtained from a system will hold for a more restricted version of

ACM Transactions on Computer Systems, Vol. 5, No. 4, November 1987.

380 - A.Herzbergand S. S. Pinter

the system, for example, without commutativity between cryptographic operators.
Therefore, it will suffice to analyze security for the most powerful coalition of
attackers (referred to as the attacker).

THEOREM 4.2. Given a transaction system TS = (T, S), let B C S be a set of
states harmless for the set D, € S in TS. Then B is harmless for D, in every
TS' =(T’, S), such that T’ C T.

42 PPS/PKasaTS

The protocols detailed in Section 3 for PPS/PK execution correspond to the
following TS called PPS/PK, under the assumptions listed below:

(1) Information hidden inside a processor cannot be read.

(2) Resurrecting the software by observing the ports outside the CPU during
the execution is infeasible.

(3) The cryptosystems used are secure. The security requirements have been
detailed in Section 3.

(4) The producer verifies faultlessly the identity of the user who sent the
payment and always delivers the software. The payment could have been
implemented in the protocol, but it seemed unnecessary. Appendix A
describes this modification.

(5) No information leaks from Z (except by the replacement protocol).

(6) All the keys are chosen independently—no key may be obtained by known
manipulations of other keys.

For proving the safety of PPS/PK we need consider only one producer of
software, P. All the attackers may, however, use the protocol as if they were
producers. For the analysis, assume that all the users are attackers (since the
attackers can pose as honest users). The variables of PPS/PK are: X is the total
expense of the attackers, and for every user u, register K, holds the decrypting
key of u’s computer. Initially K, is given the value D,. During a CPU exchange,
the decryption key K, of a spare computer C, is set to have the value D, of the
failing computer C,. For every dealer L, @; should contain the value F7'(i) at
the /th distribution. The set M of all the messages transmitted so far corresponds
to the information held by the attackers. Therefore every state s in PPS/PK is
defined by the quartet s = (M, X, K, @), where K is the set of decryption keys
and Q is the set of the distribution keys held by the dealers.

The only source of information in PPS is the defined transactions (listed in
Table II), which basically represent the capabilities of the attackers. Therefore,
all of the operations available owing to the protocol must be present in the table.
In addition, every property of the cryptosystem used in the specific implemen-
tation of the protocol must be present in the table. Otherwise the proof does not
hold. If an attacker manages to use some transaction with proper input, the table
shows the output and the change in the system (state). Therefore if PPS is in a
given state, then that state is reachable from some initial state in which no
messages were sent.

The transactions of PPS/PK for computers C, and C, are listed in Table II.
All the users (possible attackers) are allowed to behave as producers and distri-
buters of software; therefore all the transactions and variables are defined for C,,

ACM Transactions on Computer Systems, Vol. 5, No. 4, November 1987.

Ayanerossy - - (og) 2(q0) €aL
Ayaneroossy - — 2(qo) (>9)0 oL
UOTedyUIa A — — (23] D 1L
UO1BOYIIS)) — — (0)H 0 0L
Loy yea - — 4 D(x"F)(*A) 6LL
uoneo1a NdH - A+X=X "0 A "a - 8LL
Suneayd £g - d+X=X (eompdas @) ("A)D*a ‘CHva L1L
uonpnsul NgH a vy ="y (sompdas (@)™ Doad moa 91.L
uonpnIsUl 1J0 i1 D=") - (s0mpdad ‘D) g S1L
uononnsul 140 I LSOO +X =X X + 024 ‘WodU D™ - YLL
UOnINISUT I ¥1el T+ d="0 (Wod)e I+ ‘Wodl() g ‘(@)D°a eLL
uononsur Nd) £d 2a LSOO +X=X (mod)we @o'a SLL
uononnsut NgH £d 2d - (@ (®d'a‘q TLL
uorPYSUT N J0) 1a — Cno’a - 01L
uononnsut 40 L1'ed - (@0 0y 6.L
uonnosxTy - — ®o 0 8L
Iaydip - - (o q‘0 LL
A1anenmuo)) - - o'q"dq "q"d 9L
AyiatyenuImoy) - - °'q"q »"q'a GL
AIAnBINUWo)) — — e s | g L
Aanenmwo) - - L e "q"dq gL
uondArouy — — D v (" oL
uorydA1da(g ed — » q'd LL
Suruesy sdeyg aduey) nding nduj Jaquunu
uonoesueLy,

d/Sdd Jo suonoesuel], 'If 9lqeL

382 . A. Herzberg and S. S. Pinter

and C,. The results of a transaction are changes to the variables X, ., K, or
new messages (“output”). Before any transaction is used (initial state), assume
that K, = D, and @, = F;'(0). In the table, PGM denotes a program to be sold
by some software producer for the sum of money, COST. An application of
operator a on string b is denoted by a(b). We omit brackets where there is no
danger for confusion, and we do not differentiate between operators and strings;
thus when a string should be used as an operator, we use it as a key for the
cryptographic operator.

