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Abstract
Protection of digital data from unauthorized access is of paramount
importance. In the past several years, much research has concen-
trated on protecting data from the standpoint of confidentiality, in-
tegrity and availability. Software is a form of data with unique
properties and its protection poses unique challenges. First, soft-
ware can be reverse engineered, which may result in stolen intel-
lectual property. Second, software can be altered with the intent
of performing operations this software must not be allowed to per-
form.

With commercial software increasingly distributed in forms from
which source code can be easily extracted, such as Java bytecodes,
reverse engineering has become easier than ever. Obfuscation tech-
niques have been proposed to impede illegal reverse engineers. Ob-
fuscations are program transformations that preserve the program
functionality while obscuring the code, thereby protecting the pro-
gram against reverse engineering. Unfortunately, the existing ob-
fuscation techniques are limited to obscuring variable names, trans-
formations of local control flow, and obscuring expressions using
variables of primitive types. In this paper, we propose obfuscations
of design of object-oriented programs.

We describe three techniques for obfuscation of program design.
The class coalescing obfuscation replaces several classes with a sin-
gle class. The class splitting obfuscation replaces a single class
with multiple classes, each responsible for a part of the function-
ality of the original class. The type hiding obfuscation uses the
mechanism of interfaces in Java to obscure the types of objects
manipulated by the program. We show the results of our initial
experiments with a prototype implementation of these techniques.
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In particular, we show that the runtime overheads of these obfusca-
tions tend to be small.
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Techniques]: Object-oriented design methods; D.2.7 [Distribution,
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neering, and reengineering; D.3.3 [Language Constructs and Fea-
tures]: Classes and objects
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1. INTRODUCTION
Computer software is a valuable asset as an enormous amount of

time, money and intellectual capital is involved in its production.
However, once produced, software is vulnerable to theft and mis-
use. It is estimated that tens of billion dollars of revenue is lost by
the software industry due to software piracy alone. With the advent
of Internet appliances, mobile code, and untethered and globally
pervasive access to the Internet, the problem of software misuse
threatens to become a serious menace. Piracy is no longer the only
issue. Software tampering with the malicious intent of planting a
Trojan horse in the end user’s system, for example, suddenly be-
comes a frightening possibility. Furthermore, since mobile code
is often distributed in architecture-independent formats that essen-
tially contains the source code, it is susceptible to decompilation
and reverse engineering. Examples of application domains where
reverse engineering of software is potentially harmful include:

• Home entertainment appliances.Such appliances often con-
tain software that places restrictions on the use of hardware.
For example, in a set-top box, software may prevent users
from watching a video-on-demand program more than once
or from recording it.

• Grid computing.Distributed applications, such as SETI-at-
home, that utilize unused computing resources on many net-
worked machines are vulnerable to reverse engineering. For
example, malicious owners of a machine used in grid com-
puting may alter the part of the application running on their
machine with the goal of corrupting or affecting in subtle
ways the results computed by the whole application.
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• Copy protection mechanisms.Various copy protection mech-
anisms, ranging from license files to dedicated hardware don-
gles, are in wide use in software industry. Reverse engineer-
ing attacks against such mechanisms aim to detect the place
in the code of the program where protection mechanisms are
used and then either remove this protection code or patch
around it.

• Applications with Proprietary algorithms.Often, companies
that distribute software do not want to make algorithms and
designs used in their programs widely known.

There have been different approaches (mostly by industry) em-
ployed in the past to prevent reverse engineering and/or tampering
of software. One approach that is receiving increasing attention
is software obfuscation[7]. Obfuscations are program transforma-
tions that preserve the functionality of software while changing the
structure and look of its source code. There are three types of ob-
fuscation techniques that have been proposed in the literature. First
and the most common type is control flow obfuscation. Such tech-
niques concentrate on obscuring the flow of control and purpose
of variables in individual procedures. For example, an obfuscation
may change names of variables in the program or insert opaque
predicates[7], such as an if statement that evaluates to true on
all program executions. The second type of obfuscation techniques,
data obfuscations, make understanding of the purpose of data fields
in the program difficult. For example, a single integer variable in a
program can be replaced with two integer variables, in such a way
that the value of the original variable at any point in the program
can be obtained by adding the values of the two new variables at
this point. Finally, the third type of obfuscation techniques, lay-
out obfuscations, obscure the logic inherent in breaking a program
into procedures. For example, the code in a procedure can be in-
lined in all places in the code from which this procedure is called.
Similarly, an arbitrary part of code can be out-lined to become a
separate procedure. It should be noted that optimizing compilers
routinely perform in-lining of small, frequently called procedures,
thereby providing a measure of obfuscation.

