
Extraction in Software Watermarking

William Zhu
∗

the Department of Computer Sciences,
the University of Auckland,

Auckland, New Zealand

fzhu009@ec.auckland.ac.nz

Clark Thomborson
the Department of Computer Sciences,

the University of Auckland,
Auckland, New Zealand

cthombor@cs.auckland.ac.nz

ABSTRACT
The widespread use of the Internet makes software piracy
and unauthorized modification easier and more frequent.
Among the many techniques developed for protecting soft-
ware copyrights is software watermarking which embeds se-
cret messages into software to identify its owners and devel-
opers. While digital watermarking for media such as video,
audio, and text is a popular research field, software water-
marking is still a relatively new scientific area. The key con-
cepts in software watermarking are informal; some are even
confusing. Formalizing these fundamental terms would fa-
cilitate the research in this field. In this paper, we formally
define the following concepts involved in embedding water-
marks into and extracting watermarks from a program in
software watermarking: embedding, set of candidate water-
marks, representative set, representative degree, extracting,
extractability, blindly extractability, and representative ex-
tracting.

Through the concepts of the representative sets and the
representative degree of an embedding algorithm and a pro-
gram, we characterize the intrinsic property of an extractable
embedding algorithm for software watermarking. Further-
more, the concept of the representative extracting algorithm
is used to show the best thing we can get for a general soft-
ware watermarking embedding algorithm.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.0 [Software Engineering]: General—Protection mech-
anisms ; K.4.1 [Computers and Society]: Public Policy
Issues—Intellectual property rights ; K.4.4 [Computers and
Society]: Electronic Commerce—Intellectual property; Se-
curity ; K.5.1 [Legal Aspects Of Computing]: Hardware/
Software Protection—Copyrights; Proprietary rights

∗Corresponding author. Phone: +64-9-3737-599 ext. 82298;
fax: +64-9-3737-453;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM-Sec’06, September 26–27, 2006, Geneva, Switzerland.
Copyright 2006 ACM 1-59593-493-6/06/0009 ...$5.00.

General Terms
Security

Keywords
Software Watermark, Security, Embed, Extract, Graph, In-
terference Graph

1. INTRODUCTION
With the rapid development of software industries, the

protection of intellectual property of software from piracy
takes on greater importance both in computer business and
academia. Software watermarking is an approach that em-
beds a message into software to claim its ownership [2, 3, 5].
It is an effective mechanism to protect the intellectual prop-
erty of software developers. For more details about software
watermarking and related techniques, please refer to [5, 23,
25, 26].

Though several excellent algorithms are available in liter-
atures [1, 3, 9, 10, 11, 12, 14, 15, 16, 18, 19, 20, 22], soft-
ware watermarking is still a relatively new research field,
and some of the core concepts are informal, even confus-
ing. The formalization of them will benefit researchers in
this area and facilitate the progress in it. In this paper, we
focus on one important concept in software watermarking -
extraction of a watermark embedded in software. From the
discussion of these terms related to this concept, we can see
more clearly the problems to be solved in a good software
watermarking system.

This paper is organized as follows. After this introduc-
tion is Section 2 which presents a concise literature review of
this research field. Section 3 defines the concepts of embed-
ding, the set of candidate watermarks, representative sets
and the representative degree. While embedding is the ba-
sic concept in software watermarking, the set of candidate
watermarks denotes all watermarks that an embedding al-
gorithm can actually insert into a program. The represen-
tative sets and the representative degree characterize ex-
tractability of software watermarking, an intrinsic property
of an embedding algorithm. In Section 4, we define the con-
cepts of extracting, extractability, blind extractability, and
informed extractability. Section 5 presents the concepts of
representative extracting, which establishes the relationship
between the extractable and the representative extractable
embedding algorithms. The representative extracting con-
cept contains the important property of a general embedding
algorithm. Section 6 has the summary our paper.

