
Recognition in Software Watermarking

William Zhu
∗

the Department of Computer Sciences,
the University of Auckland,

Auckland, New Zealand

fzhu009@ec.auckland.ac.nz

Clark Thomborson
the Department of Computer Sciences,

the University of Auckland,
Auckland, New Zealand

cthombor@cs.auckland.ac.nz

ABSTRACT
The piracy of software has long been a concern for own-
ers and developers of software. In order to prevent soft-
ware from piracy and unauthorized modification, many tech-
niques to protect software have been developed. Software
watermarking is such a technique for protecting software by
embedding secret information into the software to identify
its copyright owner. As a relatively new scientific area, the
key concepts in software watermarking are informal; some
are even confusing. There is a need to formalize these fun-
damental terms to facilitate the research in this field. In this
paper, we formally define some concepts for software water-
mark recognition and use them to develop some software
watermarking recognition algorithms for the QP software
watermarking algorithm. We also design a prototype model
of software watermark embedding and recognition system
based on the concepts and algorithms established in this
paper.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.0 [Software Engineering]: General—Protection mech-
anisms ; K.4.1 [Computers and Society]: Public Policy
Issues—Intellectual property rights ; K.4.4 [Computers and
Society]: Electronic Commerce—Intellectual property; Se-
curity ; K.5.1 [Legal Aspects Of Computing]: Hardware/
Software Protection—Copyrights; Proprietary rights

General Terms
Security

Keywords
Software Watermark, Embedder, Extraction, Recognition,
Graph, Interference Graph

∗Corresponding author. Phone: +64-9-3737-599 ext. 82289;
fax: +64-9-3737-453;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MCPS’06, October 28, 2006, Santa Barbara, California, USA.
Copyright 2006 ACM 1-59593-499-5/06/0010 ...$5.00.

1. INTRODUCTION
As the software industries develop rapidly, the protection

of intellectual property of software from piracy and unau-
thorized modification becomes more and more important to
computer business and academia. Software watermarking is
an approach to embed a message into software to claim the
ownership of it [5, 6, 9, 46]. It is an effective mechanism to
protect the intellectual property of the software developers.

Since software watermarking is a relatively new research
field, some of the core concepts are informal, even confus-
ing. The formalization of them will benefit researchers in
this area and facilitate the progress in it. In this paper,
we focus on one of the important concepts in software wa-
termarking – recognition. Through the discussion of these
terms, we can see more clearly the problems in a good soft-
ware watermarking system.

This paper is organized as follows. Section 2 is a brief
review of the concepts in software watermarking. Section 3
gives the concepts of embedding and extracting and some
examples. These form the basis for the definition of the
recognition system and for the examples in the following
sections. In Section 4, we define recognition, partial recog-
nition, blind recognition, and blind partial recognition of
software watermarks. In this section, we also develop sev-
eral recognition and partial recognition algorithms for the
QP algorithm [21, 30, 31, 39]. Section 5 has a description of
a model of a software watermark embedding and recognition
system based on the concepts and algorithms developed in
this paper. Section 6 concludes our paper.

2. OVERVIEW
The basic definitions of software watermarking concepts

appeared in the early papers by Collberg et al. [5, 9]. They
detailed concepts such as types of attacks on software water-
marking systems, static software watermarks and dynamic
software watermarks, and evaluation criteria for a software
watermarking system. In these papers, dynamic watermark-
ing techniques are divided into three classes: Easter egg wa-
termarks, data structure watermarks, and execution trace
watermarks. Attacks are classified into three categories:
subtractive attack, distortive attack, and additive attack.
Evaluation criteria are stealth, resilience, and data rate.
They also defined the extraction and recognition of software
watermarks, but these definitions are not very formal and
detailed.

Nagra et al. [24, 25, 26] and Thomborson et al. [36] gave
definitions of four types of software watermarks from a func-
tional view: authorship mark, fingerprinting mark, valida-

29

tion mark, and licensing mark. The authors also discussed
several other concepts such as visible and invisible water-
marks, robust and fragile watermarks, and tamperproofing.

Embedding and extraction are defined more formally by
Collberg et al. in their paper [4] as the encoding function
and exposition function, respectively. In that paper, the au-
thors considered multiple watermarks in software. In our
papers we regard them as parts of a whole watermark. The
paper [4] addressed some new ideas on attacks on software
watermarking and presented new evaluation metrics of soft-
ware watermarking system. Zhu and Thomborson formally
defined embedding and extraction in [46]. They also ad-
dressed several concepts involved in embedding and extrac-
tion of software watermarking.

Pastuszak et al. [28] discussed the functional watermark-
ing system and its components and the security evaluation
of such a system. A recent survey of software watermarking
is in [42]. Concepts and techniques of software watermark-
ing also abound in [5, 10, 11, 15, 16, 20, 21, 22, 23, 27, 29,
35, 38].