The TS model is a worst case analysis of the system. Therefore, data and keys
are interchangeable (a key may be used as data and vice versa). Also, knowing
the key of a cryptofunction is equivalent to knowing that cryptofunction. There-
fore any string or key may be “applied” to any string or key. This application
may be done implicitly in some of the transactions or directly by the attacker
(with T7). When a transaction is explicitly used in one of the protocols, we note
the step in the protocol. For example, T9 is used in D5 (step D5 of the distribution
protocol).

Some of the transactions will not be available in certain implementations. For
example, the transactions that present the commutativity or associativity of the
PKCS will not be present with a noncommuting or nonassociative PKCS. But,
from Theorem 4.2 the security properties that were proved hold as well without
those transactions. Transaction T18, physically violating the CPU integrity,
would not be considered part of PPS/PK. The TS that includes all the transac-
tions, including T18, denoted as PPS/PKYV, would be referred to only in the last
theorem. Transaction T19 represents the possibility, in some PKCS (including
RSA), of finding a message that when enciphered by a known key would produce
a “weak key.” This has been noted by Referee B, and we have modified the
protocol to be secure even when this transaction is legal. The idea is to check
that the given key is a valid key by adding redundancy (using G).

A special kind of attack may be performed by an attacker who is also a
serviceperson. Such an attacker might accept replacement for a CPU from Z
without returning the original CPU. This attack causes expenses to the attacker
(including risk) which are denoted by R. Theorem 4.6 shows that, after using
T17, there is no way to get more than two CPUs that use the same key (that
originally belonged only to one of them). This ensures also that if the CPU has
been replaced properly, the attackers will have only one CPU with the old key,
and therefore with no gain.

Another extreme attack is physically violating the enclosure of the CPU to
find the keys hidden within T18. The expense of this attack is denoted by V.
Theorem 4.8 shows that when the PPS is implemented by PKCS, even if T18 is
used, the attacker must still use T12 with D,G(E,), where u is the identity of the
attacker’s computer, to obtain the decrypted program PGM. This result enables
enforcement of auditing means against such attacks.

4.3 Proofs of PPS/PK Security

The next lemma shows that no attacker can forge the signature of Z. The
discussion in this section refers always to PPS/PK, except where stated other-
wise. Let & denote the empty set and s, = (&, 0, K, @) is the initial state.

ACM Transactions on Computer Systems, Vol. 5, No. 4, November 1987.

Public Protection of Software . 383

LEMMA 4.3. Lets = (M, X, K, Q) be reachable from s,.

(i) D.G(a) € M, then there exists computer C, such that a = E,,.
(i) For every computer C,, the key D, & M.

PrROOF. (i) Only T10 produces a message that includes D,, i.e., D.G(E.).
Since G and G™! are not associative (T22, T23 not applicable), there is no way
to change the E, operated by G or to remove G(E,). (ii) The only transactions
that use D, are T9 and T15. The output of T is operated by O which cannot be
removed. Transaction T'15 has no output. Therefore D, cannot be found. O

The producer’s computer uses E, on the input string x sent by the user to
produce the encryption for the program PGM. This is given by [G}(E,x)|PGM
for any string x. Theorem 4.4 shows that the attacker cannot reproduce the
decrypted code PGM, given the encrypted program by T12 or T'13. Reproducing
the encrypted program implies PGM € M.

THEOREM 4.4. Ifs, = (My, X, K, Q) is a harmless state for W = W, U W,,
where W, = {(M, X, K, Q)| PGM € M} and W, = {(M, X, K, Q) | 3D, € M},
then s, = (M, U {[G"YE.x)][PGM }, X, K, Q) is harmless for W.

PrROOF. By contradiction, assume W is reachable from s,. Since s, is harmless
for W, then my = [G~Y(E.x)]PGM has been used to reach W. The only transaction,
when W, is unreachable, that removes E, is T10, where x = D,G(E,). Therefore,
it remains to show that s3 = (M; U {E,PGM}, X, K, @) (the result of T10) is
harmless for W. However, there is no transaction that removes E, when D, is
not known. Thus, both W, and W, are unreachable from s,, since both require
the removal of E, and D,. O

We have shown that the original code is not obtainable. Now we prove that
the code cannot be “adjusted” to another computer, that is, no manipulation to
the encrypted code produces code encrypted by a key of a different CPU. The
idea of the theorem is that if an attacker cannot get a program without paying,
then the attacker cannot get two programs without paying twice the price of the
program. The only way in which the attacker may cheat is by not returning a
CPU to Z (after getting the replacement), and this action costs R.

