
A Functional Taxonomy for Software Watermarking 

J a s v i r  N a g r a *  C l a r k  T h o m b o r s o n *  C h r i s t i a n  C o l l b e r g  t 

*Depar tment  of Computer  Science 
The University of Auckland, 

Private Bag 92019 
Auckland, New Zealand, 

{j as, cthombor}@cs, auckland, ac. nz 

tDepar tment  of Computer  Science 
University of Arizona 

Tucson, AZ 85721 USA 
collberg@cs, arizona, edu 

A b s t r a c t  

Despite the recent surge of interest in digital watermarking 
technology from the research community, we lack a comprehen- 
sive and precise terminology for software watermarking. In this 
paper, we attempt to fill that gap by giving distinctive names 
for the various protective functions served by software water- 
marks: Validation Mark, Licensing Mark, Authorship Mark 
and Fingerprinting Mark. We identify the desirable properties 
and specific vulnerabilities of each type of watermark, and we 
illustrate the utility of our terminology in a discussion of recent 
results in software watermarking. 

Keywords: Watermark,  fingerprint, software licens- 
ing, authentication, steganography, software author- 
ship. 

1 I n t r o d u c t i o n  

Digital watermarking has recently received a flurry 
of attention from the research community.  Various 
aspects and applications of watermarking have been 
identified, but we lack an unambiguous and compre- 
hensive terminology. This leads to some confusion 
and even apparent  contradiction in the published lit- 
erature. 

We define watermarking as the process of embed- 
ding a small amount of identifying information in me- 
dia and we define such embedded information as a wa- 
termark. In this paper,  we are especially interested 
in watermarks that  are embedded in software, how- 
ever, the terms defined are equally applicable to other 
types of audio visual media. 

The type of information identified by a watermark 
depends on the function tha t  a watermark  is designed 
to serve. We, hence further introduce four novel terms 
to unambiguously and conveniently denote the vari- 
ous functionally-distinct watermarks for software pro- 
tection: Authorship Mark, Fingerprinting Mark, Val- 
idation Mark, and Licensing Mark. 

In this paper we a t t empt  to clarify some of the 
confusion tha t  has arisen in the discussion of water- 
marks in academic writing. In Section 3, we seek to 
show examples were the lack of unified terminology 
may cause ambiguity among authors. 

We develop and support  our taxonomic definitions 
in Sections 4 and 5 below. To aid further investiga- 
tion, in Sections 6 and 7 we offer a careful definition 
of the desirable properties of software watermarks,  

Copyright (~)2001, Australian Computer Society, Inc. This pa- 
per appeared at the Twenty-Fifth Australasian Computer Sci- 
ence Conference (ACSC2002), Melbourne, Australia. Confer- 
ences in Research and Practice in Information Technology, Vol. 
4. Michael Oudshoorn, Ed. Reproduction for academic, not-for 
profit purposes permitted provided this text is included. 

such as fragility and robustness. Our taxonomy and 
definitions enabled us to identify several novel classes 
of t ransformations on watermarked objects, which we 
use to further refine our taxonomy. In Sections 8, 9 
and 10 we conclude this paper  by giving simple ex- 
amples of software watermarks ,  considering attacks 
on the various categories of watermarks,  and finally 
developing what we believe to be a novel categoriza- 
tion of the at tacks on fragile watermarks.  

2 M o t i v a t i o n  

An excellent and authori ta t ive survey of digital wa- 
termarking commences with the following definition: 
"A digital watermark embeds an imperceptible [em- 
phasis added] signal into da ta  such as audio, video 
and images, for a variety of purposes, including cap- 
tioning and copyright control" (Miller, Cox, Linnartz 
& Kalker 1999). In another  article, two of the au- 
thors of this survey assert (we believe rightly) to the 
contrary: that  some watermarks  should be readily 
perceptible. "Copy protection applications require 
tha t  a watermark can be read by anyone, even by 
potential  copyright pirates,  but nonetheless only the 
sender should be able to embed and erase the water- 
mark"  (Cox 8z Linnartz 1998). Other authors concur 
with this requirement of visibility: "By watermarks 
we mean 'marks '  tha t  are readily detectable, even by 
a casual user, such as a ' logo' or 'banner '  that  appears  
to be ' l ightly'  printed over each page of a document" 
(Kaplan 1996). 

The unadorned te rm "watermark"  is thus deeply 
ambiguous. Depending on the context, a watermark 
may be required to be invisible, "(usually) indis- 
tinguishable from the original" (Lacy, Quackenbush, 
Reibman & Snyder 1998), barely noticeable, or read- 
ily detectable. Others have noted this difficulty, and 
have made admirable (but incomplete) steps toward 
addressing it: "Several names have been coined for 
such techniques, and therefore it is necessary to clar- 
ify the differences. Visible watermarks ... are visual 
pat terns ... very similar to visible paper  watermarks.  
Watermarking ... has the additional notion of robust- 
ness against at tacks" (Kut ter  & Har tung 2000). 

Robustness is another  contested property of digital 
watermarks.  According to the passage just cited, all 
watermarks are robust.  Elsewhere, we read tha t  dig- 
ital watermarks are generally designed to be "robust 
... [so that  they will] survive common distortions... 
[but] In some applications, we want exactly the op- 
posite of robustness. Consider, for example,  the use 
of physical watermarks  in bank notes. The point of 
these watermarks is tha t  they do not survive any kind 
of copying, and therefore can be used to indicate the 
bill's authenticity" (Miller et al. 1999). 

177 



178 

In view of this definitional confusion about the 
(in)visibility and (non)robustness that may be re- 
quired of watermarks, we have come to believe that 
the ambiguous term "watermark" should be used 
only in its generic sense if academic, technical or le- 
gal precision is required. To fill the resulting lin- 
guistic gap, we introduce four novel terms to un- 
ambiguously and conveniently denote the various 
functionally-distinct digital constructs for software 
protection, that have been called "watermarks" else- 
where: Authorship Mark, Fingerprinting Mark, Vali- 
dation Mark, and Licensing Mark. 

Other authors have constructed a similar taxon- 
omy to ours, but for watermarks on media rather than 
software, by considering functionality. However either 
they didn't name their categories (Miller et al. 1999) 
or they didn't identify the full range of generality 
(Kutter & Hartung 2000). 

In our survey of the literature, we have identified 
a possible fifth category that we would call Secret 
Marks. Such marks carry subliminal information for 
military or espionage purposes (Miller et al. 1999); 
and therefore they are outside the scope of this pa- 
per. We are concerned only with protective marks 
on software. In our view, Secret Marks are stegano- 
graphic ("invisible writing") but they should proba- 
bly not be considered watermarks. They do have a 
long and fascinating history, starting from a mention 
in Herodotus (Petitcolas 2000) to recent academic in- 
quiry (Kurak & McHugh 1992). 