A similar but more active research area is digital water-
marking [13]. Moulin et al. have already done an elegant
work to formalize basic concepts in digital watermarking
from the point of information view [18, 17, 19], but their
consideration is mainly on digital setting such as audio and
video. They regard digital watermarking as a communica-
tion problem. In software watermarking, semantics is an
important consideration.

Hopper et al. also defined similar concepts in steganog-
raphy [12], but their definitions are based on a complexity-
theoretic point of view. They did not consider the special
situation in software watermarking. Similar concepts also
appeared in [3, 37] for natural language watermarking and
in [1, 2, 32, 33, 34] for database watermarking.

The main contributions of our paper are as follows: Firstly,
we give the definitions of the positive-partial recognition,
negative-partial recognition, and recognition corresponding
to an embedding algorithm. Secondly, we prove the exis-
tence of one and only one complete recognizer correspond-
ing to an embedding algorithm. Then, this paper has defi-
nitions of the strength of positive-partial recognitions and
negative-partial recognitions corresponding to an embed-
ding algorithm. In addition, we show the existence of the
weakest and the strongest positive-partial recognitions and
negative-partial recognitions corresponding to an embedding
algorithm. Furthermore, our paper defines the blind and in-
formed positive-partial recognition, negative-partial recogni-
tion, and recognition corresponding to an embedding algo-
rithm. Lastly, we use the above definitions to develop partial
recognition algorithms and recognition algorithms for soft-
ware watermarking and to design a model for a software
watermarking embedding and recognition system.

3. EMBEDDING AND EXTRACTING
A software watermarking system must do two basic things.

Firstly, it must embed a watermark into a software object.
Secondly, it must either extract all bits of the watermark
inserted by itself, or recognize whether or not there exists a
watermark embedded by itself. In this section, we introduce
some concepts of embedding a watermark into and extract-
ing a watermark from a software program, an issue which
was already addressed in our previous paper [46]. The ex-
traction problem is not the focus of this paper although we

need its concepts for our discussion of the recognition prob-
lem, the main topic on which we will concentrate in section 4
of this paper.

3.1 Embedding
Informally speaking, to embed a software watermark into

a program is to insert a secret message into this code. We
formally define this concept as follows.

Definition 1. (Watermark) A watermark is a message
of bits of 0 and 1 with a finite length ≥ 0. We denote the
set of all watermarks as W.

Definition 2. (Embedding) Let P denote the set of pro-
grams and W the set of watermarks. We call a function
A : P × W → P a watermark embedding algorithm, or, for
the sake of simplicity, an embedding algorithm, or even more
simply, an embedder.

If P ′ = A(P, W) for some P ∈ P and some W ∈ W,
then the P ′ is called a watermarked program with respect to
the embedder A, or, when there is no confusion, simply a
watermarked program. We also call the program P ∈ P the
original program corresponding to the watermarked program
P ′.

In order to illustrate the concepts defined in this paper,
we take a concrete software watermarking algorithm, the
QP algorithm, as an example.

3.2 The QP Watermarking Algorithm
Qu and Potkonjak proposed a watermarking algorithm

for watermarking solutions to Graph Coloring (GC) prob-
lems [30, 31], which is called the QP algorithm in [21, 39,
40]. It requires the vertices of the graph to be indexed, that
is, each vertex must be labeled with a unique integer in the
range 1 to |V (G)|. The QP algorithm relies heavily on the
ordering of node indices. The following are some concepts
used in the QP algorithm.

Definition 3. The Cyclic mod n ordering [30, 31]: We
use “<i” to denote the cyclic mod n ordering relation for a
fixed i, such that i <i (i+1) <i . . . <i n <i 1 <i · · · <i i−1.
Where there is no confusion over the value of i, we omit the
subscript in <i.

Definition 4. The two nearest vertices that are not con-
nected to a vertex vi [30, 31]: For a vertex vi of a graph G
with |V | = n, we say vi1 ∈ V and vi2 ∈ V are the two nearest
vertices that are not connected to a vertex vi if i <i i1 <i i2;
(vi, vi1) /∈ E; (vi, vi2) /∈ E; ∀j : i <i j <i i1, (vi, vj) ∈ E;
and ∀j : i1 <i j <i i2, (vi, vj) ∈ E.

In this paper, if the above two vertices exist for a vertice
vi, we also say the vertice vi has two candidate vertices, vi1

and vi2 .
The essence of the QP algorithm is to add an extra edge

between every vertex vi and one of its two candidate ver-
tices. The watermark bits to be embedded determine the
choice between these two nearest unconnected vertices. It
is important to notice that this concept is a dynamic one,
since the two candidate vertices of vi may change whenever
an edge is added to the neighborhood of vi.

The original QP algorithm in Fig. 1 was proposed by Qu
and Potkonjak [30, 31]. It inserts a watermark into a solu-
tion to a GC problem.