175

2. OVERVIEW
The concepts of software watermarking abound in the re-

search literature [2, 3, 4, 6, 7, 8, 17, 21]. Early detailed
definitions of software watermarking concepts appear in the
papers [2, 3]. They have descriptions of concepts such as
attack types, static watermarks and dynamic watermarks,
stealth, resilience, data rate. Authors of those papers cate-
gorize dynamic watermarking techniques into three classes:
Easter egg watermarks, data structure watermarks, and ex-
ecution trace watermarks.

The authors of paper [17] introduce four terms in software
watermarking from a functional view: authorship mark, fin-
gerprinting mark, validation mark, and licensing mark. They
also defines several other concepts such as visible and invis-
ible watermarks, robust and fragile watermarks. The pa-
per [21] provides extensive concepts such as static water-
marks and dynamic watermarks. Embedding and extracting
are more formally defined in paper [4] as the encoding func-
tion and exposition function, respectively. Authors of this
paper also considers multiple watermarks in a program. In
our papers we regard them as parts of a whole watermark.

Our paper contributes to the field by defining (1) the set
of candidate watermarks which includes all watermarks that
can be actually embedded into a program by a certain em-
bedding algorithm; (2) defining representative sets and the
representative degree which characterize an extractable em-
bedding algorithm; and (3) defining the representative ex-
tracting algorithm which shows what is possible for a general
embedding algorithm.

3. EMBEDDING
A software watermarking system should do at least two

basic things. Firstly, it can embed a watermark into soft-
ware. Secondly, it can extract all bits of the watermark
inserted by itself, or it can judge the existence of the water-
mark embedded by this system. In this section, we discuss
the problem of embedding all bits of a watermark into soft-
ware.

Definition 1. (Watermark) A watermark is a message
of bits of 0 and 1 with a finite length ≥ 0. The watermark
with length 0 is called an empty watermark and it is denoted
by ε. The length of a watermark W is denoted as len(W).

We denote the set of watermarks as W. Precisely, W
= {0, 1}∞.

Concatenation of two watermarks. Let U = u1u2 . . . um, V =
v1v2 . . . vn ∈ W; the concatenation of U and V is a new wa-
termark W = u1u2 . . . umv1v2 . . . vn where we add all bits of
V after U . U is a prefix of W and V is a suffix of W .

For a finite set S, the cardinal number of S is denoted as
|S|. For an infinite set S, |S| = ∞.

Definition 2. (Embedding) Let P denote the set of pro-
grams and W the set of watermarks. We call a function
A : P ×W → P a watermark embedding algorithm, or, for
sake of simplicity, an embedding algorithm, or an embedder.

If P ′ = A(P,W) for a P ∈ P and a W ∈ W, P ′ is called
a watermarked program. We also call the program P ∈ P an
original program corresponding to the watermarked program
P ′.

Example 1. (The trivial embedder Triv) Define the em-
bedder Triv : P ×W → P as follows

∀P ∈ P and W ∈ W, Triv(P, W) = P

This embedder is called the trivial embedder.

Definition 3. (Normal Embedding) If A(P, ε) = P , the
embedder A is called normal.

Example 2. The trivial embedder is normal.

The following example involves the QP algorithm which
watermarks software through register allocation by coloring
the interference graph of this software. It is an important
background and example in our paper. To describe the QP
algorithm well, we need the following terms and notations.

K-colorable: We say a graph G = (V (G), E(G)) is k-
colorable if it has an ancillary coloring function C : V →
{1, 2, ..., k} with the following properties.

∀(u, v) ∈ E(G) =⇒ C(u) �= C(v)

Cyclic mod n ordering: We use “<i” to denote the cyclic
mod n ordering relation for a fixed i, such that i <i (i+1) <i

. . . <i n <i 1 <i · · · <i i − 1. Where there is no confusion
over the value of i, we omit the subscript in <i.

Potential watermark vertices [18, 19]: For a vertex vi of
a graph G with |V | = n, we say vi1 ∈ V and vi2 ∈ V
are the potential watermark vertices with respect to vi if
i <i i1 <i i2; (vi, vi1) /∈ E; (vi, vi2) /∈ E; ∀j : i <i j <i i1,
(vi, vj) ∈ E; and ∀j : i1 <i j <i i2, (vi, vj) ∈ E.