In this paper we present a new class of obfuscation techniques,
which we call design obfuscations.We believe that in practice
currently available obfuscation techniques are not sufficient, since
high-level program constructs can reveal the design of the software
and thereby greatly facilitate understanding. Hence, we propose
three new obfuscation techniques directed at obscuring the class-
level design of object-oriented programs: class coalescing, class
splitting, and type hiding obfuscations.

Class coalescingobfuscation is a program transformation that
replaces two or more classes in the program with a single class.
At its extreme, this obfuscation can replace all classes used in the
program by a single class, in a sense, replacing an OO program
with a non-OO, procedural program.

Class splittingobfuscation is a program transformation that re-
places a class in the program with a number of classes. There are
important decisions that have to be made when splitting a class.
For each method and field of the original class, one or more of the
resulting classes to contain them has to be chosen. We first present
a general approach and then describe one specific way in which our
prototype obfuscation tool currently splits classes. Used in tandem
with the class coalescing obfuscation, this obfuscation can change
the program structure very significantly.

Finally, type hidingobfuscation uses the concept of Java inter-
faces to obscure the design intent. In Java, interfaces are used as
lightweight type definitions separated from their implementations.
We use this facility for obfuscating the type of variables used in

the program. We introduce a (potentially large) number of inter-
faces that are implemented by the existing classes. As a result, for
a reverse engineer attempting to understand functionality required
from specific objects in the program, this task is made more diffi-
cult by the multitude of different types, often with different types
representing the same object in different locations in the code.

We implemented all three design obfuscation techniques. In this
paper, we show experimental results that indicate that application
of these techniques rarely results in large run-time slowdown of
the obfuscated program. In particular, the class splitting and type
hiding obfuscations seem to scale very well. While coalescing a
large number of classes can significantly slow down a program,
this slowdown may be acceptable in practice for non-real-time ap-
plications.

The rest of this paper is organized as follows: In the next sec-
tion, we survey related work. Section 3 introduces the technical
terminology used in later sections. In Sections 4, 5, and 6 we detail
the coalescing, splitting, and type hiding obfuscations respectively.
Section 8 describes experimental results of applying our prototype
obfuscation tool to several Java programs. In Section 9 we con-
clude and present directions of future work.

2. RELATED WORK
A comprehensive survey of recent work on software obfusca-

tion appears in [6]. This survey concentrates on low-level obfus-
cations, such as splitting program variables of primitive types and
locally altering control flow of a method by inserting control state-
ments whose predicates always evaluate to the same value or by
re-ordering statements to decrease locality. Unlike these obfusca-
tions, techniques introduced in this paper obscure higher-level pro-
gram structures and therefore can be used more efficiently to hide
design of the program.

Barak et al. [3] prove a theoretical result about impossibility of
a specific notion of obfuscation. This notion is defined as follows.
The obfuscated program should be a “virtual black box”, that is,
anything that can be computed from its code, can also be com-
puted from its input-output behavior. However, for the applications
we consider in this paper, such ideal notion of obfuscation is not
necessary. While cryptographic applications require a very strong
notion of obfuscation, we are interested only in making the job of
a reverse engineer more difficult, although not impossible. The re-
alistic goal of software obfuscation is to make reverse engineering
of a program uneconomical.

Many program transformations performed by optimizing com-
pilers are obfuscations. For example, constant propagation[18]
replaces the use of a variable in an expression with a constant if the
value of this variable always equals to this constant in this expres-
sion. This operation may hide logic behind complex expressions.
By themselves, however, compiler optimizations are not sufficient
to protect software against reverse engineering adequately. Simi-
larly, procedure inlining is often used in optimizing compilers to
remove overhead of frequently called procedures. Inlining can be
viewed as an obfuscation, since it complicates understanding of
code by removing a high-level abstraction.