3 Background  

The Oxford English Dictionary defines watermarks as 
being marginally perceptible: '% distinguishing mark 
or device impressed in the substance of a sheet of 
paper during manufacture, usually barely noticeable 
except when the sheet is held against strong light" 
(Simpson & Weiner 2000). 

The art of media watermarking may have first 
been practiced in the Western world in the late thir- 
teenth century, when discerning Italian customers and 
merchants in the town of Fabriano could examine pa- 
per for embossed watermarks. This was apparently a 
reliable means of identifying the paper mill at which 
it was produced, and perhaps even the artisan who 
smoothed the paper with a "calendar" stone. (Kutter 
& Hartung 2000). 

Over the next seven hundred years, watermark- 
ing found many further applications. In 1990, the 
first digital watermarks were invented as a protec- 
tive measure for digital imagery (Tanaka, Nal~mura 
& Matsui 1990), cited in (Kutter & Hartung 2000). 
Image watermarking has received an ever-increasing 
level of attention since then; a recent survey contains 
references to fifty-four articles on this topic (Dugelay 
& Roche 2000). 

Popular image-processing software such as 
Adobe's PhotoShop, Corel's Photo-Paint, and Paint 
Shop Pro offer the technicMly-literate public a 
straightforward way to embed easily-visible water- 
marks in their graphic creations (Chastain 2001). 

Watermarking of software is an even more re- 
cent development, with a correspondingly smaller 
level of publication activity (Grover 1992), (Holmes 
1994), (Samson 1994), (Davidson & Myhrvold 1996), 
(Moskowitz & Cooperman 1998), (Monden, Iida 
et al. 1998), (Collberg & Thomborson 1999),(Stern, 
Hachez, Frail & Quisquater 2000), (Pieprzyk 1999), 
(Palsberg, Krishnaswamy, Minseok, Ma, Shao 
Zhang 2000), (Venkatesan, Vazirani & Sinha 2001). 

Watermarking is only one of many approaches for 
dealing with the protection of intellectuM property in 
software. Other technical means include the use of a 
registration database (Shivakumar & Garcia-Molina 

1996), advanced cryptography with hardware sup- 
port (e.g. (Ostrovsky & Goldreich 1992), (Nardone 
et al. 2001)), obfuscation (Collberg, Thomborson & 
Low 1998), and tamperproofing (Aucsmith 1996). 
Non-technical means of protection include prosecu- 
tion under copyright and patent law (Burk 2001), en- 
forcement of licenses under contract law, appropri- 
ate business models (Davis 2001) and ethical controls 
(Pfleeger 1997). 

An approximate determination of the author of a 
software product may be obtained by analysis of what 
we might call Inadvertent Authorship Marks. These 
have been studied elsewhere (Krsul 1994) and will not 
be considered further in this paper. 

4 Setting 

We develop a precise terminology for watermarking 
from the point of view of the person embedding the 
watermark. Where possible, we have kept the ter- 
minology consistent with terminology generally ac- 
cepted in the information hiding research community. 

To illustrate our terminology, we adopt stereotypi- 
cal names and rules from cryptographic research: Al- 
ice, author of software O, wishes to distribute O via 
her distributor Douglas to her customer, Catherine. 
According to custom, the adversary is named Bob, 
who in our scenario wishes to gain financially by 
stealing Alice's intellectual property. Furthermore, 
to more accurately reflect the software distribution 
model, we extend this simple scenario to include the 
possibility that each of these characters represents 
multiple authors, distributors or customers, respec- 
tively. 

J L J L 

A l i c e  D o u g l a s  C a t h e ~ n e  
(Author)  (Distributor) (Customer)  

B o b  
(Adversa ry )  

Figure 1: Actors in our analysis of software distribu- 
tion. The arrows denote the desired flow of software, 
which Bob is trying to disrupt. 

5 Appl icat ions  of  Digi ta l  W a t e r m a r k i n g  

Several scenarios in watermarking can be discovered 
by considering the interests of each of the players 
shown in Figure 1. In particular, there are three 
"good guys": our authors, Alice; the distributors, 
Douglas; and consumers, Catherine. Each one has 
a different interest to protect. Our adversary, Bob 
is involved not to protect his own interest but to in- 
fringe on the interests of the remaining participants. 
We will discuss Bob's activities in Section 9, when we 
define the effectiveness of watermarks. 

5.1 Author ( s )  

The most commonly perceived application for water- 
marking is to identify the author of the software and 
to protect their intellectual property. In this applica- 
tion, the objective for our author, Alice is to embed 



in her source code a mark that  prevents Bob from 
claiming to have authored O. A common variation 
for such a scheme would be to allow multiple authors 
to alter the original and for each contributor to leave 
a mark so that  a recognizer could identify the contrib- 
utors to the final product,  O. We define such marks 
as Authorship Marks. 

An A u t h o r s h i p  M a r k ( A M )  is a water- 
mark that  embeds in the software, informa- 
tion identifying its author. 

Authorship Marks may identify a single author, in 
which case they are called Single Authorship Marks. 
Alternatively, they may allow a finite or arbitrarily 
large number of authors, in which case they are called 
Multiple Authorship Marks. These latter marks ap- 
ply when the original author would like additional 
contributors to the source to be able to embed their 
own authorship marks. 

We expect Authorship Marks to be visible and 
robust. Generally authors want their name to be 
visible to the end-user, as an assertion of quality 
and/or  copyright. Robustness is important  as a de- 
fense against copyright infringement. 

5.2 D i s t r i b u t o r ( s )  

The ability to identify the channel of distribution of 
O from Alice to Catherine may be valuable in order 
to identify one or more distributors of a particular 
illegal copy of O. The identification of distribution 
channels will also be useful when gathering statistics, 
for instance about the effectiveness of particular dis- 
tributors or distribution channels. We define a mark 
designed to identify the distribution channel as a Fin- 
gerprinting Mark or a Fingerprint. 

A F i n g e r p r i n t i n g  M a r k ( F M )  is a water- 
mark that  embeds information in the soft- 
ware identifying the serial number or pur- 
chaser of that  software. 

While Authorship Marks embed the same water- 
mark in all copies of the same content, Fingerprinting 
Marks allow each distributed copy to be customized 
for each recipient. Such a scheme makes it possible 
for a watermark recognizer to track the distribution 
history of a particular copy of the source. The his- 
tory may identify only a single distributor; alterna- 
tively a Fingerprinting Mark may record a succession 
of agents in a distribution chain, in which case we 
would call it a Multiple Fingerprinting Mark. 