PW and PWV: For every vertex vi ∈ G, we define a pred-
icate PW(vi, G). If there exist two potential watermark ver-
tices with respect to vi, the value of PW(vi, G) = TRUE.
Otherwise PW(vi, G) = FALSE.

When PW(vi, G) = TRUE, the potential watermark ver-
tices with respect to vi are denoted as PWV(vi, G, 1) = vi1

and PWV(vi, G, 2) = vi2 . When PW(vi, G) = FALSE, the
values of PWV(vi, G, 1) and PWV(vi, G, 2) are undefined.

Example 3. The QP embedding algorithm [18, 19] in
Fig. 1 is normal.

Input: An unwatermarked graph G with n = |V | and
An unbounded series of message bits:
W = w1w2 . . . wm

Output: A watermarked graph G′.
Algorithm:
G′ = G;
j = 1;
if m > n // not all bits of W inserted in G

return G
for each i from 1 to n

if j > m // all bits of W already inserted in G
return G′

if PW(vi, G′)
G′ = G′ + (vi,PWV(vi, G′, wi + 1));
j++;

if m > j // not all bits of W inserted in G
return G

else

return G′

Figure 1: A clarified version of the QP algorithm

Definition 4. (Set of Candidate Watermarks) A water-
mark W ∈ W is called a candidate watermark with respect
to a program P and an embedder A if A(P, W) �= P .

All candidate watermarks constitute the set of candidate
watermarks of the program P and the embedder A. This set
is denoted as Candidate(P, A).

176

The set of candidate watermarks of a program P and an
embedder are all watermarks that can actually be inserted
into P by A. Embedding other watermarks into P will not
change the original program.

Example 4. (Set of candidate watermarks) Let A be the
QP algorithm in Fig. 1 and P be a program with the inter-
ference graph having 4 vertices v1, v2, v3, v4 and two edges
(v1, v3), (v2, v4). Then, the set of candidate watermarks of A
and P is {0, 1, 00, 01, 10, 11, 010, 011, 110, 111}. The in-
terference graphs of original program and the watermarked
programs are in Fig. 2. We can see from Fig. 2 that the
interference graph for the watermarked program after a wa-
termark 010 inserted is the same as that after a watermark
111 inserted. For this reason, a watermark embedded by the
QP algorithm can not be extracted reliably.

�����

������

1© 2©

3©4©
The original interference graph.

�����

������

1© 2©

3©4©
0 inserted.

�����

������

1© 2©

3©4©
1 inserted.

�����

������

1© 2©

3©4©
00 inserted.

�����

������

1© 2©

3©4©
01 inserted.

�����

������

1© 2©

3©4©
10 inserted.

�����

������

1© 2©

3©4©
11 inserted.

�����

������

1© 2©

3©4©
010 inserted.

�����

������

1© 2©

3©4©
011 inserted.

�����

������

1© 2©

3©4©
110 inserted.

�����

������

1© 2©

3©4©
111 inserted.

Figure 2: The interference graphs of the original and
the watermarked programs

Example 5. (The set of candidate watermarks of the triv-
ial embedder is empty.) ∀P ∈ P, Candidate(P, Triv)=φ.
The trivial embedder is the only embedder A such that ∀P ∈
P, Candidate(G, A) = φ.

For most embedding algorithms of software watermark-
ing, any watermark can be inserted into a program, but,
some, especially the QP algorithm, can embed only a lim-
ited numbers of watermarks. Without defining the set of
candidate watermarks, the following confusing will occur.

In paper [13], Le and Desmedt develop a destroy algo-
rithm to attack the QP embedding algorithm. The main
result about this destroy algorithm is as follows (Theorem 2
in [13]).

Let C′′ be the output of the destroy algorithm proposed
in [13] on input (G, C′), where C′ is the output of the QP
embedding algorithm [18, 19] on input graph G. Then the
verification algorithm [13] will always output yes on input
(G, C′′, M) for arbitrary signature M.