THEOREM 4.5. Ifs € {(M, X, K, Q)| X < COST} is a harmless state for some
set of states U, defined below reachable from s,, then it is also harmless for Us.
Where:

Ul={M, X, K, Q)| (X<COST) & (EuPGM € M) & (Ki = Du # null)}
and

U2={M, X, K, Q)| (X <min(2 X COST, R)) & (E,PGM, E,PGM € M)
& 3j#i(K; =D, # null & K, = D,, # null)}.

Proor. If E,PGM € M, T12 or T13 must have been used. By Theorem 4.4,
PGM is not in M. If T13 has been used to reach E,PGM € M from s, then T14
must have been used before, since it is the only transaction that produces
F,.())[PGM, F;'(i + 1)]. But if T14 occurred, it must have been in a history

ACM Transactions on Computer Systems, Vol. 5, No. 4, November 1987.

384 . A. Herzberg and S. S. Pinter

reachable from s and not before s, since X at s is smaller than COST. In order to
prove that U, is not reachable from s, we notice that T12 and T14 cannot be
used twice. Also, from the arguments above, T'13 cannot be used again. Therefore
E,PGM cannot be produced by T12 or T13, and, since there is no transaction
that removes E,, it remains to show that no two computers can have the same
key that is not null. In order to get a second key, transaction T17 or T16 must
be used. Since X < R in Us, only T'16 can be used, but the application of T'16
changes K, tonull. O

If the decrypted code is not obtainable, as shown in Theorem 4.4, and we
cannot encrypt the code for another CPU, as shown in Theorem 4.5, there still
remains an alternative: to generate several computers with the same keys. In this
case the attacker pays only for one copy and actually obtains several copies.

This attack cannot be prevented completely, since we must permit replacement
of CPUs (see Section 3.3). Indeed the same problem exists in some other software
protection methods, and the solutions available are usually rather unsatisfactory.
If we permit replacement of CPUs, an attacker could return a faked CPU (the
returned CPU cannot be easily checked since it might be completely impossible
to use it).

It is now proved that all the CPUs with the same keys, except one, should be
returned to Z. Therefore the effect of these attacks is minimal. Given two
computers with different keys, T17 must be used in order to make the keys of
both computers equal and meaningful. Meaningful keys are keys that decrypt
programs distributed by T12 or T13 (i.e., D, is a meaningful decryption key if
D,G(E,) is known, where E, is the encryption key corresponding to D,). We
next define a set of states U, that contains all the states in which there exist two
computers with equally meaningful keys, and the attacker did not pay R—that
is, the attacker returned the replaced CPU. We show that U, is not reachable.

THEOREM 4.6. Let sy = (M,, Xy, Ky, Qo) be a state such that M, is the empty
set, X, = 0 and all the keys in Ky, U @, are chosen independently. Then s, is
harmless for Uy = {(M, X, K, Q)| 3j # i(K; = K; = a # null) & (D.G(a™) € M)
& (X < R)}.

PrROOF. Since X < R, then T17 cannot be used to reach U;. The only
transaction that changes keys is T'15; but in order to use it, T'16 must be employed.
But if T16 has been used to produce E, (D, replace), where K; = D, and K; = D,
before T16, then K; = null after T16, and since T'15 may be used only for C,, the
state s, is still harmless for U;. 0O

The following theorem finds the expenses of the attacker for obtaining n
computers with identical keys. We prove that if U, is unreachable (as proved by
the previous theorem), then for any number ¢ > 1 of computers with equally
meaningful keys, the set U, (with ¢ such computers for which the attacker pays
less than g X R) is unreachable.

THEOREM 4.7. If s reachable from s, is harmless for U, = {(M, X, K, Q)|
(X<R) & Ji#jla=K:=K; # null) & (D.G(a™") € M)}, then for any ¢ > 1
it is harmless to U, = {(M, X, K, Q)| (X < g X R) & (exists I s.t. |I| = q) &
((i, j € I) implies (a = K; = K; # null) & (D,G(a™!) € M)))}.

ACM Transactions on Computer Systems, Vol. 5, No. 4, November 1987.