We expect Fingerprinting Marks to be invisible 
and robust. Generally the end-user is not interested 
in seeing information about  the distribution of the ob- 
ject they are using, and invisibility tends to increase 
the robustness of the watermark. Robustness is a 
very important  property of Fingerprinting Marks, in 
situations where license infringements are suspected. 

5.3.1 V a l i d a t i o n  M a r k  

A V a l i d a t i o n  M a r k ( V M )  is a watermark 
that  embeds in the software, information 
verifying that  the software is still essentially 
the same as when it was authored. 

(We will give a precise definition of "essentially the 
same" in the next section.) 

Digitally signed Java Applets (Sun Microsystems 
2001) are Validation Marks by our definition because 
they allow the applet sandbox to validate incoming 
applets. In fact, like signed applets, Validation Marks 
often are a cryptographic digest of the document to be 
protected (Nat ' l  Inst. of Standards and Technology 
1999). A general scheme for implementing this class 
of Validation Marks is illustrated in Figure 2. 

The "Original" document shown in the figure is 
the document or software to be protected. Suppose 
Alice publishes a paper on watermarking and wishes 
to embed a Validation Mark to assure readers of it 
authenticity. However, she realises tha t  the layout, 
spacing and font characteristics may need to be al- 
tered by her publisher (who plays the role of distrib- 
utors in our scheme). The e s s e n c e  e x t r a c t i o n  process 
shown is a function whose input is the original docu- 
ment, and whose output  is invariant for all versions of 
the original document that  are essentially the same. 
In our current example, the essence function would 
strip presentation information from Alice's document. 
A cryptographic digest of this "essence" can then be 
generated and added to the document by the aggre- 
gation function shown in the figure. The aggregation 
may be as simple as concatenation, where Alice sim- 
ply attaches the digest to the document or it may be 
more complex. 

The Marked document can now be distributed. 
If a reader would like to verify the authenticity of 
the document, the publicly available Verifier detaches 
the body of the document  from the digest, runs the 
essence extractor  on the body and computes a digest. 
If the digest is missing or different from the one com- 
puted, then the reader knows the document has been 
altered in a way that  Alice had not intended. 

A number of essence-extraction algorithms for 
placing Validation Marks on digital imagery have 
been investigated. For example, see (Lin & Chang 
2000) who distinguish between "robust authentica- 
tion" in which no perceptible change is allowed in the 
protected image, and "content authentication" by a 
"semi-fragile watermark" which verifies the semantic 
content. We make this distinction in a lower level of 
our taxonomy, by suitable definition of what is "es- 
sentially the same" for a given application. 

We expect Validation Marks to be fragile and visi- 
ble. The end-user must be able to detect a Validation 
Mark to be assured of the integrity of the underlying 
object, and an appropriate level of fragility of a Vali- 
dation Mark provides assurance that  the object hasn't  
been modified to the point that  it has become invalid. 

5.3 Consumer(s) 

At the end-user level, two actors have interests to pro- 
tect. Firstly the end-user Catherine needs to be able 
to ascertain that  the version of the software she is us- 
ing has not been altered in any way. Secondly, the 
author Alice may want to ensure that  Catherine is 
not violating her license agreement, i.e. that  Cather- 
ine has paid for the software that  she is in posses- 
sion of, and that  she is not using an illegal number of 
copies. Accordingly, we define two marks: Validation 
Marks to assure non-alteration, and Licensing Marks 
to control payment. 

5.3.2 L i c e n s i n g  M a r k  

A L i c e n s i n g  M a r k ( L M )  is a watermark 
that  embeds in the software, information 
controlling how the software can be used. 

Licensing Marks for software generally contain a de- 
cryption key as a fundamental part  of their license 
control, and the software under license control is gen- 
erally held in encrypted form. The decryption key will 
become ineffective if the License Mark is damaged. 
We thus expect a License Mark to be fragile; and we 
also expect it to be invisible, so that  it is somewhat 
more difficult for an adversary (Bob, in our scenario) 
to forge. 

179 



180 

< 
> 

(.9 

Essctlc¢ 
Extraction 

E s s e n ~  

ggregafion 

Validation 
Mark 

Calculation 

Document  Invalid 

Document  Valid 

Validity 

Mark  

Figure 2: A general scheme for a class of Validation Marks 

. . . . .  )1  . . . . .  11 . . . . .  I I  . . . . . .  I 

Figure 3: A taxonomy tree for digital watermarking 

After we develop some mathemat ica l  notat ion in 
the next section, we will be able to describe how a Li- 
cense Mark can be used to limit the number  of copies 
that  can be made by a licensed user. 

Figure 3 is a graphical presentat ion of our taxon- 
omy for software watermarking.  

6 F u n d a m e n t a l  P r o p e r t i e s  

We adapt  the cus tomary  mathemat ica l  notat ion for 
image watermarking,  to give formal expressions and 
definitions for the most  impor tan t  concepts in soft- 
ware watermark  embedding, recognition and other 
transformations on software. 

Let O be a computer  program tha t  is available for 
manipulat ion in the current state S of a computer  
system. We use the notat ion S = [O, ...] to denote a 
state S in which there is exactly one copy of O; we 
write S '  = [O, O, ...] to denote a state S '  containing 
two identical copies of O. (We are not part icularly 
concerned, in this paper,  with the location or address 
of O in the state S.) 

Let w be a watermark,  and E be a watermark em- 
bedding function, then 

E(s ,~)  = s~ 

where S = [O, ...] is a computer  state containing an 
object to be watermarked and a desired watermark,  
and S~ = [O~, ...] is a computer  state containing the 
desired watermarked object.  The corresponding wa- 
te rmark  recognition function, 7~, has the proper ty  

False-recognition of watermarks  is not desirable, 
so we require 

vs~ ,~ '  # ~ : n ( s ~ )  # ~' 

The assertions above must  be understood as 
desiderata. In any practical setting, to obtain a fea- 
sible solution, we would be forced to admi t  a small 
probabil i ty of error in wate rmark  recognition. 

A watermarking algorithm, A = (~, 7~), is a com- 
bination of an embedding function E with its corre- 
sponding recognition function 7?.. 

6.1 V i s ib l e  a n d  I n v i s i b l e  W a t e r m a r k s  

In keeping with the spirit in which visible watermark 
is used in academic li terature,  we use this phrase to 
describe a watermarking algori thm A = (C,7"~) in 
which the recognition function T~ is public knowledge. 
In terms of our scenario of Figure 1, any visible water- 
mark  will be legible to our customer Catherine,  and 
to our adversary Bob, because they know the recog- 
nition function. 