We must solve the contradiction between the arbitrary M
in Theorem 2 in [13] and that, for a graph with n vertices,
the QP algorithm can insert at most only n bits of a mes-
sage into such a graph. The concept of “Set of candidate
watermarks” is one of a set with all watermarks embed-
dable into a program by a certain software watermarking
embedding algorithm. If, for example, only a part of a wa-
termark W = UV with len(V) > 0, U , can be inserted into
a program, we would think we embed U instead W into this
program.

Definition 5. (Finite Embedding) An embedder A : P×
W → P is called a finite embedder if, for every program P
and embedder A, the set of candidate watermarks of P and
A is finite.

Example 6. The QP algorithm in Fig. 1 and the trivial
embedder are finite.

Definition 6. (Representative Sets) Let A be an embed-
der. For a program P , A(P, W) = A(P, W ′), W, W ′ ∈ W is
an equivalent relation in the set of candidate watermarks of
P and A. Every equivalent class is called a representative
set of the embedder A and the program P .

All watermarks in a representative set of an embedder A
and a program P have the same effect on program P - they
generate the same watermarked program by the embedder
A.

Property 1. If A is a normal embedder, then, for any
program P , the watermark ε does not belong to the set of
candidate watermarks of A and P .

Definition 7. (Representative Degree) The maximal car-
dinal number of the representative sets of an embedder A and
a program P is called the representative degree of the embed-
der A and the program P and is denoted as Repdegree(P, A).

The concept of the representative degree is used to judge
the effectiveness of an embedder A. The smaller it is, the
better the A is.

Example 7. (Representative sets and degree) A and P
is as in Example 4. The representative sets of A and P are
{0}, {1}, {00}, {01}, {10}, {11}, {011}, {110}, {010,111}.
So, Repdegree(P, A) = 2.

4. EXTRACTING ALGORITHM AND
EXTRACTABILITY

Definition 8. (Extracting) Let A be an embedder; a func-
tion X : P×P → W is called an extracting algorithm corre-
sponding to the embedder A if X has the following property:
∀P, P ′ ∈ P,

X(P ′, P) = W , if W ∈ Candidate(P, A) and P ′ = A(P, W).
X(P ′, P) = ε, otherwise.

Property 2. (Normality of Extracting Algorithms) Let
A be an embedder; an extracting algorithm corresponding to
the embedder A is normal in the sense that X(P, P) = ε.

177

Proof. By the definition, if ε ∈ Candidate(P, A), then
P �= A(P, W), so X(P,P) = ε.

If ε /∈ Candidate(P, A), then X(P,P) = ε by the defini-
tion.

Definition 9. (Extractability) We say watermarks em-
bedded by an embedding algorithm A are extractable if there
exists an extracting algorithm corresponding to the embed-
ding algorithm A. We also say X demonstrates that the
embedding algorithm A is extractable, or more simply, that
A is extractable.

Theorem 1. Let A be an embedder. If A is extractable,
then, for any program P , any representative set of P and A
has only one element. Especially, Repdegree(P, A) = 1.

On the other hand, if, for any program P , Repdegree(P, A) =
1, then A is extractable

Proof. The proof of the first part of this theorem is evident
from the definitions. Therefore we prove only the second
part of this theorem.

An extracting algorithm corresponding to the embedding
algorithm A is defined as follows. ∀P ′, P ∈ P ,

X(P ′, P) = W if there is a w ∈ Candidate(P, A) such
that P ′ = A(P,W).

X(P ′, P) = ε, otherwise.
If the representative degree of any program and A is 1,

the above function X : P × P → W is well-defined. It
is an extracting algorithm corresponding to the embedding
algorithm A.

Example 8. (The QP embedding algorithm in Fig. 1 is
not extractable.) From Example 7 and Theorem 1, The QP
algorithm is not extractable.

Example 9. (The QPI embedding algorithm [24] in Fig. 3
is extractable.) Because the QP algorithm is not extractable,
we develop an improvement on the QP algorithm, the QPI
algorithm.

The extracting algorithm [24] corresponding to the QPI
embedding algorithm is in Fig. 4.