30

Input: An unwatermarked graph G with n = |V | and
An unbounded series of message bits: W = w1w2 . . . wm

Output: A watermarked graph G′.
Algorithm:
G′ := G;
j := 1;
if m > n then // not all bits of W can be inserted in G

return G
for each i from 1 to n do

if j > m then // all bits of W already inserted in G
return G′

if find the nearest two vertices vi1 , vi2

not connected to vi in G then
if wj = 0 then

connect vi to vi1 in G′

else
connect vi to vi2 in G′

j++
if m ≥ j then // not all bits of W inserted in G

return G
return G′

Figure 1: A clarified version of the QP algorithm

3.3 Extraction
After a watermark is inserted in a cover message using

an embedder, an important consideration is the potential
for an algorithm to extract this watermark. The following
definition specifies all potential watermarks an embedder
can insert into a program. This set excludes messages which
do not change a cover program.

Definition 5. (Set of candidate watermarks) A W ∈ W
is called a candidate watermark with respect to a program P
and an embedder A if A(P, W) �= P .

All candidate watermarks constitute the set of candidate
watermarks of the program P and the embedder A. This set
is denoted as candidate(P, A).

The set of candidate watermarks of a program P and an
embedder are all the watermarks that can actually be in-
serted into P by A. Embedding other watermarks into P
will not change the original program. This concept is im-
portant for defining extracting.

Example 1. (Set of candidate watermarks) Let A be the
QP algorithm in Fig. 1 and P be a program with the inter-
ference graph having 4 vertices v1, v2, v3, v4 and two edges
(v1, v3), (v2, v4). Then, the set of candidate watermarks of A
and P is {0, 1, 00, 01, 10, 11, 010, 011, 110, 111}. The in-
terference graphs of original program and the watermarked
programs are in Fig. 2. We can see from Fig. 2 that the
interference graph for the watermarked program after water-
mark 010 is inserted is the same as that after watermark
111 is inserted. For this reason, a watermark embedded by
the QP algorithm can not be extracted reliably.

After we embed a watermark into a program, we may ask
how to extract this watermark. We attempt to extract only
candidate watermarks.

Definition 6. (Extractor) Let A be an embedder; a func-
tion X : P × P → W is called an extractor corresponding

�����

������

1© 2©

3©4©
The original interference graph.

�����

������

1© 2©

3©4©
0 inserted.

�����

������

1© 2©

3©4©
1 inserted.

�����

������

1© 2©

3©4©
00 inserted.

�����

������

1© 2©

3©4©
01 inserted.

�����

������

1© 2©

3©4©
10 inserted.

�����

������

1© 2©

3©4©
11 inserted.

�����

������

1© 2©

3©4©
010 inserted.

�����

������

1© 2©

3©4©
011 inserted.

�����

������

1© 2©

3©4©
110 inserted.

�����

������

1© 2©

3©4©
111 inserted.

Figure 2: The interference graphs of the original and
the watermarked programs

to the embedder A if X has the following property: ∀P, P ′

∈ P, w ∈ W, if W ∈ candidate(P,A) and P ′ = A(P,W),
then X(P ′, P) = W . Otherwise, X(P ′, P) = ε.

Definition 7. (Extractable) We say watermarks embed-
ded by an embedder A are extractable if there exists an ex-
tractor X corresponding to the embedder A. We also say
X demonstrates that the embedder A is extractable, or more
simply, that A is extractable.

Example 2. (The QP embedding algorithm in Fig. 1 is
not extractable) From [46], we see that the QP algorithm in
Fig. 1 is not extractable.

4. RECOGNITION
In some situations, we may not have to extract all bits

of a watermark inserted in the software – we just want to
see whether software has a watermark embedded by an em-
bedder. In some other situations, the software watermark
embedder may be in essence unextractable, or, even when
the embedder is extractable, the extractor may be ineffi-
cient for a specific application. In this section, we discuss
the problem of judging the existence of a watermark em-
bedded in a software. In the following subsection we treat
the case of informed recognition, where the recognition func-
tion is supplied with two programs. The first argument of
the recognition function is the program to be tested for the
existence of a watermark, and the second argument is the
putative unwatermarked original program.

31

4.1 Recognizers and Partial Recognizers
For a positive-partial recognition, if a program really has

a watermark, the recognition will detect it. But, such a
recognition might say a program has a watermark while this
program actually has no watermarks.

Definition 8. (Positive-partial recognition) For an em-
bedder A : P × W → P, if a function R : P × P →
{TRUE,FALSE}, satisfies that ∀P, P ′ ∈ P, if there is a
W ∈ candidate(A, P) such that P ′ = A(P, W) then R(P ′, P)
= TRUE, we call R a positive-partial recognition function
for the embedder A, or simply a positive-partial recognizer.

For a negative-partial recognizer, if it says a program has
a watermark, this program really has a watermark. But,
such a recognizer might say a program has no watermarks
while this program actually has a watermark.