Although little theoretical work on software obfuscation is avail-
able, there exist a number of obfuscation tools. Unfortunately, the
functionality of these tools is limited to obfuscation of variable and
class names and, in some cases, obfuscation of control flow.

The closest work to ours is Snelting and Tip’s class hierarchy
re-engineering [15]. They use concept analysis [11] to classify the
usage of visible methods and fields of a class into usage profiles.
Given this classification, a user of a tool based on this analysis can
decide to replace the class by several classes. This splitting can be

143



done automatically. While this transformation bears close resem-
blance to our class splitting obfuscation, the goals of Snelting and
Tip’s work and our work are completely opposite. While their goal
is to improve the design, ours is to obscure the design of a program.
Furthermore, our class splitting is not guided by concept analysis
and can split the class almost arbitrarily.

In addition to software obfuscation, several other approaches
have been proposed for protection of software against misuse and/or
theft of intellectual property. Tamper-proofingtechniques protect
software against tampering. Such techniques disable the software
if they determine that this software has been changed. Hardware-
based tamper-proofing approaches put the software to be protected
on hard-to-crack hardware devices, such as eXecute Only Memory
(XOM) [12]. It was demonstrated [2] that tamper-resistant hard-
ware is difficult to construct. In addition, widespread use of such
hardware may have prohibitive costs. The Trusted Computing Plat-
form Alliance (TCPA, www.trustedcomputing.org) initia-
tive aims to define specifications for hardware assisted, OS based,
trusted subsystems that would become an integral part of standard
computing platforms including the ubiquitous PC platform. While
it enjoys endorsement of a number of large software and hardware
vendors, it is not clear if the developed standards will be widely
adopted.

Many proposed software based tamper-proofing mechanisms rely
on the simple idea of computing checksums for a part of the soft-
ware. Chang and Atallah [5] argue that tamper-proofing techniques
should not rely on a single module whose only purpose is to tamper-
proof the entire program. Instead, a number of small program units,
called guards, working together, should protect the program. The
importance of this idea is that guards operate in a network, pro-
tecting each other from tampering. Therefore, even if an attacker
identifies a number of guards and removes or patches around them,
the remaining guards will detect this problem and prevent the pro-
gram from running. Only by removing all guards can an attacker
gain the full functionality of the program.

3. TERMINOLOGY
In this section we introduce the common terminology used in this

paper. Although some of this terminology is specific to Java, the
class coalescing and splitting obfuscations are applicable to other
object-oriented languages, with only small modifications.

Let P be a Java program. Let Classes(P ) and Interfaces(P )
denote respectively sets of classes and interfaces defined and/or
used in P . For any class or interface c, Methods(c) denotes the
set of methods defined by c. For any class c, Fields(c) denotes the
set of fields defined by c1. Note that Methods(c) and Fields(c)
do not include any methods and fields inherited by c, but only
(1) methods and fields that are introduced by c and (2) methods
that override those from its superclasses. For example, class A in
Figure 1 does not override method equals inherited from class
java.lang.Object that it implicitly extends. Therefore, this
method is not included in Methods(A).

For the purposes of our obfuscations it is important to differenti-
ate between static and instance methods. We use set
instanceMethods(P ) to contain all instance methods in all classes
in program P . All methods not included in this set are static meth-
ods. Similarly, it is important to differentiate between public and
non-public methods. We use set publicMethods(P ) to contain all
public methods in all classes in program P . All methods not in-
cluded in this set are non-public methods.

1Interfaces may only have constant fields, which our obfuscations
do not modify.

We use a dependency mappingto represent the dependency of
methods on other methods and fields of the same class. We write
(m1, m2) ∈ dependsif method m1 from some class depends on
method or field m2 from the same class. Formally, for any c ∈
Classes(P ) and any m, n ∈ Methods(c), (m, n) ∈ dependsiff m
can call n. Similarly for any field f ∈ Fields(c), (m, f) ∈ depends
iff m uses f (either defines it or uses its value). We use this notion
of dependency for our splitting obfuscation, which has to separate
all methods and fields of a class into two or more parts, taking
dependency relationships into account.

An important requirement for all obfuscations is that they pre-
serve functional behaviors of the program. This means that if the
original program terminates abnormally on some input, the obfus-
cated program must also terminate abnormally on this input. If
the original program reaches a point at which intermediate or final
results are computed, these results should be identical for the ob-
fuscated version at this point. This definition is more complicated
for programs with non-deterministic behaviors and real-time pro-
grams. All our obfuscations preserve functional program behaviors
for deterministic programs that have no dependencies on the clock.