We are especially interested in how the recognition 
function will operate  on watermarked  objects tha t  un- 
dergo various t ransformat ions  T : S -4 S, such as 
those occurring in da ta  compression, decompilation, 
etc. We thus formalise our definition of "legible" as 
follows: 

We say tha t  a watermarking algori thm, A --- 
(E, 7~) is legible after a t ransformat ion T if 

VS~: n ( T ( C ( S , ~ ) ) )  = n ( C ( S , w ) )  

By contrast,  in an invisible watermarking algo- 
r i thm, the recognition function (or some critical com- 
ponent thereof, such as an encryption key or "where 
to look for the mark")  is not public knowledge. Such 
marks  are intended to remain illegible to everyone ex- 
cept the watermarker  (which may  be either the Au- 
thor  or the Distributor,  in our scenario). 

6.2 Robust  and Fragile Watermarks  

In the case of a robust watermark, we want to be 
assured tha t  the wate rmark  is legible (can be rec- 
ognized correctly by someone who knows T~), after 
a sufficiently-mild t ransformat ion has been applied. 
In the case of a fragile watermark, we want to be 



assured that  the watermark will become illegible if 
the transformation is sufficiently severe. We now for- 
malise these notions. 

A watermarking algorithm, A = (E, 7~) is robust 
over a set of transforms 7-, if A is legible after all 
T E T .  

Fragility is more subtle than robustness. A use- 
ful definition (as will be seen below) is tha t  a water- 
marking algorithm, A = (~,T~) is fragile except for 
a set of transforms 7", if A is not legible under any 
T ¢ 7-. The mathematically-inclined reader may note 
that  this is a reasonable way to define fragility as "ex- 
actly the opposite" of robustness - in conformance 
with a prior informal English description elsewhere 
(Miller et al. 1999). 

The simplest interesting class of transforms is 
7-identity, which contains only the transform T identity 
making no change to state S. 

Figure 4 is a Venn diagram showing 7-identity, as 
well as other classes of interest in software watermark- 
ing. 

Transforms in the "move" set, "]-moves, allow the 
program O to be moved to different regions of memory 
but not to be duplicated. For convenience we include 
T identity as  a "null-move" in 7-moves. 

We are now able to describe the operation of the 
copy-restrictions embodied in the Content Protection 
for Recordable Media (CPRM) scheme proposed by 
a consortium called the 4C entity (4C Enti ty 2001a), 
(4C Entity 2001b), (Orlowski 2000). The 4C Enti ty 
consists of Intel, IBM, Toshiba and Matsushita. The 
CPRM proposal for copy-protection involves the en- 
cryption of copy-protected data  on a portable disk 
or other removable storage device. The data can be 
decrypted only by a CPRM-compliant device or ap- 
plication (unless there is a breach of security, for ex- 
ample by public disclosure of the cryptographic keys 
and methods involved). The clever part of the scheme 
is that  some information about the decryption key is 
stored in a restricted area of the removable storage 
device, inaccessible to devices and applications that  
are not CPRM-compliant. Thus if the protected data  
is copied (without the "permission" of the CPRM de- 
vice or application) to some other device, it will be 
copied in encrypted form without its accompanying 
decryption key, and thus it will be unusable. Gen- 
erally, CPRM licensing will permit the data to be 
moved from one CPRM-compliant device to another, 
but the old copy must be invalidated in the process. 
This can easily be accomplished by invalidating the 
decryption key on the first device while the movement 
is in progress. (We note that  there is an unavoidable 
"race condition" in this invalidation: if the key is in- 
validated before the movement is complete, then an 
aborted move will destroy all usable copies of the pro- 
tected object. In this case, the licensee must apply 
to the licensor for another copy. If the key is inval- 
idated only after the movement is complete, then a 
carefully-timed abortion of the movement has a fi- 
nite, but perhaps inconsequentially-small, chance of 
producing two usable copies.) 

In terms of our taxonomy, the CPRM system de- 
scribed above is a License Mark that  is fragile under 
]-move • 

The Content Protection System Architecture (of 
which the CPRM is a part) specifies another form of 
watermark for use when the protected data is sent 
in cleartext form (4C Enti ty 2001a). It would be 
tempting to call this a License Mark, however it must 
be highly robust rather than fragile - so that  it will 
survive the many transformations and signal degra- 
dations that  occur in broadcast media. In our tax- 
onomy, this second CPSA mark is a Fingerprinting 
Mark. In this case the mark identifies the Distributor 
as someone who wishes to participate in the copy- 

protection system of the CPSA. The highly-robust 
mark will be recognized by CPSA-compliant storage 
devices, so they will refuse accept the protected data 
for writing. 

Returning now to Figure 4, outside of 7-moves we 
find 7"limited_copy(n ). These are useful for License 
Marks that  allow up to n copies. Each of the trans- 
forms i n  Tlimited_copy(n ) have a curious behavior: they 
destroy one licensed copy and create two. 

For example, if we wished to allow a single backup 
copy to be created, we would design a License Mark 
that  is fragile under the set of transforms TmovesUT1, 
where 

TI(S) = { [~92,O3,...] otherwiseifS=[Ol'"'] 

The original software installation must give rise to the 
state S = [01, ...]. 

We could allow a second backup copy if we in- 
cluded T2 in the fragility set of our License Mark, 
where 

T2(S) = { IS O4'O5' ' ' ' ]  otherwiseifS=[O2'"'] 

The scheme can be generalized to allow an arbitrary 
number of copies, if we have a sufficient range of wa- 
termark values w --- 1, 2, ..., n available in our License 
Mark. 

Referring again to Figure 4, transformations in 
T unlimited copy allow an unlimited number of un- 
changed copies to be made. This set is simply defined 
by adding T[O, ...] = [O, O, ...] t o  7"limited.copy(n ) for 
arbi trary n. 

Similar-text transforms Tsimilar apply to software 
which is written in a high level language and then 
compiled to produce a binary. Specifically: trans- 
formations in "]-similar make alterations to the source 
code that  results in no changes to the actual final 
binary after compilation. These include add, dele- 
tion or modification of comments, and in some cases 
variable and method names. We give a name to this 
set of transforms so that  we can succinctly describe 
the robustness of simple watermarks that  are carried 
in program text. For example, an Authorship Mark 
robust to "]'similar might be a comment bearing the 
Author's name. Such marks are common in open- 
source code; we would say their security is based on 
the ethical and social constraints in the open-source 
community, rather than on the trivial effort required 
to strip comments from source code. 

Outside of trusted communities, robust marks 
must survive at least trivial attacks, so we turn again 
to Figure 4 to consider the Tstate-preserving trans- 
forms. Such transforms are relevant only to exe- 
cutable software. They may adjust the software code 
arbitrarily, but  they can not change the data  struc- 
tures built by the software during its execution. Dy- 
namic software watermarks are robust to such trans- 
forms, however static software watermarks are not 
(Collberg & Thomborson 1999). 