Definition 9. (Negative-partial recognition) For an em-
bedder A : P × W → P, if a function R : P × P →
{TRUE,FALSE} satisfies ∀P, P ′ ∈ P, R(P ′, P) = TRUE
=⇒ P ′ = A(P,W) for some W ∈ W, we call R a negative-
partial recognition function for the embedder A, or simply a
negative-partial recognizer.

For a complete accurate recognizer, if a program has a
watermark, the recognizer will say that this program has a
watermark; if a program has no watermarks, the recognizer
will say that this program has no watermarks.

Definition 10. (Recognizer) For an embedder A : P ×
W → P, if a function R : P×P → {TRUE,FALSE} satis-
fies ∀P, P ′ ∈ P, R(P ′, P) = TRUE ⇐⇒ P ′ = A(P,W) for
some W ∈ candidate(A, P), we call R a complete recogni-
tion function for the embedder A, or simply a recognizer.

We say that A is recognizable if there exists a recognizer
for A.

If A is extractable, it is also recognizable. Let X be the
extraction algorithm with respect to A. We can construct a
recognizer R(P ′, P) by testing whether an extracted water-
mark X(P ′, P) is equal to some W ∈ candidate(A, P).

Theorem 1. For every embedder A, there exists one and
only one recognizer corresponding to A. We denote the unique
recognizer corresponding to A as Reg(A).

Proof. ∀P, P ′ ∈ P, define R(P ′, P) as follows.
R(P ′, P) = TRUE, if there is some W ∈ candidate(A, P)

such that P ′ = A(P, W)
R(P ′, P) = FALSE, otherwise
It is easy to see R is a recognizer corresponding to A.
From Theorem 1 and Example 2, not all embedders are

extractable, but every embedder is recognizable.
Theorem 1 shows there is one and only abstract recog-

nizer, but there might be several concrete recognition algo-
rithms to realize such a recognizer.

Property 1. For every embedder A, Reg(A) is both the
positive-partial and the negative-partial recognizers correspond-
ing to A.

We present four examples to illustrate the above concepts.

Example 3. (Trivial partial recognizers) The partial recog-
nition concepts are very flexible. The following are some

�����

������

1© 2©

3©4©
0 inserted.

�����

������

1© 2©

3©4©
1 inserted.

�����

������

1© 2©

3©4©
00 inserted.

�����

������

1© 2©

3©4©
01 inserted.

�����

������

1© 2©

3©4©
10 inserted.

�����

������

1© 2©

3©4©
11 inserted.

�����

������

1© 2©

3©4©
010 inserted.

�����

������

1© 2©

3©4©
011 inserted.

�����

������

1© 2©

3©4©
110 inserted.

�����

������

1© 2©

3©4©
111 inserted.

�����

������

1© 2©

3©4©
No watermark

�����

������

1© 2©

3©4©
No watermark

�����

������

1© 2©

3©4©
No watermark

�����

������

1© 2©

3©4©
No watermark

�����

������

1© 2©

3©4©
No watermark

�����

������

1© 2©

3©4©
No watermark

Figure 3: The interference graphs for the positive-
partial recognizer of Figure 4.

trivial partial recognitions. For an embedder A : P × W →
P, define a function S : P × P → {TRUE,FALSE}, as
P ′, P ∈ P, S(P ′, P) = TRUE. This is a positive-partial
recognition corresponding to A. We call such a function a
trivial positive-partial recognizer corresponding to A and de-
note it as TrivPP (A).

For an embedder A : P × W → P, define a function
S : P × P → {TRUE,FALSE} as P ′, P ∈ P, S(P ′, P) =
FALSE. This is a negative-partial recognizer corresponding
to A. We call such a function a trivial negative-partial rec-
ognizer and denote it as TrivNP (A).

Example 4. (A positive-partial recognizer for the QP al-
gorithm) A positive-partial recognizer for the QP algorithm
is in Fig. 4. For the program with its interference graph as
in Example 1, the programs recognized by this recognizer are
the ones with interference graphs as in Fig. 3.

Example 5. (A negative-partial recognizer for the QP al-
gorithm) A negative-partial recognizer for the QP algorithm
is in Fig. 6. For the program with its interference graph as
in Example 1, the programs recognized by this recognizer are
the ones with interference graphs as in Fig. 5.

32

Input: an unwatermarked graph G(V, E) with n = |V |
a watermarked graph G′

Output: is a message W embedded in G′ ?
Algorithm:
if G is not a subgraph of G′ then

return FALSE
j:=0
for each i from 1 to n do

if find the nearest two vertices vi1 , vi2

not connected to vi in G then
j++
if (vi, vi2) ∈ G′ then

connect vi to vi2 in G
else if (vi, vi1) ∈ G′ then

connect vi to vi1 in G
else // all bits extracted

exit
if j=0 then

return FALSE
return TRUE

Figure 4: A positive-partial recognizer for the QP
algorithm

�����

������

1© 2©

3©4©
00 inserted.