4. CLASS COALESCING
Given two original classes c1 and c2, the class coalescing ob-

fuscation replaces these classes with a single target class ct. On
the high level, we coalesce two classes by combining their fields
and methods, renaming these fields and methods as needed. Sub-
sequently, all variable declarations using classes c1 and c2 are con-
verted into declarations using ct and program statements using these
variables are modified to ensure that correct fields and methods of
ct are referenced. In the rest of this section we describe these steps
in detail. Formally, class coalescing obfuscation can be viewed as
building mappings µf : Fields(c1) ∪ Fields(c2) → Fields(ct) and
µm : Methods(c1) ∪ Methods(c2) → Methods(ct).

Consider first a simple case where c1 and c2 are both direct sub-
classes of class java.lang.Object2, do not implement any in-
terfaces, and do not override any methods from java.lang.-
Object. In this case, mappings µf and µm are bijections: we put
all fields and methods of c1 and c2 into ct. If c1 and c2 have two
fields with the same name, we rename one of them uniquely. For
example, in Figure 1, classes A and B have identically named fields
i. In class AB that combines A and B, field i coming from B is
renamed to i2.

Similarly, for non-constructor methods m1 ∈ Methods(c1) and
m2 ∈ Methods(c2) that have the same signature (same name and
order and types of arguments), we rename one of m1 and m2 in
ct. In Figure 1, method m from B became method m2 in AB. Since
constructors cannot be renamed, if c1 and c2 have constructors with
the same order and types of arguments, we add a bogus argument
to one of them in ct. For example, no-argument constructors of
classes A and B in Figure 1 become the no-argument constructor
and a constructor with a bogus int argument in class AB respec-
tively. Various low-level obfuscation techniques (e.g. opaque pred-
icates [7]) can be used to make these additional arguments appear
used by the code. The constructor of B with a double argument
becomes a constructor of AB without any changes. In future, in
order to make this obfuscation more stealthy, we plan to add ini-
tialization of all fields of the target class to each constructor of
this class; for example, fields i and o can be initialized to some-
thing other than their default initial values in the constructor with a
double argument in class AB, to prevent a malicious reverse en-

2In Java, all user-defined classes implicitly subclass
java.lang.Object.
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Original classes:

class A {
private int i;
protected Object o;

public A() {
i = 5;
o = new Object();

}

public boolean m() {
return i < 0;

}
}

class B {
protected double i;

public B() {
i = 0.0;

}

public B(double val) {
i = val;

}

public void m() {
i = 1.0;

}
}

Obfuscation

Obfuscated classes:

class AB {
private int i;
protected Object o;
protected double i2;

public AB() {
i = 5;
o = new Object();

}

public AB(int bogus) {
i2 = 0.0;

}

public AB(double val) {
i2 = val;

}

public boolean m() {
return i < 0;

}

public void m2() {
i2 = 1.0;

}
}

Figure 1: The basic case of class coalescing

gineer from guessing easily that this constructor was generated by
class coalescing.

Class coalescing becomes more complicated when classes c1 and
c2 are involved in inheritance relationships or if these classes im-
plement interfaces. The reason for this is that renaming a method or
adding an extra argument to it is not an option when this method is
defined in a superclass of an original class or interface that an orig-
inal class implements. As an illustration, consider the case where
c2 extends c1. In the example in Figure 2, class B is a subclass of
A. The difficulty in coalescing these two classes is combining their
methods m. We cannot rename or add arguments to one of these
methods, because m of B overrides m of A. Our approach is to en-
code the original class of a variable into the state of the new class
of this variable. Figure 2 shows class AB, obtained by coalescing
classes A and B. Note that the AB constructor with no arguments
corresponds to the constructor of A and the AB constructor with
a single int argument corresponds to the constructor of B. Field
isA is introduced to indicate whether an object of type AB is used
in the context where an object of type A was previously used3. Note
the use of this field in method m, which combines code from meth-
ods m of both A and B. In this case, mapping µm is not bijective,
but only injective.