Public Protection of Software . 385

ProOOF. Assume to the contrary that U, is reachable from s. Since s is
harmless for U, we must have used T15 at least ¢ — 1 times to set new keys
into the computers. To use T15 we need E,(a, replace). But in U, we have
D.G(a™) € M (i.e., a is the decryption key of some processor); by Lemma 4.3,
a™! = E,b; therefore, a = D,b™". By Lemma 4.3, D, is not known, and therefore
the only way we could get E,(D,b7", replace) is by T16 or T17 (implying that
b~ = null). Note that if T16 is used, the number of computers with K; = a does
not increase, since the original computer is destroyed at (K,, = null). Therefore,
T17 must have been used. With each execution of T17, the keys of any set of
computers with equal keys could be changed, but trivial induction shows that the
number of executions of T'17 required to change the keys of ¢ computers is at
least g, and then X = ¢ X R. Thus, no reachable state may be in U,. [

The last result is, perhaps, of minor importance. We prove that even if T18 is
used, and all the keys in a CPU are revealed, the attackers cannot forge the
signature of Z. Thus the attackers still have to order software by sending the
correct public key. This result holds only when PPS is implemented using PKCS.
We denote PPS/PKV to be PPS/PK with the addition of T18. Let V be the
price for violating the integrity of a CPU. We next show that if some public key
has not been published by Z (i.e., U; is unreachable without integrity violation),
then the key is not known even if the CPU is violated (U, is unreachable too).

THEOREM 4.8. In PPS/PKV, if s is harmless for U; = {(M, X, K, @) | (D.G(a)
€ M) & (X < V)} then it is harmless for U, = {(M, X, K, Q)| (D.G(a) € M)}.

PROOF. There is no transaction, including T'18, that performs D, on a given
string. O

5. PPS IMPLEMENTED WITH A CONVENTIONAL CRYPTOSYSTEM

Implementing PPS by PKCS is quite natural but also quite difficult. No chip
available performs a PKCS, and the security of PKCS is still in doubt. Conven-
tional cryptosystems are more mature. Several methods have been implemented
in integrated circuits and are considered quite secure. The most well-known
method is DES [11].

The implementation of PPS by a conventional cryptosystem is based on
emulating the required properties of PKCS by adding redundant information.
Two features of PKCS are used in PPS:

(1) Signatures—These are used to ensure that keys are not invented.
(2) Secrecy—The program is encrypted by the distributor, who cannot decrypt
programs encrypted by other distributors.

5.1 PPS/C

When using conventional cryptosystems, the signatures implemented with PKCS
before are now implemented by the processors. Each processor C, contains three
hidden keys:

(1) K,—the key of Z.
(2) K,—the identifying key of C,,.
ACM Transactions on Computer Systems, Vol. 5, No. 4, November 1987.

386 -+ A Herzbergand S. S. Pinter

For indirect distribution via a software dealer L, additional key F(i) is required
in the dealer’s computer C;.

(8) F.(i)—temporal key for indirect software distribution.

The idea is to implement E,, D, with conventional keys, and the protocols are
given in the following sections. All the computers (not the users) share K, and
may be viewed as cooperative and honest participants. Therefore, information is
transferred between them secretly and authenticated by decryption (using K,
or K,) and by adding redundancy. The redundant information includes strings,
like program, key, and so forth, and application of a certification operator G.
This operator prevents the creation of strings that would be indistinguish-
able from meaningful encrypted information. It is equivalent to G discussed
in PPS/PK (see Section 3).

Table III contains the corresponding transactions that form a T'S denoted by
PPS/C.

We assume the cryptosystems are secure, that is, an attacker cannot determine
m from K,{(m) without knowing K. It is also impossible to find K,, from m and
K, (m). Most cryptosystems are presumed to be secure in this manner. Note that
we permit the encryption to be commutative, that is, K,K,,(m) = K, K, (m).

5.2 Direct Software Distribution Protocol (PPS/C)

The following is the protocol for direct distribution of software from producer P
to the user U. The words key, prog, and replace are predefined strings used in the
protocol. It is implicit that, whenever possible, honest participants in the protocol
check for those strings in the input.

D1. (U, K,G(K,,, key), P)—The user sends key K, hidden by K, and certified
by G.

D2. (P, (K.G(K,, key), PGM), C,)—The producer enters into the computer both
users’ keys and the program PGM to be distributed.

D3. (C,, [G'K.K.G(K,, key)](PGM, prog), P)—The encrypted program is given
to the producer. A string (i.e., prog) should be concatenated to PGM, to
prevent decryption of programs by encrypting them again. This is required
only when encryption and decryption are the same. The given key is
decrypted by applying K, and then verified with G,

D4. (P, K,(PGM, prog), U)—The producer transfers the encrypted program to
the user.