�����

������

1© 2©

3©4©
10 inserted.

Figure 5: The interference graphs for the negative-
partial recognizer of Figure 6.

Input: an unwatermarked graph G(V, E) with n = |V |
a watermarked graph G′

Output: is a message W embedded in G′ ?
Algorithm:
if G is not a subgraph of G′ then

return FALSE
j:=0
for each i from 1 to n do

if find the nearest two vertices vi1 , vi2 not connected
to vi in G then
j++
if (vi, vi1) ∈ G′ then

connect vi to vi1 in G
else if (vi, vi2) ∈ G′ then

connect vi to vi2 in G
else

return FALSE
if j=0 then

return FALSE
return TRUE

Figure 6: A negative-partial recognizer for the QP
algorithm

Input: an unwatermarked graph G(V, E) with n = |V |
a watermarked graph G′

Output: is a message W embedded in G′ ?
Algorithm:
if G is not a subgraph of G′ then

return FALSE
j:=0
for each i from 1 to n do

if find the nearest two vertices vi1 , vi2

not connected to vi in G then
j++
if (vi, vi2) ∈ G′ then

connect vi to vi2 in G
else if (vi, vi1) ∈ G′ then

connect vi to vi1 in G
else // all bits extracted

exit
if j=0 then

return FALSE
if |E′| �= |E| + j then

return FALSE
return TRUE

Figure 7: A recognizer for the QP algorithm

Example 6. (A recognizer for the QP algorithm) A recog-
nition for the QP algorithm is in Fig. 7.

An extreme positive partial recognizer will always say a
program has a watermark while an extreme negative partial
recognizer will always say a program has no watermarks.
These two recognizers are not useful in practice. Now we
consider the relative strength of two recognizers.

Definition 11. (Strength of partial recognizers) Let PP1
and PP2 be two positive-partial recognizers corresponding to
an embedder A. If ∀P, P ′ ∈ P, PP2 (P ′, P) = TRUE =⇒
PP1 (P ′, P) = TRUE, we say PP2 is at least as strong as
PP1 .

Let NP1 and NP2 be two negative-partial recognizers cor-
responding to an embedder A. If ∀P, P ′ ∈ P, NP1(P ′, P) =
TRUE =⇒ NP2(P ′, P) = TRUE, we say NP2 is at least
as strong as NP1.

Property 2. For an embedder A, TrivPP(A) is the weak-
est positive-partial recognizer and Reg(A)) is the strongest
positive-partial recognizer for A; TrivNP(A) is the weak-
est negative-partial recognizer and Reg(A) is the strongest
negative-partial recognizer for A.

4.2 Blind recognizers
In some situations, in attempts to detect the presence of a

watermark in a potential watermarked program, the original
program is unavailable. Recognition of a watermark without
the original program is called blind recognition.

Definition 12. (Blind and informed recognizer) For an
embedder A : P ×W → P and a function S : P → {TRUE,
FALSE} we make the following definitions.

If S has the property that ∀P ′ ∈ P, if there is a P ∈ P
and a W ∈ candidate(A, P) such that P ′ = A(P,W), then

33

S(P ′) = TRUE, we call such an S a blind positive-partial
recognizer for the embedder A.

If S has the property that ‘ ∀P ′ ∈ P, S(P ′) = TRUE =⇒
there is a P ∈ P and a W ∈ candidate(A,P) such that
P ′ = A(P, W), we call such an S a blind negative-partial
recognizer for the embedder A.

If S has the property that ∀P ′ ∈ P, S(P ′) = TRUE ⇐⇒
there is a P ∈ P and a W ∈ candidate(A, P), such that
P ′ = A(P, W), we call such an S a blind recognizer for the
embedder A.

We say that A is blind recognizable if a blind recognizer
algorithm exists for A.

The combination (A, S) is called a blind watermark recog-
nition system, when S is a blind recognizer for A.

The blind recognizer is of more practical interest than
the informed recognizer, and, for the same reasons, blind
extraction is more useful than informed extraction. In the
following, we present two examples to illustrate the blind
recognizer.

Example 7 present an embedder and the blind recognizer
corresponding to this embedder.

Example 7. (A blind recognizer) Define an embedder A
as follows: For any program P , if W = 101 or if W = 110,
A(P, W) is P plus an extra constant declaration. Otherwise,
A(P, W) = P .

A blind recognizer S corresponding to A is defined as fol-
lows. For any P ′ ∈ P, if P ′ has at least one constant decla-
ration, S(P ′) = TRUE. Otherwise, S(P ′) = FALSE.

Theorem 2. For every embedder A, there exists one and
only one blind recognizer corresponding to A. We denote
the unique blind recognizer algorithm corresponding to A as
BReg(A).