Input: an original graph G(V, E) with n = |V |
a message to be embedded into the G(V, E):
W = w1w2 . . . wm

Output: a watermarked graph G′ with message W embedded

in it
Algorithm:
copy G(V, E) to G′(V ′, E′)
add two vertices vn+1, vn+2 to V ′

j = 1;
if m > n // not all bits of W inserted in G

return G
for each i from 1 to n

if j > m // all bits of W already inserted in G
return G′

if PW(vi, G′)
G′ = G′ + (vi,PWV(vi, G′, wi + 1));
j++;

if m > j // not all bits of W inserted in G
return G

return G′

Figure 3: The QPI Embedding Algorithm

Definition 10. (Blind and Informed Extractability) For
an embedding algorithm A : P × W → P, if there exists a

Input: the original graph G(V, E) with n = |V |
the watermarked graph G(V ′, E′)

Output: the message W embedded in the watermarked graph

G(V ′, E′)
Algorithm:
add two vertices vn+1, vn+2 to V
If G is not a subgraph of G′

return W = φ
j = 0
BITFINISHED = FALSE
for each i from 1 to n

if PW(vi, G′)
if (vi, vi1) ∈ E′

if BITFINISHED == TRUE
return W = φ

j++
wj = 0
G = G + (vi, PWV(vi, G, wj + 1));

else if (vi, vi2) ∈ E′

if BITFINISHED == TRUE
return W = φ

j++

wj = 1
G = G + (vi, PWV(vi, G, wj + 1))

else // all possible bits extracted
BITFINISHED = TRUE

else if vi is connected to all other vertices in G′ but

not connected to all other vertices in G.
return W = φ

return the message W = w1w2 . . . wj

Figure 4: The QPI Extraction Algorithm

function Y : P → W having the following properties: ∀P ′ ∈
P,

Y (P ′) = W , if P ′ = A(P,W) for a P ∈ P and a W ∈
Candidate(P, A).

Y (P ′) = ε, otherwise
then we say that watermarks embedded in programs of P

using an embedding algorithm A : P ×W → P are blindly
extractable. Such an X is called a blind extractor for em-
bedder A. If there exists a blind extractor X for an embedder
A, we say A is blindly extractable.

It is easy to construct an extractor X : P ×P → W from
a blind extractor Y by defining

X(P ′, P) = Y (P ′) if Y (P ′) �= ε and P ′ = A(P,Y (P ′)).
X(P ′, P) = ε otherwise.
Thus “blindly extractable” implies “extractable”.
If there is no blind extractor for an embedder A, but there

is an extracting algorithm corresponding to A, A is called an
informed embedder, and X is called an informed extractor
for A. The combination (A,X) is called a informed water-
mark extraction system, when X is an informed extractor
for A.

Note: In the above definitions, an informed embedder can-
not be a blind embedder, and vice versa.

In the following, we present two examples for blind ex-
tractability.

Example 10. (The QPI embedding algorithm in Fig. 3 is
not blindly extractable)

Example 11. (A blindly extractable embedding algorithm)
An embedder A is defined as follows:

For any program P , if W = 101, A(P, W) is P plus an
extra variable declaration. Otherwise, A(P,W) = P . A is
blindly extractable. In fact, we have an extracting algorithm
X corresponding to A as follows:

178

For any P ′ ∈ P, if P ′ has at least one variable declaration,
X(P ′) = 101. Otherwise, X(P ′) = ε.

5. REPRESENTATIVE EXTRACTING

Definition 11. (Representative Extracting) Let A be an
embedder; a function X : P × P → W is called a represen-
tative extracting algorithm corresponding to the embedder A
if it has the following property:

∀W ∈ W and ∀P ∈ P,
X(A(P,X(A(P,W), P)), P) = X(A(P,W), P).

The background for the representative extracting algorithms
is as follows. For some embedding algorithm A, for example,
we may get a same watermarked program P ′ after inserting
any watermark in {101, 1110, 0010} by A into program P .
As a representative extracting algorithm X corresponding to
the embedder A, X(P ′, P) should be one of the watermarks
in {101, 1110, 0010}. In the current software watermarking
algorithms available, this phenomenon appears in the QP
algorithm.

Theorem 2. If X is an extracting algorithm correspond-
ing to an embedder A, then X is also a representative ex-
tracting algorithm corresponding to A.