D5. (U, K.(PGM, prog), C.)—The encrypted program is loaded into the user’s
computer.

D6. (C., O(K.K.(PGM, prog)), U)—The computer executes the program by
removing the encryption and deleting the concatenated string (prog). While
executing, the program is kept inside the CPU with no access to the user.

5.3 Indirect Software Distribution Protocol (PPS/C)

The following is the protocol for indirect distribution of software from producer
P to a user U via a dealer L. This protocol resembles the protocol in Section 3.2;

ACM Transactions on Computer Systems, Vol. 5, No. 4, November 1987.

Ayranerossy — - 2(qv) (o9)p STL
K)1ATIBIDOSS Y — — (29)v 2(qp) P1L
Z 8uneey) - I+X=X (s0mpdast *"31)"3 (Aoy *"3])"3] “(Kay “"3])°) SLL
Z £d ¢y vy mu ="3 (90mpdas *31) "3 (Ko “">])°3 (A4 ") GLL
UoToNIISUL
[eloadg Y D="y — (20mpdau ‘)31 TLL
uoTonIISul
[ewadg 11 LSOO +X =X (T + 0" ‘WO - OTL
uorponIsut
[eroadg ¥1 ‘€l (T+Dd="0 (Foud ‘WD) (¥ + 07 ‘WD) ‘(K ‘v 6L
UOT}ONISUT
[eredg - LSOO +X =X (Fo4d ‘WD) (K ‘D)3 8L
uoljonIsul
[e100dg ed - (foud ‘q)p q ‘(A2 ‘D) LL
UoIPonIISul
[B102dg 21 ‘gd ‘19 ‘14 - Koy >3 - 9L
UOTONISUl
[eradg L1'sd - ®o (foud *p)" L
uonnoexy — — (®0 o YL
uondAzouy - - (o q'n &L
ApaneInmwo) - - P 94 oL
uondAroaq — — D 12615 § L
Surueoy sdeg adusy) nding nduy Jaqunu
uorjoesueI],

9/Sdd Jo suorjoesuBi],

TII ®198.L

388 - A.Herzbergand S. S. Pinter

a more efficient version is possible, similar to the improvement suggested to the
protocol of Section 3.2 in Appendix B.

I1. (P, FL(1)[PGM, F.(i + 1)], L)—Producer P sells token i to dealer L. This step
may be done (for several tokens) before the other steps of the protocol.

12. (U, K.G(K,, key), L)—User U’s encrypted key is sent to the dealer.

13. (L, (K.G(K,, key), FL(i)|[PGM, F.(i + 1)]), C1)—The dealer uses token .

4. (C., K, (PGM, prog), L})—The encrypted program is given to the dealer. At
the same time, C;, changes from F; (i) to Fr(i + 1).

I5. (L, K.(PGM, prog), U)—The dealer transfers the encrypted program to the
user.

I6. (U, K.(PGM, prog), C.)—The program is entered into the user’s computer.

I7. (C., O(K.K,(PGM, prog)), U)—The computer executes the program by
decrypting and removing the string prog.

5.4 CPU Replacement Protocol (PPS/C)

The following protocol in PPS/C is for the replacement of a user’s CPU. The
serviceperson S replaces C, with C; with the help of Z.

R1. (U, K.G(K,, key), S}—User U’s key is sent to Serviceperson S, is certified
by G, and encrypted by K..

R2. (S, (K,G(K., key), K.G(K,, key)), Z)—The serviceperson sends both en-
crypted keys to Z.

R3. (Z, K, (K., replace), S)—Note that in PPS/C, Z does not have to keep track
of the keys.

R4. (S, K,(K,, replace), C;)—K, is installed in C; (replacing K;).

R5. The CPUs are replaced. The old CPU ought to be returned to Z.

5.5 PPS/CasaTS

The transactions of PPS/C for computers C,, and C,, are listed in Table III. The
variables of PPS/C are: X is the total expense of the attackers, and for every
user u, K, is the key of u’s computer C,. For every dealer L, the temporal key
Fi1(i) is kept in Q;. The set M represents all the messages transmitted so far, and
corresponds to the information held by the attackers.

Theorems equivalent to Theorems 4.3-4.8 may be proved for PPS/C, but since
they are similar to those in Section 4 we will not state them here.

6. PRACTICAL IMPLEMENTATION OF PPS SYSTEMS

6.1 Architecture

The security of PPS relies on keeping the decrypted program only inside the
CPU. Therefore modifications are required to the CPU architecture, either by a
new design or by integrating an existing CPU with new components.