Proof. ∀P, P ′ ∈ P, define R(P ′, P) as follows:
If there is a P ∈ P and a W ∈ candidate(A, P) such that
P ′ = A(P,W), R(P ′, P) = TRUE. Otherwise, R(P ′, P) =
FALSE.

It is easy to see R is a blind recognizer corresponding to
A.

Property 3. For every embedder A, BReg(A) is both the
blind positive-partial and the negative-partial recognizers cor-
responding to A.

Example 8. (Trivial blind partial recognizers) The blind
partial recognizer concepts are also very flexible. The follow-
ing are some trivial blind partial recognizers. For an embed-
der A : P×W → P, define S(P) = TRUE. This constant-
valued function is a blind positive-partial recognizer for A.
We call such an S a trivial blind positive-partial recognizer
and denote it as TrivBPP(A).

For an embedder A : P×W → P, define S(P) = FALSE.
This constant-valued function is a blind negative-partial rec-
ognizer for A. We call such a function a trivial blind negative-
partial recognizer and denote it as
TrivBNP(A).

For an embedder A, there are several blind positive-partial
recognizers and several blind negative-partial recognizers
with respect to A. We need to determine their relative
strength.

Definition 13. (Strength of blind partial recognizers) Let
BPP1 and BPP2 be two blind positive-partial recognizers
corresponding to an embedder A. If ∀W ∈ W and ∀P ′ ∈ P,
BPP2 (P ′) = TRUE =⇒ BPP1 (P ′) = TRUE, we say
BPP2 is stronger than BPP1.

Let BNP1 and BNP2 be two blind negative-partial rec-
ognizers corresponding to an embedder A. If ∀W ∈ W and
∀P ′ ∈ P, BNP1(P ′) = TRUE =⇒ BNP2(P ′) = TRUE,
we say BNP2 is stronger than BNP1.

Property 4. For every embedder A, TrivBPP(A) is the
weakest blind positive-partial recognizer and BReg(A) is the
strongest blind positive-partial recognizer; TrivBNP(A) is
the weakest blind negative-partial recognizer and BReg(A)
is the strongest blind negative-partial recognizer.

5. A SOFTWARE WATERMARK EMBED-
DING AND RECOGNITION SYSTEM

We design a system model using the above concepts we
established to embed watermarks into and recognize water-
marks from programs as follows.

Embedding subsystem:
For ∀P ∈ P and ∀W ∈ W,
Step 1: Construct the interference graph G of P .
Step 2: Embed the watermark W into the graph G by

the QP embedder and we have the watermarked graph G′.
Step 3: Establish interference relationships of some vari-

able pairs in P so that G′ is the interference graph of the
new program.

Recognition subsystem:
For ∀P, P ′ ∈ P,
Step 1: Construct the interference graphs G, G′ of P, P ′,

respectively.
Step 2: Recognize the watermark W from the graphs G

and G′ by one of the QP recognition algorithms.

6. CONCLUSIONS
As we can see from the above definitions, recognition is

a very complicated concept in software watermarking. How
to construct a good recognition algorithm for a specific sit-
uation and purpose still deserves future research.

Algorithmic design, even with an adequate formal state-
ment of the problem to be solved is both an art and a science.
Without a precise statement of the problem, we cannot hope
to prove the correctness of any algorithm, and indeed we
may have difficulty even explaining the purposes of any al-
gorithm.

When we started this research project, we thought that
it would be a simple matter to prove the QP algorithm ei-
ther correct or incorrect. However we could not do this until
we devised appropriate definitions for two basic problems in
watermarking – recognition and extraction. None of our ini-
tial, intuitively-formed, problem definitions were sufficient
to support a careful analysis of the QP algorithm; and we
found little support for a careful analysis in the published
literature. We were, however, successful in devising a ser-
viceable set of definitions, allowing us to complete a careful
analysis of the QP algorithm (and its variants). In the pro-
cess we discovered some subtle bugs and algorithmic issues.
Our major findings are summarized very briefly below.

For any software watermark embedder, there is one and
only one recognizer corresponding to it. This recognizer is

34

also the strongest positive-partial and the strongest negative-
partial recognizer corresponding to that embedder. There
are also a weakest positive-partial recognizer and a negative-
partial recognizer corresponding to that embedder, but they
are all trivial partial recognizers. The similar results hold
for the blind recognizer and the partial recognizers.

Recognition is more flexible than extraction, but it is also
hard to develop a good recognition algorithm for a specific
situation. We design a model for a software watermark sys-
tem through register allocation based on the concepts and
algorithms from this paper. We will implement and anal-
yse the model in our future work. We will also continue to
define these concepts in a random setting.