Theorem 3. (Characteristic of representative sets of a
representative extracting algorithm) Let A be an embedder.
If X is a representative extracting algorithm corresponding
to A, then, for any program P and any representative water-
mark set R = {. . . , W, . . .} of P and A, X(A(P,W), P) ∈ R.

Theorem 4. For every embedder A, there exists a repre-
sentative extracting algorithm corresponding to A.

Proof. For an embedder A, a corresponding representative
extracting algorithm X can be defined as follows:

∀P,P ′ ∈ P ,
X(P,P ′) = W , if ∃W ∈ Candidate(P, A) such that A(P,W)

= P ′;
X(P,P ′) = φ, otherwise.
It is easy to see X is a representative extracting algorithm

corresponding to A.
From Theorem 4, we have the following concept.

Definition 12. (Proper Representative Extractable) Let
A be an embedder; it is called proper representative extractable
if it is not extractable.

Theorem 5. An embedder A is proper representative ex-
tractable if and only if there exists a program P such that
Repdegree(P, A) > 1 .

Example 12. (A representative extracting algorithm cor-
responding to the QP algorithm in Fig. 1) The algorithm in
Fig. 5 is a representative extracting algorithm corresponding
to the QP embedding algorithm. The extracting algorithm
outlined in [18] is really not an extracting algorithm but a
representative extracting algorithm. For the same program
in Example 4, if 010 is inserted, this representative extract-
ing algorithm will get 010, but, if 111 is inserted, this rep-
resentative extracting algorithm will get 010, not 111.

Generally, we can develop several other representative ex-
tracting algorithms for a proper representative extractable

Input: an unwatermarked graph G(V, E) with n = |V |
a watermarked graph G′

Output: a message W embedded in G′

Algorithm:
j=0
BITFINISHED = FALSE
for each i from 1 to n

if PW(vi, G)
G = G + (vi, PWV(vi, G, wi + 1));
if (vi, vi1) ∈ G′

if BITFINISHED == TRUE

return W = φ
j++
wj = 0

else if (vi, vi2) ∈ G′

if BITFINISHED == TRUE
return W = φ

j++
wj = 1

else // all bits extracted

BITFINISHED = TRUE

else if vi is connected to all other vertices in G′ but
not connected to all other vertices in G.

return W = φ
return W = w1w2 . . . wj

Figure 5: A representative extracting algorithm for
QP algorithm

embedder. For example, another representative extracting
algorithm for the QP algorithm is in Fig. 6. For the same
program in Example 4, if 010 is inserted, this representa-
tive extracting algorithm will get 111, not 010, but, if 111
is inserted, this representative extracting algorithm will get
111.

Example 13. (The QP algorithm in Fig. 1 is proper rep-
resentative extractable) Example 8 shows the QP algorithm
is not extractable and Example 12 shows the existence of a
representative extracting algorithm corresponding to the QP
algorithm, so the QP algorithm is proper representative ex-
tractable.

Definition 13. (Informed and Blind Representative Ex-
tracting) Let A be an embedder; if function Y : P → W
satisfies

∀W ∈ W and ∀P ∈ P,
Y (A(P,Y (A(P,W)))) = Y (A(P,W)).

then Y is called a blind representative extracting algorithm
corresponding to the embedding algorithm A.

A representative extracting algorithm corresponding to the
embedding algorithm A but is not a blind representative ex-
tracting algorithm corresponding to the embedding algorithm
A is called an informed representative extracting algorithm
corresponding to the embedding algorithm A.

Definition 14. (Blindly Representative Extractable) Let
A be an embedder; if there is a blind representative extract-
ing algorithm corresponding to the embedding algorithm A,
we say watermarks embedded by algorithm A are blindly rep-
resentative extractable, or, simply, A blindly representative
extractable. The combination (A, X) is called a blind rep-
resentative watermark extraction system.

Theorem 6. If an embedding algorithm A is blindly ex-
tractable, then it is also blindly representative extractable.