In our exploration of Figure 4 we have now passed 
the outer limit of current technology. An ideal ro- 
bustness for Authorship and Fingerprinting Marks, 
in many applications for software protection, would 
be over the s e t  7-semantic-preserving. Transforms in 
this set must preserve the observable behavior of the 
program, but they may change all other aspects. 

Theoretical computer  scientists have recently 
made some intriguing arguments about the impossi- 
bility of making a watermark that  will withstand an 
attack by someone who is able to search through a 

18l 



Erasing (No correlation to original) 

Major Cropping (Not completely erased) 

Figure 4: Classes of transformations 

182 

sufficiently wide variety of semantic-preserving trans- 
forms (Barak et al. 2001). We are still evaluating 
these arguments. 

Conceivably, software watermarks could be de- 
signed to survive the "-I-minor-cropping transforms, 
which preserve most of the semantics of the protected 
object. The ultimate level of robustness in software 
watermarking would be an algorithm that  is robust to 
all "I-major-cropping transforms. Such transforms must 
preserve at least some of the original semantics, and 
would be very useful when protecting the intellectual 
property in each module of a large software system. 

It is obviously impossible for any watermark to be 
robust to "/-erasing transformations, which eradicate 
all information about the protected object (perhaps 
by over-writing it with information about  some other 
object). 

7 O t h e r  I m p o r t a n t  P r o p e r t i e s  

It is a common practice to compare the effectiveness 
of different watermarking schemes using metrics for 
visibility, robustness, efficiency, and fidelitY1998)(Miller 
et al. 1999, Voyatzis, Nikolaidis & Pitas . How- 
ever, as noted in the Introduction, metrics of visibil- 
ity and robustness would have different meaning and 
desirability depending on the type of mark being eval- 
uated. In the previous section, we indicated how visi- 
bility and robustness could be evaluated qualitatively, 
by considering the class of transforms after which the 
watermarking algorithm is guaranteed to remain leg- 
ible. Similarly, invisibility and fragility could be eval- 
uated by considering the class of transforms such that  
any transform outside this class is guaranteed to ren- 
der the watermarking algorithm illegible. 

In this section we briefly discuss the other impor- 
tant  properties of watermarks. 

7.1 Efficiency 

There are two aspects of watermarking efficiency that  
need to be evaluated. These are, firstly, the compu- 
tational cost involved in developing, embedding and 
recognizing marks; and secondly, the impact on the 
running time and memory consumption of embedding 
a watermark into a program. 

7.1.1 Developer Time Costs 

Often, before a watermark can be embedded into soft- 
ware, the software needs to be "prepared" in some 
way. This generally involves annotating the source 
code to indicate the locations where the watermark 
should reside, the parts of the source code that  it 
should avoid (for example, highly optimized or ex- 
tremely fragile sections of code) and the information 
that  should be embedded. Depending on the water- 
marking scheme, the cost of this preparation phase 
may vary. 

In one static watermarking scheme, "a dummy 
method (of a class), which will never be executed, is 
appended to a target  Java source program" (Monden, 
Iida & ichi Matsumoto 2000). Presumably, since the 
methods is never executed, any arbi t rary method in- 
serted would suffice, however, unless some care is 
taken in ensuring the inserted method appears similar 
to other methods in the source, an adversary may be 
able to quickly identify these methods that  carry the 
watermark. The ability to generate plausible look- 
ing methods that  fool a human adversary may be 
difficult to automate  fully and would require the in- 
tervention of a developer to be robust in practice. 
Also, a well-designed "opaque predicate" (Collberg 
et al. 1998) must be added to guard a plausible (but 
never-executed) call to the method, otherwise it will 
be easily eliminated as dead-code. 

An even greater amount  of developer time is re- 
quired to embed watermarks using the current ver- 
sion of the SandMark system (Collberg & Townsend 
2001). This system requires annotations throughout 
the source, to define poir/ts where the code to generate 
dynamic watermarks may be inserted. 

We are not aware of any quantitative research on 
the developer t ime costs of various techniques for soft- 
ware watermarking. However we would expect to see 
a tradeoff between robustness and developer time, be- 
cause writing an Authorship Mark into a comment 
field takes only a trivial amount  of a developer's time. 

7.1.2 E m b e d d i n g  a n d  Recognition Time 
Co s t s  

Usually watermarking consists of two operations that  
occur at different times. These axe, the operation 
embedding a watermark into a source program and 



the operation to recognize a watermark in an existing 
application. 

In most applications, a t ime consuming embedding 
method would be acceptable in exchange for other 
beneficial properties. This is because most software 
is produced slowly. However, for other applications, 
such as livestream video or audio, a fast embedding 
method would be critical. 

Similarly, the need for fast recognition of water- 
marks vary from application to application. 

For some applications, it may in fact be desirable 
to have a recognizer that  works slowly in order to stall 
oracle attacks. An oracle attack is where an adversary 
has access to the recognizer and makes small changes 
to the software until the watermark recognizer fails. 
Such a system would be particularly beneficial for wa- 
termarks that  would need to be recognized only oc- 
casionally. 

7.1.3 Runt ime  Costs  

The runtime cost of a watermark is the increase in 
memory consumption and slow down in the running 
of a watermarked software compared to the same soft- 
ware without watermarks. Inserting software water- 
marks can result in software that  runs more slowly or 
is considerably larger than the unwatermarked ver- 
sion. Whilst it is clear tha t  some static marks such as 
those that  use dummy methods or instruction order- 
ing to encode marks will have minimal impact on the 
runtime efficiency, experimentation is required to es- 
tablish the efficiency of complex dynamic watermarks. 

Experimental results (Palsberg et al. 2000) indi- 
cate that  "planted plane cubic tree" dynamic water- 
marks (Collberg & Thomborson 1999) increase the 
running t ime of a typical programs by no more than 
7%. 

7.2 Fidel ity 

A concept that  is closely related to visibility is fidelity. 
We define Fidelity as "the extent to which embedding 
the watermark deteriorates the original content". In 
a software context, this measures how much a water- 
mark introduces errors into a piece of software or how 
much it changes its stability. 

Ideally a watermark preserves the entire seman- 
tics of a program, however, this may not be possi- 
ble and occasionally not even desired (Moskowitz & 
Cooperman 1998). 

Some watermarks may depend on highly unusual 
input to activate a copyright display. These wa- 
termarks are known as Easter Eggs (Wolfsites LLC 
2001), and they suffer from some specific problems. 
For example, if the input that  displays the Easter Egg 
should instead activate some other component in the 
system, errors could be introduced into an otherwise 
correct program. 