We did not consider the attack issue in this paper, but how
to recognize watermarks from attacked programs is also an
important problem in software watermarking. It is still a
challenging research topic for our future work. We will also
study how to combine software obfuscation [7, 8, 41, 43,
44] and artificial intelligence [45] with software watermark-
ing to develop more secure software watermarks. Another
interesting research topic is to apply techniques of software
watermarking to intelligence and security informatics [14].

7. ACKNOWLEDGMENTS
This work is in part supported by the New Economy Re-

search Fund of New Zealand. The authors thank Jasvir
Nagra for his insightful comments on an early draft of this
paper. The helpful comments and suggestions for this paper
from the three anonymous referees are appreciated. The au-
thors are also deeply indebted to Barbara Thomborson for
her professional proofreading and editing this paper.

8. REFERENCES
[1] R. Agrawal, P. Haas, and J. Kiernan. Potpourri: A

system for watermarking relational databases. In the
2003 ACM SIGMOD international conference on
Management of data, June 2003.

[2] R. Agrawal, P. Haas, and J. Kiernan. Watermarking
relational data: framework, algorithms and analysis.
The International Journal on Very Large Data Bases,
12(2), Aug 2003.

[3] M. Atallah, V. Raskin, C. Hempelmann, M. Karahan,
R. Sion, K. Triezenberg, and U. Topkara. Natural
language watermarking and tamperproofing. In Fifth
Information Hiding Workshop, volume 2578 of LNCS,
pages 196–212, 2003.

[4] C. Collberg, S. Jha, D. Tomko, and H. Wang.
Uwstego: A general architecture for software
watermarking. Technical Report TR04–11, Aug. 31
2001.

[5] C. Collberg and C. Thomborson. Software
watermarking: Models and dynamic embeddings. In
Proceedings of Symposium on Principles of
Programming Languages, POPL’99, pages 311–324,
1999.

[6] C. Collberg and C. Thomborson. Watermarking,
tamper-proofing, and obfuscation - tools for software
protection. IEEE Transactions on Software
Engineering, 28:735–746, Aug. 2002.

[7] C. Collberg, C. Thomborson, and D. Low. A
taxonomy of obfuscating transformations. In Tech.

Report, No.148, Dept. of Computer Sciences, The
University of Auckland, 1997.

[8] C. Collberg, C. Thomborson, and D. Low.
Manufacturing cheap, resilient, and stealthy opaque
constructs. In POPL’98, pages 184–196, 1998.

[9] C. Collberg, C. Thomborson, and D. Low. On the
limits of software watermarking. In Technical Report
#164, Department of Computer Science, The
University of Auckland, 1998.

[10] D. Grover. The Protection of Computer Software - Its
Technology and Applications. Cambridge University
Press, 2 edition, 1997.

[11] G. Hachez. A Comparative Study of Software
Protection Tools Suited for E-Commerce with
Contributions to Software Watermarking and Smart
Cards. PhD thesis, Universite Catholique de Louvain,
Mar 2003.

[12] N. J. Hopper, J. Langford, and L. von Ahn. Provably
secure steganography. In CRYPTO 2002, volume 2442
of LNCS, pages 77–92, 2002.

[13] H. C. Kim, E. T. Lin, O. Guitart, and E. J. Delp.
Further progress in watermark evaluation testbed
(wet). In Security, Steganography, and Watermarking
of Multimedia Contents, volume 5681 of Proceedings of
SPIE, pages 241–251. SPIE, 2005.

[14] S. Mehrotra, D. D. Zeng, H. Chen, B. M.
Thuraisingham, and F.-Y. Wang. Intelligence and
security informatics. In ISI 2006, volume 3975 of
LNCS, May 2006.

[15] A. Monden, H. Iida, et al. A watermarking method for
computer programs (in japanese). In Proceedings of
the 1998 Symposium on Cryptography and Information
Security, SCIS’98. Institute of Electronics,
Information and Communication Engineers, Jan. 1998.

[16] A. Monden, H. Iida, K. ichi Matsumoto, K. Inoue, and
K. Torii. Watermarking java programs. In
International Symposium on Future Software
Technology ’99, pages 119–124, October 1999.

[17] P. Moulin and A. Ivanovic. Game-theoretic analysis of
watermark detection. In ICIP (3), pages 975–978,
2001.

[18] P. Moulin and J. O’Sullivan. Information–theoretic
analysis of watermarking. In Proc. Int. Conf. on Ac.,
Sp. and Sig. Proc. (ICASSP), 2000.

[19] P. Moulin and J. O’Sullivan. Information–theoretic
analysis of information hiding. IEEE Transactions on
Information Theory, 49(3):563–593, 2003.

[20] G. Myles and C. Collberg. Detecting software theft
via whole program path birthmarks. In Information
Security Conference, 2004.

[21] G. Myles and C. Collberg. Software watermarking
through register allocation: Implementation, analysis,
and attacks. In LNCS 2971, pages 274–293, 2004.

[22] G. Myles and C. Collberg. Software watermarking via
opaque predicates: Implementation, analysis, and
attacks. In ICECR-7, 2004.