179

Input: an unwatermarked graph G(V, E) with n = |V |
a watermarked graph G′

Output: a message W embedded in G′

Algorithm:
If G is not a subgraph of G′

return W = φ
j=0
BITFINISHED = FALSE

for each i from 1 to n
if PW(vi, G)

G = G + (vi, PWV(vi, G, wi + 1));
if (vi, vi2) ∈ G′

if BITFINISHED == TRUE
return W = φ

j++
wj = 1

else if (vi, vi1) ∈ G′

if BITFINISHED == TRUE
return W = φ

j++
wj = 0

else // all bits extracted
BITFINISHED = TRUE

else if vi is connected to all other vertices in G′ but
not connected to all other vertices in G.

return W = φ
return W = w1w2 . . . wj

Figure 6: Another representative extracting algo-
rithm for QP algorithm

Theorem 7. If an embedding algorithm is proper repre-
sentative extractable, then the representative degree of some
program and A is greater than 1.

Example 14. (The QP algorithm in Fig. 1 is not blindly
representative extractable)

Example 15. (A blindly representative extractable em-
bedder) An embedder A is defined as follows:

For any program P , if W = 101 or if W = 110, A(P, W) is
P plus an extra variable declaration. Otherwise, A(P,W) =
P . A is blindly extractable. In fact, we have a blind extract-
ing algorithm Y corresponding to A as follows.

For any P ′ ∈ P, if P ′ has at least one variable declaration,
Y (P ′) = 101. Otherwise, Y (P ′) = ε.

6. CONCLUSIONS
Algorithmic design, even with an adequate formal state-

ment of the problem to be solved, is an art, not a science.
Without a precise statement of the problem, we cannot hope
to prove the correctness of any algorithm, and indeed we
may have difficulty even explaining what the algorithm is
intended to do.

When we started this research project, we thought that
it would be a simple matter to prove the QP algorithm ei-
ther correct or incorrect. However we could not do this until
we devised appropriate definitions for two basic problems in
watermarking: recognition and extraction. None of our ini-
tial, intuitively-formed, problem definitions were sufficient
to support a careful analysis of the QP algorithm; and we
found little support for a careful analysis in the published
literature. However we did succeed in devising a serviceable
set of definitions, allowing us to complete a careful analysis
of the QP algorithm and its variants. In the process we dis-
covered some subtle bugs and algorithmic issues. Our major
findings are summarized very briefly below.

We use the concepts of representative sets and represen-
tative degree to characterize the extractable embedding al-
gorithm. We define the concept of the representative ex-
tracting algorithm to show the intrinsic property of a gen-
eral embedding algorithm. We also define the blindly ex-
tractable embedding algorithm and informedly extractable
embedding algorithm, as well as the blindly representative
embedding algorithm and informedly representative embed-
ding algorithm. This is the first appearance of the concepts
of the set of candidate watermarks, the representative sets,
the representative degree, and the representative extract-
ing algorithm are first appeared in published literature. In-
formed and blind extractability are also introduced in this
paper.

The recognition of watermarks in software is another im-
portant work for our next paper.

7. ACKNOWLEDGMENTS
Authors are in part supported by the New Economy Re-

search Fund of New Zealand. The first author also thanks
the Department of Computer Sciences at the University of
Auckland for its financial support for his research.

8. REFERENCES
[1] G. Arboit. A method for watermarking java programs

via opaque predicates. In The Fifth International
Conference on Electronic Commerce Research
(ICECR-5), 2002.

[2] C. Collberg, C. Thomborson, and D. Low. On the
limits of software watermarking. In Technical Report
#164, Department of Computer Science, The
University of Auckland, 1998.

[3] C. Collberg and C. Thomborson. Software
watermarking: Models and dynamic embeddings. In
Proceedings of Symposium on Principles of
Programming Languages, POPL’99, pages 311–324,
1999.

[4] C. Collberg, S. Jha, D. Tomko, and H. Wang.
Uwstego: A general architecture for software
watermarking. Technical Report TR04–11, Aug. 31
2001.

[5] C. Collberg and C. Thomborson. Watermarking,
tamper-proofing, and obfuscation - tools for software
protection. IEEE Transactions on Software
Engineering, 28:735–746, Aug. 2002.