Two possible architectures are shown in Figure 1. In Architecture A, proposed
for the software protection system in [2], instructions are decrypted just before
being fetched into the CPU. The decrypted instructions may be kept on a secret
queue. The major disadvantage of this method is the overhead due to decrypting
before each fetch. To minimize this overhead, the architecture uses a pipeline

ACM Transactions on Computer Systems, Vol. 5, No. 4, November 1987.

Public Protection of Software . 389

_ i
Encrypted :. Crypto- E
Program Buffer L System |
l_ __e —_ _‘I
s §
Crypto~- w E
System i H
X : CPU
] c
Buffer h
Protected Decrypted Protected
CPU Program CPU
CPU
A - Pipeline 8 - Cache-1like

Fig. 1. Architectures for protected CPU.

approach that has instructions decrypted while other instructions are already
fetched and executed. Actually, this mechanism may be integrated with the fetch
mechanism, which is also implemented (usually) in a pipeline.

In Architecture B, shown in Figure 1, this disadvantage is eliminated. The
main idea is to decrypt and load the protected routines into a protected memory
that is mapped as a part of the computer memory but is not accessible by any
program. This approach resembles a cache, and perhaps may even be integrated
with a cache. The internal memory is accessible only for execution or for loading
an encrypted program. Part of this memory should be Non Volatile RAM (NV-
RAM) to keep the keys and to enable changing them (in the indirect distribution
and CPU replacement protocols). Another part should be an ordinary RAM (to
hold the decrypted program and for temporary storage). A ROM is needed for
holding the PPS algorithm. When instructions are fetched from a block of
addresses, they are handed from the internal memory. This is done by having
the switch use the address bus and the IF (Instruction Fetch) signal. Thus, it is
simple to create a protected CPU by adding components to an existing one. Note
that it is not essential to use a special chip for the cryptosystem, since it could
be implemented in code (or microcode). Actually, the above architecture can also
be used for implementing a secure operating system on a CPU that does not have
any hardware protection mechanism.

A prototype system according to Architecture B is being constructed for the
IBM-PC (using Intel 8088). The total cost is estimated to be less than $100, and
the speed penalty is expected to be the time required to load the protected
routines (before execution of the program).

ACM Transactions on Computer Systems, Vol. 5, No. 4, November 1987.

390 . A. Herzberg and S. S. Pinter

6.2 Cryptographic Operators

Care must be taken when selecting the cryptographic operators to be used. It
should be verified that the operators do not have extra properties that are not
present as transactions in Tables I and III. The operators may, however, lack
any of the properties. If there are properties additional to those listed in the
tables, they should be added to the tables and the proofs need to be checked for
possible faults.

Note that sometimes properties result from interactions between the operators.
For example, G must be chosen so that it would not be feasible to produce D,G(x)
without knowing D,. Therefore, G must have a high degree of redundancy (say
100 bits). Also, some simple operators, such as concatenation of zeros, may be
insufficient at least when using specific cryptosystems (e.g., [8]). However, using
an error-detecting code with high degree of redundancy for G would be the
obvious choice.

If the cryptographic operators do not have all of the properties assumed in this
paper, some simplifications of the protocols may be possible. For example, if the
conventional cryptosystem used in PPS/C is asymmetric (i.e., a different proce-
dure is used for encryption and for decryption), the string prog concatenated to
the program may be eliminated.

6.3 Protocols

The protocols presented here may be modified to meet the goals of specific
applications. The security analysis should, however, be repeated afterwards.

Modifications may support additional goals. For example, Appendix A provides
a protocol modification for direct distribution in a network. Other goals may be
limiting the number of executions of the program, producing a copy that may be
run on several computers, charging for encryption, and so forth. Modifica-
tion may also simplify implementation or improve efficiency. For example,
Appendix B provides an alternative protocol for indirect distribution (via a
dealer). This protocol is more efficient (but more complex) than the protocol
presented in Section 3.2.

Upgrades in the protocols are enabled by adding a protocol to replace the PPS
algorithms themselves. To implement this protocol, the PPS algorithm must
reside in NV-RAM.

Another possible modification of PPS is transferring a key (execution key)
instead of the actual program [2, 6]. The program is then transferred and
encrypted by that key. The CPU operates the program using the execution key.
The security analysis of such a modification, compared to that of PPS (given in
Section 4), would not change. As described in the references, this modification
might greatly improve the performance of the CPU with PPS and make it
reasonably fast compared to a similar CPU without PPS.