If original classes are subclasses of the same class or implement
different sets of interfaces, methods from implemented interfaces
and methods that override methods in superclasses cannot be re-
named. In this case, we use a technique similar to that illustrated in
Figure 2.

3The presence of this field may be a giveaway of the fact that class
coalescing obfuscation was used. Therefore, in practice, local ob-
fuscating transformations can be used to make this less obvious.
Additionally, many different encodings for this information are
possible; varying these encodings will make it more difficult for
attackers to single out such fields.

Under certain conditions imposed by inheritance relationships
among classes, coalescing two classes may require coalescing sev-
eral other classes into the same target class. For example, this may
happen when the two coalesced classes c1 and c2 are subclasses of
different classes. Because Java does not support multiple inheri-
tance, we first recursively coalesce superclasses of c1 and c2.

After ct has been generated, we use mappings µf and µm to
modify the code in all methods in P that use c1 and c2 (this may
also include methods in ct). First, we replace every declaration of
a field, local variable, or method argument of type c1 or c2 with
a declaration of type ct. Second, we replace every reference of a
field f ∈ Fields(c1) ∪ Fields(c2) with a reference of field µf (f).
Finally, we replace every call to a method m ∈ Methods(c1) ∪
Methods(c2) with a call to method µm(m). These transformations
are comprised of the well-known object-oriented refactoring tech-
niques Add Parameter, Move Field, Move Method, and Rename
Method[9].

If classes c1 and c2 extend different classes from Java standard
libraries, we do not coalesce them, since it would require coalesc-
ing library classes and the resulting code would not be portable.
Also, at present we do not coalesce in cases where one of the origi-
nal classes has native methods, since full analysis of such methods
is not possible, and the target class is not guaranteed to have the
same behaviors as the original classes. In Section 8, we show the
percentage of pairs of classes that can be coalesced for each of the
five programs used in our experiments.

5. CLASS SPLITTING
Given an original class c, the class splitting obfuscation replaces

it with two new target classes ct,1 and ct,2. Since in general a
class can be split into two in a variety of different ways, we use
a split functionµsplit : Members(ct) → 2{ct,1,ct,2} to designate a
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Original classes:

class A {
private int i;

public A() {
i = 5;

}

public boolean m() {
return i < 0;

}
}

class B extends A {
public B() {
super();
i = 10;

}

public boolean m() {
return i < 10;

}
}

class C {
void n() {
A a;
if (...) {

a = new A();
} else {

a = new B();
}
a.m();

}
}

Obfuscation

Obfuscated classes:

class AB {
private int i;
private boolean isA;

public AB() {
i = 5;
isA = true;

}

public AB(int j) {
this();
i = 10;
isA = false;

}

public boolean m() {
if (isA) {

return i < 0;
} else {

return i < 10;
}

}
}

class C {
void n() {

AB a;
if (...) {

a = new AB();
} else {

a = new AB(38);
}
a.m();

}
}

Figure 2: Illustration of class coalescing in the presence of inheritance

specific way of splitting a class. In other words, this function can
place a member of the original class either in one or both of the
target classes. In the general case, splitting a class using an arbi-
trary split function is not possible because of dependencies among
methods and fields of the original class. For example, consider
class C in Figure 3. It is not possible to split this class into two
classes not related by inheritance where one class contains method
m2 and the other contains method m3, because m2 calls m3 in the
same class. This example illustrates that dependency relationships
of class members have to be taken into account when selecting a
split function. We call a split function valid if the program result-
ing from class splitting according to this function is well-formed.

In general, conservative dependency analysis is required when
determining validity of a split function. Furthermore, we believe
that in practice, splitting a class into two classes not related by in-
heritance or aggregation is possible only in situations where the
original design is flawed and, instead of a single class, there should
have been several different classes[15]. Therefore, when splitting
class c into ct,1 and ct,2, we make ct,2 a subclass of ct,1. Con-
sider the example in Figure 3. In this example, class C is split into
classes C1 and C2, where C2 is a subclass of C1. Class D provides
an example of how uses of split classes change in the code. In this
example, we assume that the split function µsplit places fields i and
d in C1 and field o in C2. It places both constructors in both C1
and C2, methods m1 and m3 in C1, method m2 in C2, and method
m4 in both C1 and C2.