The distinction between visibility and fidelity may 
require some clarification. A mark is visible or invis- 
ible by intent, depending upon the purpose: a copy- 
right notice should be visible, while other marks may 
be invisible to avoid attacks based on an adversary 
knowing the location of the mark. Fidelity is con- 
cerned with how usable (semantically accurate) a pro- 
gram remains, in spite of the insertion of the water- 
mark. The Netscape copyright message of Figure 10 
has high fidelity, despite its high visibility, because it 
introduces little if any deterioration in the correctness 
of the program as perceived by its users. 

8 Examples  

In this section we give some simple examples of soft- 
ware watermarks, to illustrate how visible and invisi- 

ble marks might be embedded. We begin by pointing 
out a fundamental technological distinction between 
"static" and "dynamic" software watermarks. This 
distinction does not arise in non-executable media. 

A static watermark is defined in (Collberg & 
Thomborson 1999) as one which is stored in the ap- 
plication executable itself. For a simple example, con- 
sider the program in Figure 5. This program can be 
watermarked by inserting a simple visible, static wa- 
termark, namely a print s tatement tha t  displays an 
authorship notice as shown in Figure 6. 

main () < 
int a = I0; 
int b = 20; 
print(a+b); 

} 

Figure 5: Original unwatermarked program 

Alternatively, an invisible static watermark could 
be used where the watermark is encoded as the order- 
ing of the assignment statements as shown in Figure 
7. In this case, the encoding is susceptible to attacks 
where the attacker, hoping to destroy the mark, ran- 
domly reorders statements in a way that  maintains 
the semantics of the originM. 

main () { 
int a = I0; 
int b = 20; 
print ("Authored by Alice") ; 
print (a+b) ; 

} 

Figure 6: Visible Static watermarked program 

On the other hand, dynamic watermarks are stored 
in a program's execution state, rather than in the pro- 
gram code itself (Collberg & Thomborson 1999). In 
Figure 8, our original program is altered to introduce 
a variable W, our dynamic watermark. 

main () { 
int b = 20; 
int a = I0; 
print(a+b); 

} 

Figure 7: Invisible Static watermarked program 

8.1 Visible Authorship Marks 

It is common for software to display a copyright notice 
as it starts up, or as an easily accessible menu option. 
See Figure 9. 

8.2 Inv i s ib le  M a r k s  

The simplest kind of "invisible marks" are those that  
embed strings in the software itself, as in the exam- 
ple of Figure 6. In this case, the watermark recog- 
nizer is extremely simple, and involves merely look- 
ing through the binary for these strings. We illustrate 
this simple recognition process for a commercial pro- 
gram in Figure 10. 

The static-string watermarking algorithm of Fig- 
ures 6 and 10 suffers from an obvious shortcoming: 
an adversary may easily locate, and then modify, the 
strings that  are serving as watermarks. In order to 
make it more difficult to find such watermarks, the 

183 



CM v e r s i o n  4 e l ,  C o p y r i g h t  (C) 1990, 1991, 1992, 1993, 1994 hub rey  J a f f e r .  
SCM comes with ABSOLUTELY NO WARRANTY; for details type ' ( t e r m s ) '  

:Figure 9: Copyright notice displayed by SCM, a scheme interpreter  

jas@firebird jas\$ strings 'which netscape' I grep Copyright 
\# Copyright Netscape Communications Corp (C) 1996, 1997 
bnlib i.I Copyright (c) 1995 Colin Plumb. 
Copyright (C) 1995, Thomas G. Lane 
* Copyright (C) 1998 Netscape Communications Corporation. All Rights 

"The CPS and this certificate are copyrighted: Copyright (c) 1997 VeriSign, " 
"Copyright (c)1996, 1997 VeriSign, Inc. All Rights Reserved. CERTAIN " 
Copyright 
Copyright [c] 1995 INSO Corporation 
inflate 1.0.4 Copyright 1995-1996 Mark Adler 
deflate 1.0.4 Copyright 1995-1996 Jean-loup Gailly 

jas@firebird jas\$ 

184 

Figure 10: Copyright notices embedded in Netscape. Note tha t  not all of these messages are in fact displayed 
while running the software. 

main () { 
int a = 10; 
int b = 20; 
int W = b*a*lO; 
print(a+b); 

} 

Figure 8: Dynamic watermarked  program 

contents of the string could be encrypted or encoded 
to appear  par t  of the program data.  Also, various 
forms of tamperproof ing have been proposed, so that  
it becomes more difficult for the adversary to mod- 
ify the watermarked program without  damaging or 
destroying its functionality. 

Alternatively, in an invisible watermarking scheme 
proposed in (Monden et al. 1998), the authorship in- 
formation is encoded in the choice of opcodes and 
operand arguments.  This encoding is then inserted 
as dummy methods which are known not to be exe- 
cuted. The drawbacks of this method were discussed 
in Section 7.1.1. 

All the above methods suffer from the problem 
tha t  the location of the watermarks  can be straight- 
forwardly deduced and removed, because the water- 
marks and software are not highly dependent  on each 
other. 

In (Stern et al. 2000), the authors propose en- 
coding watermarks  by hiding bits of information in 
the free choice of synonymous instruction sequences 
for live code, for example by using a MOV instruc- 
tion instead of a PUSH instruction in x86 machine 
code. Each MOV could represent a "0" (in contexts 
where a PUSH could be substi tuted),  and each PUSH 
could represent a "1". Regrettably,  the authors do 
not discuss what  seems to be an obvious threat  - our 
adversary Bob could easily "flatten" the watermark  
by rewriting the code to use only MOV instructions. 
Some complex sets of synonyms may be resistant to 
this attack. 

Some subtle at tacks on invisible watermarks  have 
been identified, leading to a requirement that  the 
embedding process for such marks  be "nonquasi- 
invertible" (Craver, Memon, Yeo & Yeung 1997). 

9 Attacks 

We now focus our at tent ion on our attacker,  Bob. His 
goal is to disrupt any watermarking system and his 

methods will vary great ly depending on whether the 
watermark  he is a t tacking is robust  or fragile. 

9.1 Attacking Robust Marks 

The principal kinds of attacks defined in (Collberg & 
Thomborson 1999) against robust marks are subtrac- 
tive attacks, distortive attacks and additive attacks. 

A subtractive attack is where Bob estimates the 
approximate location of the watermark and attempts 
to crop it out sufficiently that while what remains re- 
mains useful, the watermark is no longer recognizable. 

On the other hand, in a distortive attack, an ad- 
versary makes uniform distortive changes throughout 
a program, and hence to any watermarks  it may con- 
tain with the intention tha t  the watermarker  can no 
longer recognize her mark.  