[6] C. Collberg, S. Kobourov, E. Carter, and
C. Thomborson. Error-correcting graphs for software
watermarking. In 29th Workshop on Graph Theoretic
Concepts in Computer Science, July 2003.

[7] C. Collberg, G. Myles, and A. Huntwork. Sandmark–a
tool for software protection research. IEEE Security
and Privacy, 1(4):40–49, 2003.

[8] C. Collberg, C. Thomborson, and G. Townsend.
Dynamic path-based software watermarking. In
Computer Science Department, University of Arizona
(USA), Technical report, volume TR04–08, April 2004.

[9] C. Collberg, E. Carter, S. Debray, A. Huntwork,
C. Linn, and M. Stepp. Dynamic path-based software
watermarking. In SIGPLAN ’04 Conference on
Programming Language Design and Implementation,
June 2004.

180

[10] P. Cousot and R. Cousot. An abstract
interpretation-based framework for software
watermarking. In Principles of Programming
Languages 2003, POPL’03, pages 311–324, 2003.

[11] D. Curran, N. Hurley, and M. O. Cinneide. Securing
java through software watermarking. In Proceedings of
the 2nd international conference on Principles and
practice of programming in Java, pages 311–324, 2003.

[12] O. Esparza, M. Fernandez, M. Soriano, J. Munoz, and
J. Forne. Mobile agent watermarking and
fingerprinting tracing malicious hosts. In LNCS 2736,
pages 927–936, 2003.

[13] T. Le and Y. Desmedt. Cryptanalysis of ucla
watermarking schemes for intellectual property
protections. In LNCS 2578, pages 213–225.
Springer-Verlag, 2003.

[14] A. Monden, H. Iida, and K. ichi Matsumoto. A
practical method for watermarking java programs. In
The 24th Computer Software and Applications
Conference, pages 191–197, 2000.

[15] G. Myles and C. Collberg. Software watermarking
through register allocation: Implementation, analysis,
and attacks. In LNCS 2971, pages 274–293, 2004.

[16] J. Nagra and C. Thomborson. Threading software
watermarks. In IH’04, 2004.

[17] J. Nagra, C. Thomborson, and C. Collberg. Software
watermarking: Protective terminology. In Proceedings
of the ACSC 2002, 2002.

[18] G. Qu and M. Potkonjak. Analysis of watermarking
techniques for graph coloring problem. In IEEE/ACM
International Conference on Computer Aided Design
’98, pages 190–193, 1998.

[19] G. Qu and M. Potkonjak. Hiding signatures in graph
coloring solutions. In Information Hiding Workshop
’99, pages 348–367, 1999.

[20] T. Sahoo and C. Collberg. Software watermarking in
the frequency domain: Implementation, analysis, and
attacks. In Computer Science Department, University
of Arizona (USA), Technical report, volume TR04–07,
March 2004.

[21] C. Thomborson, J. Nagra, Somaraju, and Y. He.
Tamper-proofing software watermarks. In Proc.
Second Australasian Information Security
Workshop(AISW2004), pages 27–36, 2004.

[22] R. Venkatesan, V. Vazirani, and S. Sinha. A graph
theoretic approach to software watermarking. In 4th
International Information Hiding Workshop,
Pittsburgh, PA, 2001.

[23] W. Zhu, C. Thomborson, and F.-Y. Wang. A survey
of software watermarking. In IEEE ISI 2005, volume
3495 of LNCS, pages 454–458, May 2005.

[24] W. Zhu and C. Thomborson. Algorithms to
watermark software through register allocation. In
DRMTICS 2005, volume 3919 of LNCS, pages
180–191, October 2005.

[25] W. Zhu, C. Thomborson, and F.-Y. Wang.
Application of homomorphic function to software
obfuscation. In WISI 2006, volume 3917 of LNCS,
pages 152–153, April 2006.

[26] W. Zhu, C. Thomborson, and F.-Y. Wang. Obfuscate
arrays by homomorphic functions. In Special Session
on Data Security and Privacy in IEEE GrC 2006, to
appear, pages 770–773, May 2006.

181