After ct,1 and ct,2 have been generated, the code using c is modi-
fied to use ct,1 and ct,2 in the following straightforward way. First,

we replace every declaration of a field, local variable, or method
argument of type c with a declaration of either type ct,1 or ct,2.
Second, every call to the constructor of c is replaced by the call
to the corresponding constructor of ct,2. In cases where the field,
variable, or argument were declared as ct,1 and a call to a method
that ct,1 does not have is made, we insert a type cast to ct,2 prior
to this call4. No additional manipulations are required since for
each method and field of c, class ct,2 either contains this method or
inherits it from ct,1.

Our method of class splitting using inheritance produces a large
number of valid split functions, because the only restriction on
these split functions is that all methods and fields that a method
uses have to be defined in the same class where this method is de-
fined. Formally:

∀m ∈ Methods(c) :

if ct,1 ∈ µsplit(m), then

∀n ∈ Methods(c) : depends(m, n) ⇒ ct,1 ∈ µsplit(n) and

∀f ∈ Fields(c) : depends(m, f) ⇒ ct,1 ∈ µsplit(f)

Note that method polymorphism can be used to make under-
standing of code in split classes particularly difficult. First, a me-
thod in ct,1 may be overridden by ct,2 in such a way that the ver-
sion of this method in ct,1 is never actually called. Such method
will provide a distraction for a reverse engineer, who is likely to

4In our current implementation, to avoid run-time overhead associ-
ated with type casts, the declared type is always ct,2.
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Original classes:

class C {
private int i;
private double d;
protected Object o;

public C() {
i = 5;
d = 1.0;
o = new Object();

}

public C(int iarg, double darg) {
i = iarg;
d = darg;
o = new Object();

}

public boolean m1() {
return i < 0;

}

public void m2() {
d = 3.0;
m3(3);

}

protected void m3(int iarg) {
i = iarg;
m4(new Object());

}

public void m4(Object obj) {
o = obj;

}
}

class D {
void n() {
C c = new C();
if (c.m1) {...}
c.m2;
c.m4;

}
}

Obfuscation

Obfuscated classes:

class C1 {
private int i;
private double d;

public C1() {
i = 5;
d = 1.0;

}
public C1(int iarg, double darg) {

i = iarg;
d = darg;

}
public boolean m1() {

return i < 0;
}
protected void m3(int iarg) {

i = iarg;
m4(new Object());

}
public void m4(Object obj) {

o = obj.getClass();
}

}

class C2 extends C1 {
protected Object o;

public C2() {
super();
o = new Object();

}
public C(int iarg, double darg) {

super(iarg, darg);
o = new Object();

}
public void m2() {

d = 3.0;
m3(3);

}
public void m4(Object obj) {

o = obj;
}

}

class D {
void n() {

C2 c = new C2();
if (c.m1) {...}
c.m2;
c.m4;

}
}

Figure 3: Illustration of class splitting

assume that they have a purpose. Furthermore, method polymor-
phism can create the yo-yo effect [16] that makes object-oriented
programs difficult to understand. Consider methods m2, m3, and
m4 in Figure 3. As defined in class C, m2 calls m3, which in turn
calls m4 of the same class. After splitting, method m3 appears only
in C1, method m2 appears only in C2, and method m4 appears in
both C1 and C2. This arrangement makes it difficult to trace de-
pendencies among these methods: a call to m2 of an object of class
C2 generates a call to m3 of C1, which generates a call to m4 of
C2 due to polymorphism, even though to a casual code inspector it
may appear that m3 of C1 calls m4 of C1.

In our experiments, we were able to produce a variety of valid
split functions by placing roughly half of the methods from the

original class in ct,1 and half in ct,2. This is done by processing
methods from the original class one by one and choosing one of
ct,1 and ct,2 randomly to place it into. If a method m1 has been
placed in ct,1 and it calls another method m2 that has been placed
in ct,2, then a method m2 is also placed in ct,1. Note that since this
method is overridden by the one in ct,2, it will never be called in
the program, so arbitrary code can be placed in m2 in ct,1. After
all methods have been placed, we place fields. A field f from the
original class is placed in ct,1 if it is used in a method in ct,1. Oth-
erwise, it is placed in ct,2. At present, all static methods are placed
in ct,2.