7. CONCLUSION

The problem of software piracy causes considerable losses to software producers.
The scheme presented, PPS, provides proved, reliable protection and convenient
protocols for distribution of software and replacement of CPUs. PPS requires a

ACM Transactions on Computer Systems, Vol. 5, No. 4, November 1987.

Public Protection of Software . 391

change in the architecture of the CPU. However, this can be done by adding
components to an existing CPU.

If implemented by major CPU or computer manufacturers, PPS may also
prove effective against compatible equipment manufacturers’ (“clones”).

We believe that, by using suitable protection methods, software piracy could
be rendered obsolete. Such a step will be to the benefit of all the parties involved
(well, almost . . .).

APPENDIX A: Direct Network Distribution

The following changes are needed, assuming users can be identified by their
D.G(E,). This identification can be made by keeping a public directory or a
credit confirmation center. We omit the initial interaction between the user and
the computer, in which the user enters the details of the order. The order is sent
signed by the same key used in the other protocols. It may be better to use a
different key that identifies the user, and then the key-generating body would
not hold the signature of the user.
Replace D1, D2 with the following:

D1’. (U, (D.G(E,), E,D,(order, NAME, priced, COST)), P)—The user’s key and
a signed order, produced by C,, is sent to ensure that P gets paid. The text
of the order is mostly not determined by U. Only the NAME of the program
and the COST the user is ready to pay for it is entered. We assume that
D,G(E,) was given to the user’s computer.

D2’. (P, (NAME’, COST’, D,G(E,), E,D,(order, NAME, priced, COST)), C,)—
The producer’s computer is instructed to give program NAME' for price
COST’. The computer C, checks that the order is accurate and only then
proceeds. The Producer also validates that the user is legitimate.

APPENDIX B: An Altérnative Indirect Software Distribution Protocol

There are three disadvantages of the indirect software distribution protocol
presented in Section 3.2. First, the producer cannot prove that the dealer ordered
the software, and hence billing may be difficult. Second, the program is sent each
time from the producer to the distributor. It would be cheaper if the program
were sent only once, as a mastercopy, and the distributor only buys tokens to
convert the mastercopy into executable copies. Third, the protocol requires a
secret key in the distributor’s computer for each producer; this could be difficult
to implement. The following protocol is free from all those disadvantages.

For this protocol we assume that each dealer has a counter CNT' (i) associated
with each order i. The purpose of the CNT counters is to control the number of
copies sold. After all the software bought in order i has been sold, the same
counter may be used for another order. Identities are validated in the same way
as in Appendix A. The program is sent only once per producer-dealer pair. It is
sent in a special format referred to as mastercopy (actually, even the mastercopy
is common to all distributers and may be made public). To actually distribute
the programs, the dealer must accept a token from the producer. Each token
enables distribution of several copies; the number of copies is selected by the

ACM Transactions on Computer Systems, Vol. 5, No. 4, November 1987.

392

+ A Herzberg and S. S. Pinter

dealer when placing the order (steps I1'-13’). The token specifies the counter to
be used, the initial value, and final value. As each copy is produced, the specified
counter is incremented until it reaches the final value (i.e., the token has been
spent). It is the dealer’s responsibility not to use the same counter for two
programs. Counters should not be cyclic to prevent the dealer from using the
same token twice. In the description below we have omitted the communication
between user and computer and the communication between user and dealer
before the user places the order (this is similar to steps I1’ and I2’).

I1’.

| A

13°.

I4'.

I5'.

Ie’.

17",

18’

19°.

11o’.

1117,

I12’.
113",
I14’.

(L, (order, N, copies, NAME, priced, COST, counter, i), C;)-The dealer uses
C;, to produce an order.

(CL, (Di(order, N, copies, NAME, priced, COST, counter, i, value, j),
D.G(EL)), L)—After accepting a correct request, C; uses D, to produce a
signed order in which j is the value of the counter CNT(i).

(L, (Dp(order, N, copies, NAME, priced, COST, counter, i, value, j),
D,G(EL)), P)—The dealer sends a signed order to the producer.

(P, (make, PGM, master, NAME), C,)—The producer P uses C, to produce
a mastercopy of PGM.

(Cp, (Dp(master, PGM, NAME), D,G(E,)), P)—After accepting a correct
request, C, uses D, to produce a signed mastercopy of PGM. Steps 14’ and
I5’ are done only once per program (the same mastercopy may be used for
all dealers). The public key D,G(E,) is also kept by P.

(P, (Dp(order, N, copies, NAME, priced, COST, counter, i, value, j),
D,G(EL)), Cp,)—The producer transfers the signed order to be delivered (or
rejected) by C,.