Finally, in an addit ive at tack,  the attacker adds 
his own wate rmark  either overriding the original wa- 
t e rmark  completely or making it impossible to detect 
which wate rmark  was applied first and hence is the 
authentic one. 

In addition to these at tacks,  it is also possible to 
prevent a conclusive determinat ion about  the owner- 
ship of a wate rmark  if an adversary is able to intro- 
duce confusion about  the identi ty of the "real" wa- 
t e rmark  recognizer (Craver et al. 1997). 

9.2 A t t a c k i n g  F r a g i l e  M a r k s  

Attacks against fragile watermarks  have not been dis- 
cussed extensively in the li terature.  These require our 
adversary Bob to take a different approach than when 
he at tacks robust  marks.  So far we have identified 
three broad classes of a t tacks  on fragile watermarks.  

9.2.1 Sneaking around Watermarks 

An adversary may  t ry  to find and apply a set of 
essence preserving t ransforms tha t  nevertheless fail to 
mainta in  the authors intent. Such an a t tack becomes 
more likely if the size of the set of essence preserving 
transforms is large or these t ransforms interact with 
each other in ways tha t  are not easily apparent.  

For example,  earlier in this paper  we introduced 
an example of Alice authoring a paper  and adding 
a Validation Mark  to it. This Mark  was designed 
to be fragile to all t ransforms except those that  al- 
tered layout, font and spacing so tha t  a user could 
verify the document  meant  what  Alice had intended 
it to mean. However, an adversary may  be able to 



introduce fontsets that display some letters as other 
letters. By selectively applying these fonts he alters 
the apparent meaning of the document. However, be- 
cause the transformation is merely one of changing 
fonts, it is allowed by Alice, and will not disturb her 
fragile Validation Mark. 

^,,.',o.~ro., IA B C ... c ... e ... i... 1... [ 

Ill I t I I 
[,Bc ........... b... o ... I 

I Peop!e you can trust 

O~ml doeume.t 

Font altetallon 

People you can trust 

Doct~m~t as it Ipl-,et~ m toasts  
with Adversary's font 

Figure 11: Substituting-fonts attack against a Vali- 
dation Marked document 

9.2.2 Reinsert ing Fragile Watermarks 

If Bob has access to Alice's watermark embedder, 
then it is simple for him to make arbitrary changes to 
her software. He merely needs to embed a new fragile 
watermark, to validate the altered version. 

In our example, this would be akin to Bob ac- 
quiring Alice's private key and digest algorithm, then 
creating a new digest for his altered version of the 
document. 

9.2.3 Spoofing the Recognizer 

The discussion of the watermark recognizer assumes 
that a customer wishing to verify the authenticity of 
a document is able to acquire the verifying securely. 
However, this may not necessarily be the case. An 
adversary may create a fake recognizer that ignores 
the absence of the author's fragile Validation Mark 
and validates the document anyway. This attack is 
also potent against robust watermarks (Craver et al. 
1997). 

10 Conclus ion 

Software watermarks can be classified based on the 
purpose of the mark. We have identified just four 
protective purposes in our survey of the literature 
to date. Depending on the specific purpose, differ- 
ing combinations of properties such as robustness or 
fragility, perceptibility or invisibility, fidelity, and ef- 
ficiency will be required. We introduced some new 
terminology to support our brief survey of the cur- 
rent state of the art in software watermarking. 

References  

4C Entity (2001a), 'Content protection system archi- 
tecture, revision 0.81', Available http: / /www. 
4cent i t y .  com/data/tech/cpsa/cpsa081, pdf, 
August 2001. 

4C Entity (2001b), 'Policy statement on use of 
content protection for recordable media, 
(CPRM) in certain applications', Avail- 
able http ://www. 4centity. com/data/t ech/ 
cprmfactsheet.pdf, August 2001. 

Aucsmith, D. (1996), Tamper resistant software: An 
implementation, in R. J. Anderson, ed., 'Infor- 
mation Hiding (Proceedings of the First Interna- 
tional Workshop, IH'96), LNCS 1174', Springer, 
pp. 317-333. 

Barak, B. et al. (2001), 'On the (im)possibility of 
obfuscating programs (extended abstract)'. 
Available http://www.wisdom.weizmann, ac. 
il/~oded/obfuscate, html, August 2001. 

Burk, D. L. (2001), 'Copyrightable functions and 
patentable speech', Communications of the A CM 
44(2), 69-75. 

Chastain, S. (2001), 'Protecting graphics on the 
web'. Available http ://graphicssoft. about. 
com/cs/protectionl, August 2001. 

Collberg, C. & Thomborson, C. (1999), Software wa- 
termarking: Models and dynamic embeddings, 
in 'Symposium on Principles of Programming 
Languages', pp. 311-324. 
URL:  citeseer, nj. nec. com/collberg99software, html 

Collberg, C., Thomborson, C. & Low, D. (1998), 
Manufacturing cheap, resilient, and stealthy 
opaque constructs, in 'Proc. 25th ACM 
SIGPLAN-SIGACT Symposium on Principles of 
Programming Languages 1998, POPL'98', San 
Diego, CA (USA), pp. 184-196. 

Collberg, C. 8z Townsend, G. (2001), 'Sandmark: 
Software watermarking for java'. Available 
h t t p  ://www. CS. arizona, edu/sandmark/, Au- 
gust 2001. 

Cox, I. & Linnartz, J.-P. (1998), 'Some general 
methods for tampering with watermarks', IEEE 
Journal on Selected Areas in Communications 
16(4), 587-593. 

Craver, S., Memon, N., Yeo, B.-L. & Yeung, M. M. 
(1997), On the invertibility of invisible water- 
marking techniques, in 'IEEE Signal Processing 
Society 1997 International Conference on Image 
Processing (ICIP'97)', Santa Barbara, Califor- 
nia. 

Davidson, R. L. &: Myhrvold, N. (1996), 'Method 
and system for generating and auditing a signa- 
ture for a computer program', US Patent number 
5,559,884. 

Davis, R. (2001), 'The digital dilemma', Communica- 
tions of the ACM 44(2), 77-83. 

Dugelay, J.-L. & Roche, S. (2000), A survey of current 
watermarking techniqhes, in S. Katzenbeisser 
F. Petitcolas, eds, 'Information Hiding: Tech- 
niques for Steganography and Digital Water- 
marking', Artech House, pp. 121-148. 

Grover, D. (1992), The Protection of Computer Soft- 
ware: Its Technology and Applications, The 
British Computer Society Monographs in Infor- 
matics, second edn, Cambridge University Press, 
chapter Program Identification. 