[23] G. Myles and H. Jin. Self-validating branch-based
software watermarking. In IH 2005, volume 3727 of
LNCS, pages 342–356. Springer Verlag, 2005.

[24] J. Nagra and C. Thomborson. Threading software
watermarks. In IH’04, 2004.

35

[25] J. Nagra, C. Thomborson, and C. Collberg. A
functional taxonomy for software watermarking. In
M. J. Oudshoorn, editor, Twenty-Fifth Australasian
Computer Science Conference (ACSC2002),
Melbourne, Australia, 2002. ACS.

[26] J. Nagra, C. Thomborson, and C. Collberg. Software
watermarking: Protective terminology. In Proceedings
of the ACSC 2002, 2002.

[27] J. Palsberg, S. Krishnaswamy, K. Minseok, D. Ma,
Q. Shao, and Y. Zhang. Experience with software
watermarking. In ACSAC ’00, pages 308–316. IEEE,
2000.

[28] J. Pastuszak, D. Michalek, and J. Pieprzyk. Copyright
protection of object-oriented softwares. In ICICS
2001, volume 2288 of LNCS, pages 186–199, 2002.

[29] J. Pieprzyk. Fingerprints for copyright software
protection. In M. Mambo and Y. Zheng, editors,
Proceedings of the Second International Workshop on
Information Security, ISW’99 (LNCS 1729), pages
178–190, Germany, 1999. Springer.

[30] G. Qu and M. Potkonjak. Analysis of watermarking
techniques for graph coloring problem. In IEEE/ACM
International Conference on Computer Aided Design,
’98, pages 190–193, 1998.

[31] G. Qu and M. Potkonjak. Hiding signatures in graph
coloring solutions. In Information Hiding Workshop
’99, pages 348–367, 1999.

[32] R. Sion, M. J. Atallah, and S. Prabhakar. wmdb.:
Rights protection for numeric relational data. In
ICDE, page 863. IEEE Computer Society, 2004.

[33] R. Sion, M. J. Atallah, and S. Prabhakar. Rights
protection for categorical data. IEEE Trans. Knowl.
Data Eng., 17(7):912–926, 2005.

[34] R. Sion, M. J. Atallah, and S. Prabhakar. Rights
protection for relational data. IEEE Trans. Knowl.
Data Eng., 16(12):1509–1525, 2005.

[35] J. Stern, G. Hachez, F. Koeune, and J.-J. Quisquater.
Robust object watermarking: Application to code. In
Information Hiding Workshop’99, pages 368–378,
1999.

[36] C. Thomborson, J. Nagra, Somaraju, and Y. He.

Tamper-proofing software watermarks. In Proc.
Second Australasian Information Security
Workshop(AISW2004), pages 27–36, 2004.

[37] M. Topkara, C. M. Taskiran, and E. J. Delp. Natural
language watermarking. In Security, Steganography,
and Watermarking of Multimedia Contents, volume
5681 of Proceedings of SPIE, pages 441–452. SPIE,
2005.

[38] R. Venkatesan, V. Vazirani, and S. Sinha. A graph
theoretic approach to software watermarking. In
Information Hiding Workshop ’00, March 2000.

[39] W. Zhu and C. Thomborson. Algorithms to
watermark software through register allocation. In
DRMTICS 2005, volume 3919 of LNCS, pages
180–191, October 2005.

[40] W. Zhu and C. Thomborson. On the QP algorithm in
software watermarking. In IEEE ISI 2005, volume
3495 of LNCS, pages 646–647, May 2005.

[41] W. Zhu and C. Thomborson. A provable scheme for
homomorphic obfuscationin in software security. In
The IASTED International Conference on
Communication, Network and Information Security,
CNIS’05, pages 208–212, Phoenix, USA, Nov 2005.

[42] W. Zhu, C. Thomborson, and F.-Y. Wang. A survey
of software watermarking. In IEEE ISI 2005, volume
3495 of LNCS, pages 454–458, May 2005.

[43] W. Zhu, C. Thomborson, and F.-Y. Wang.
Application of homomorphic function to software
obfuscation. In WISI 2006, volume 3917 of LNCS,
pages 152–153, April 2006.

[44] W. Zhu, C. Thomborson, and F.-Y. Wang. Obfuscate
arrays by homomorphic functions. In Special Session
on Data Security and Privacy in IEEE GrC 2006, to
appear, pages 770–773, May 2006.

[45] W. Zhu and F.-Y. Wang. Covering based granular
computing for conflict analysis. In IEEE ISI 2006,
volume 3975 of LNCS, pages 566–571, 2006.

[46] W. Zhu and C. Thomborson. Extraction in software
watermarking. In to appear in ACM Multimedia and
Security Workshop, 26-27, September, 2006, Geneva,
Switzerland, 2006.

36

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