An alternative to splitting a class c into classes ct,1 and ct,2,
where ct,2 is a subclass of ct,1 is to add a field of class ct,1 to class
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ct,2. To access the functionality of ct,1, an object of class ct,2 calls
the appropriate methods on its field of class ct,1. A drawback of
this approach is that class ct,2 would have to declare all methods of
the original class c, even though some of them only contain delega-
tion calls. We plan to implement and experiment with this splitting
technique in the future, but believe that the present, subclassing,
solution produces more obfuscated code.

6. TYPE HIDING
In addition to classes, Java also has interfaces, a light-weight

representation of types. Unlike classes, interfaces do not have in-
stance fields and do not provide implementations for methods that
they declare. Interfaces are legitimate types, and as such they can
be used in declaration of variables, fields, and methods. Interfaces
also can be used in casting operations. All these features make
interfaces a convenient design feature that allows decoupling of de-
sign from implementation [4]. We use this feature of Java to ob-
scure the nature of objects in the program, by declaring a number
n of interfaces i1, ..., in for a given class c and using these inter-
faces, instead of c, in declarations. Note that class c remains in the
program and its members are not changed by this obfuscation.

The key feature of this obfuscation technique is that each inter-
face ik it creates for a given class c includes only a small random
subset of all public methods of c. Class C in Figure 4 is the same
as in Figure 3. As our type hiding obfuscation for this example,
we introduce two interfaces, I1 and I2 that, combined, declare all
public methods of C, m1, m2, and m4. Specifically, I1 declares m1
and m2 and I2 declares m4. Note the use of I1 and I2 in class D:
variable c, which prior to this obfuscation had type C, is declared
to be of type I1. Since I1 does not declare method m4, a type cast
is required when this method is called on c.

Formally, this transformation constructs a mapping µhiding :
Methods(c) ∩ publicMethods(P ) ∩ instanceMethods(P ) →
{i1, ..., in} that determines which interface declares which of the
private instance methods of c5. After i1, ..., in have been gener-
ated, we use µhiding to modify the places in P where fields, local
variables, and method arguments of type c are declared and used.
First, we modify every declaration using c as type to use an arbi-
trary interface i from {i1, ..., in} as its type. Second, we analyze
each instruction that uses the declared field, variable, or argument.
If the instruction uses a field of c or calls a static or non-public
method of c, we cast the field, variable, or argument to c before this
instruction. Alternatively, if the instruction calls a public instance
method m ∈ Methods(c), we use mapping µhiding to obtain the in-
terface i = µhiding(m) that declares the called method and insert a
cast to i before the method call instruction.

If used as described here, the type hiding obfuscation can be
defeated in an automated way by stripping interfaces, since each
interface introduced by this obfuscation is implemented by a sin-
gle class. For example, tool Jax [17], developed for reducing the
size of Java class files, can be adapted for this purpose. To avoid
this, method renaming can be used to ensure that a large subset of
introduced interfaces is implemented by two or more classes. In ad-
dition, polymorphic situations can be created, which would make
automated analysis of the obfuscated code even more difficult.

One caveat of this approach is that type casting is expensive in
Java. In fact, our early experiments with an implementation of type
hiding obfuscation indicated that applying this technique to a large
number of classes in a program is likely to slow down this program

5Note that we could also put a public instance method of c into sev-
eral different interfaces from {i1, ..., in}. This feature is planned
for a future release of our design obfuscation tool.

significantly. To avoid a large performance impact, our current im-
plementation applies an optimization similar to invariant code mo-
tion commonly used in optimizing compilers [1]. Instead of placing
type casts inside of loops, we place such type casts before loops.

7. IMPLEMENTATION
We implemented the three design obfuscation techniques describ-

ed in this paper in a Design Obfuscator for Java (DOJ)tool. In this
section, we briefly describe the design of DOJ and illustrate its user
interface.

7.1 DOJ Design
DOJ works with the bytecodes of the Java application under

analysis, relying on the Soot bytecode analysis framework [14].
In a typical obfuscation session, DOJ first uses Soot to analyze the
bytecodes in the application that has to be obfuscated. Information
about the application is presented to the user, to facilitate the choice
of parts of the application to obfuscate and obfuscations to use. The
user of DOJ has the choice of selecting classes that have to be ob-
fuscated manually or letting the tool select these classes randomly,
according to customizable preference settings.