Holmes, K. (1994), 'Computer software protection', 
US Patent number 5,287,407. 

Kaplan, M. A. (1996), 'Ibm cryptolopes tm, superdis- 
tribution and digital rights management', Avail- 
able http ://www. research, ibm. com/people/ 
k/kaplan,  August 2001. 

185 



186 

Krsul, I. (1994), Authorship analysis: Identi- 
fying the author of a program, Technical 
Report CSD-TR-94-030, Computer Science 
Deparment, Purdue University. Available: 
ftp: / /ftp.cerias.purdue.edu/pub /papers/ivan- 
krsul/krsul-spaf-authorship-analysis.ps, Novem- 
ber 2000. 

Kurak, C. & McHugh, J. (1992), A cautionary note 
on image downgrading, in 'Proceedings of the 
Eighth Annual Computer Security Applications 
Conference', San Antonio, TX, USA, pp. 153- 
159. 

Kutter, M. & Hartung, F. (2000), Introduction to 
watermarking techniques, in S. Katzenbeisser & 
F. Petitcolas, eds, 'Information Hiding: Tech- 
niques for Steganography and Digital Water- 
marking', Artech House, pp. 97-120. 

Lacy, J., Quackenbush, S. R., Reibman, A. R. & 
Snyder, J. H. (1998), Intellectual property pro- 
tection systems and digital watermarking, in 
D. Aucsmith, ed., 'Information Hiding (Pro- 
ceedings of the Second International Workshop, 
IH'98), LNCS 1525', Springer, pp. 158-168. 

Lin, C.-Y. & Chang, S.-F. (2000), Semi-fragile wa- 
termarking for authenticating JPEG visual con- 
tent, in 'SPIE International Conf. on Security 
and Watermarking of Multimedia Contents II, 
vol. 3971(13), EI '00', San Jose, USA. 

Miller, M., Cox, I., Linnartz, J.-P. & Kalker, T. 
(1999), A review of watermarking principles and 
practices, in K. Parhi & T. Nishitani, eds, 'Dig- 
ital Signal Processing in Multimedia Systems', 
Marcell Dekker Inc., pp. 461-485. 

Monden, A., Iida, H. & ichi Matsumoto, K. (2000), 
A practical method for watermarking java pro- 
grams, in 'The 24th Computer Software and Ap- 
plications Conference'. 

Monden, A., Iida, H. et al. (1998), A watermarking 
method for computer programs (in Japanese), in 
'Proceedings of the 1998 Symposium on Cryp- 
tography and Information Security, SCIS'98', 
Institute of Electronics, Information and Com- 
munication Engineers. Available h t t p  : / / t o r i .  
a i s t - n a r a ,  ac. jp/jmark,  August 2001. 

Moskowitz, S. A. & Cooperman, M. (1998), 'Method 
for stega-cipher protection of computer code', US 
Patent number 5,745,569. 

Nardone, J. et al. (2001), 'Tamper resistant methods 
and apparatus', US Patent 6,178,509 B1. 

Nat'l Inst. of Standards and Technology (1999), 
'Digital signature standards', FIPS Publica- 
tion 186. Available http://www, i t l .  n i s t .  gov/ 
f ipspubs/f ip186, him. 

Orlowski, A. (2000), 'Everything you ever wanted to 
know about CPRM, but ZDNet wouldn't tell 
you...', The Register . Available http:/ /www. 
t h e r e g i s t  er .  co. uk/cont  ent/2/15718, html, 
August 2001. 

Ostrovsky, R. & Goldreich, O. (1992), 'Compre- 
hensive software system protection', US Patent 
number 5,123,045. 

Palsberg, J., Krishnaswamy, S., Minseok, K., Ma, 
D., Shao, Q. & Zhang, Y. (2000), Experience 
with software watermarking, in 'Proceedings of 
the 16th Annual Computer Security Applica- 
tions Conference, ACSAC '00', IEEE, pp. 308- 
316. 

Petitcolas, F. (2000), Introduction to information hid- 
ing, in S. Katzenbeisser & F. Petitcolas, eds, 
'Information Hiding: Techniques for Steganogra- 
phy and Digital Watermarking', Artech House, 
pp. 1-14. 

Pfleeger, C. P. (1997), Security in Computing, 2nd 
edn, Prentice Hall. 

Pieprzyk, J. (1999), Fingerprints for copyright soft- 
ware protection, in M. Mambo & Y. Zheng, eds, 
'Proceedings of the Second International Work- 
shop on Information Security, ISW'99 (LNCS 
1729)', Springer, Germany, pp. 178-. 

Samson, P. R. (1994), 'Apparatus and method for se- 
rializing and validating copies of computer soft- 
ware', US Patent number 5,287,408. 

Shivakumar, N. & Garcla-Molina, H. (1996), 
Building a scalable and accurate copy detec- 
tion mechanism, in 'Proceedings of the First 
ACM International Conference on Digital 
Libraries DL'96', Bethesda, MD (USA). Avail- 
able http ://www. acm. org/pubs/content s/ 
proceedings/dl /226931/ ,  August 2001. 

Simpson, J. A. & Weiner, E. S. C., eds (2000), Oxford 
English Dictionary, second edition edn, Oxford 
University Press, p. 176. Entry 5"watermark". 

Stern, J. P., Hachez, G., Franc .  K. & Quisquater, J.- 
J. (2000), Robust object watermarking: Applica- 
tion to code, in A. Pfitzmann, ed., 'Information 
Hiding (Proceedings of the Third International 
Workshop, IH'99), LNCS 1768', Springer, Ger- 
many. 

Sun Microsystems (2001), 'Security and signed ap- 
plet', Available h t t p : / / j s p 2 . j a v a . s u n . c o m /  
product s/plugin/1.3/docs/net scape, html. 

Tanaka, K., Nakamura, Y. & Matsui, K. (1990), 
Embedding secret information into a dithered 
multi-level image, in 'Conference Record of the 
Military Communications Conference, MILCOM 
'90: A New Era, Vol. 1', IEEE, pp. 216-220. 

Venkatesan, R., Vazirani, V. & Sinha, S. (2001), 
A graph theoretic approach to software water- 
marking, in 'Information Hiding (Proceedings 
of the Fourth International Workshop, IH'01)', 
Springer. 

Voyatzis, G., Nikolaidis, N. & Pitas, I. (1998), Digi- 
tal watermarking: an overview, in '9th European 
Signal Processing Conference (EUSIPCO'98)', 
Island of Rhodes, Greece, pp. 9-12. 

Wolfsites LLC (2001), 'The Easter egg archive: Hid- 
den secrets in software, movies, music and 
more!'. Available ht tp: / /www, eeggs, corn, Au- 
gust 2001. 