(Cp, ELD,(make, N, copies, NAME, counter, i, value, j), P)—If the order is
valid, C, delivers a token for N copies.

(P, (ELD,(make, N, copies, NAME, counter, i, value, j}, D,(master, PGM,
NAME), D,G(E,)), L)—The producer transfers the mastercopy, the public
key, and the token to the dealer L. The mastercopy and public key need
not be sent if another token of the same program has already been accepted
by the same dealer.

(U, (D.G(E,), ELD, (order, NAME, priced, COST)), L)—The user orders
the program from L. We have omitted the communication between user
and computer to produce this order.

(L, (D.G(E,), E.D,(order, NAME, priced, COST), E;D,(make, N, copies,
NAME, counter, i, value, j), D,(master, PGM, NAME), D,G(E,)), C.)—
The user’s order, the mastercopy, the token, and the public keys are given
to dealer L’s computer C;.

(C., [G'E.D,G(E,))(PGM), L)—If all is valid (i.e., the public keys are
certified by G, the order is valid, the same NAME appears in the token,
the order and the mastercopy, and CNT (i) < j + N), then C;, produces the
copy for U and increments CNT().

(L, E,(PGM), U)—The user receives the encrypted program.

(U, E.(PGM), C,)—The user loads the program for usage.

(C., O(D,E,PGM), U)—Only C, knows D,. The computer executes the
program and keeps it hidden from the user.

ACM Transactions on Computer Systems, Vol. 5, No. 4, November 1987.

Public Protection of Software . 393

ACKNOWLEDGMENTS

We thank Professor Shimon Even for his helpful comments and suggestions. In
particular, he motivated the modified versions of the protocols that appear in the
appendixes. We also thank the referees for their helpful comments, especially
referee B who has pointed out how transaction T19 may be used to break the
original PPS/PK protocol, when RSA is the cryptosystem in use.

REFERENCES

1.

2.

10.

11.

12.

13.

14.

ADAPSO. Proposal for software authorization system standards. ADAPSO, 1300 N. 17th St.
Arlington, Va., Oct. 1985.

ALBERT, D. J. AND MORSE, S. P. Combating software piracy by encryption and key manage-
ment. Computer (Apr. 1984).

. DANcoTEC COMPUTER. Copybook User Guide. Dancotec, Bakkefaldet 36, 2840 Holt, Denmark,

Mar, 1986.

. DoLEv, D., EvEN, S., AND KARP, R. M. On the security of ping-pong protocols. Inf. Control 55

(1982), 57-68.

. DIFFIE, W., AND HELLMAN, M. New directions in cryptography. IEEE Trans. Inf. Theory

IT-22 (1976).

. HERZBERG, A., AND KARMI, G. On software protection. In Proceedings of the 4th Jerusalem

Conference on Information Technology. (Jerusalem, Apr. 1984). North-Holland, Amsterdam, 1984.

. HERZBERG, A., AND PINTER, S. S. The transaction system model and security engineering. To

be published.

. JONGE, W., AND CHAUM, D. Attacks on some RSA signatures. In Advances in Cryptology—

CRYPTO 85 (1985). Springer Verlag, New York, 1985, pp. 18-27.

. KENT, S. T. Protecting externally supplied software in small computers. Tech. Rep. 255.

Massachusetts Institute of Technology/LCS, Cambridge, Mass., Sept. 1980.

MERRITT, M. J. Cryptographic protocols. GIT-ICS-83/06. Ph.D. dissertation, The Georgia
Institute of Technology, Atlanta, Ga., 1983.

NATIONAL BUREAU OF STANDARDS. Data Encryption Standard. FIPS Publication 46, National
Bureau of Standards, U.S. Department of Commerce, Washington, D.C. Jan. 1977.

RIvEsT, R. L., SHAMIR, A., AND ADLEMAN, L.. A method for obtaining digital signatures and
public-key cryptosystems. Commun. ACM 21, 2 (Feb. 1978), 120-126.

SiMmMonNs, G. J. How to (selectively) broadcast a secret. In Proceedings of the 1985 Symposium
on Security and Privacy (Oakland, Calif., Apr. 1985). IEEE, New York, 1985, pp. 108-113.
SIMMONS, G. J., PURDY, G. B., AND STUDIER, J. A. A software protection scheme. In Proceedings
of the 1982 Symposium on Security and Privacy (Oakland, Calif., 1982). IEEE, New York, 1982,
pp. 99-103.

Received February 1986; revised February 1987; accepted June 1987

ACM Transactions on Computer Systems, Vol. 5, No. 4, November 1987.