Once the choice of obfuscations and parts of the application to be
obfuscated has been made, DOJ performs obfuscations on the inter-
nal representation of Soot. Each obfuscation technique supported
by DOJ is implemented as a separate class. Extensibility of DOJ
is achieved by using a special class that serves as an adapter be-
tween each obfuscation class and the tool interface, implementing
the Proxy design pattern[10]. In addition to design obfuscations,
DOJ also incorporates several low-level obfuscations, including re-
naming of classes, methods, and fields.

After the obfuscation modules complete their work, Soot is used
to generate bytecodes for the obfuscated application. The user is
presented with statistical information about the obfuscations, such
as the number of methods in the application that have been modified
as the result of obfuscation.

7.2 DOJ User Interface
The main view of the DOJ user interface is split into two panels,

as shown in Figure 5. The left panel lists all classes and interfaces
of a small online voting application to be obfuscated. The right
panel lists classes that are selected for obfuscation. Figure 5 shows
classes selected for coalescing: classes ZipCode, Democrat,
Republican, and MiddleAge are selected to be coalesced into
class named NewClassX and classes JuniorAge, SeniorAge,
WashingtonDC, and Main$1 are selected to be coalesced into
class named NewClassY. Note that actual obfuscation is not per-
formed until the user clicks the Obfuscate button at the bottom
right of the screen. The user has the flexibility of either configuring
all obfuscations and then having DOJ to run them all or working in
an exploratory mode, performing obfuscations one by one, check-
ing intermediate results after each obfuscation.

performing an obfuscating and viewing the results.
Obfuscating a large application may require information about

inner working of this application. DOJ provides a number of tools
that aid the user in selecting classes to be obfuscated. Figure 6 il-
lustrates one of these tools, the Hierarchy View. This tool shows
dependency relationships among classes in a program. It captures
both inheritance relationships and calling dependencies. By click-
ing on a class in this diagram, the user is shown all classes that
depend on this class. This information is helpful when selecting
classes to be obfuscated. For example, it is often a good idea to
obfuscate a class on which many other classes depend, since this
is likely to change the application significantly. In Figure 6, the
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Original classes:

class C {
private int i;
private double d;
protected Object o;

public C() {
i = 5;
d = 1.0;
o = new Object();

}
public C(int iarg, double darg) {
i = iarg;
d = darg;
o = new Object();

}
public boolean m1() {
return i < 0;

}
public void m2() {
d = 3.0;
m3(3);

}
protected void m3(int iarg) {
i = iarg;
m4(new Object());

}
public void m4(Object obj) {
o = obj;

}
}

class D {
void n() {
C c = new C();
if (c.m1) {...}
c.m2;
c.m4;

}
}

Obfuscation

Obfuscated classes:

class C implements I1, I2 {
// code in this class is unchanged

}

interface I1 {
boolean m1();
public void m2();

}

interface I2 {
void m4(Object obj);

}

class D {
void n() {

I1 c = new C();
if (c.m1) {...}
c.m2;
((I2) c).m4;

}
}

Figure 4: Illustration of type hiding

Figure 5: DOJ main view

user clicked on class PoliticalParty. DOJ highlights other
classes, indicating that classes Democrat and Republican de-
pend on PoliticalParty as its subclasses and classes Voter,
MiddleAge, JuniorAge, and SeniorAge depend on Poli-
ticalParty since they contain calls to its methods.

In addition to Hierarchy View, DOJ provides several other views,
including one that provides a number of relevant statistics that at-
tempt to quantify the impact of obfuscations on the program. For
example, numbers of classes, methods, and fields that have been
changed by the obfuscation are given.

8. EXPERIMENTS
We successfully used DOJ to obfuscate several medium- and

large-size programs, including a commercial program with over
2,000 classes6. Since in practice run-time performance of software
is an important business consideration, it is important that obfus-
cations do not cripple a software program by making it run too
slow. To evaluate the impact of our three obfuscation techniques
on program performance, we experimented with five medium-size
programs, described in Figure 7.

Each of our obfuscations works with a subset of classes in the

6Unfortunately, at present we cannot reveal the identity of this pro-
gram.
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Program Description Classes Interfaces Size (Kb)
javac Java compiler, included in Sun JDK 1.3.1 298 7 1,083
javap Java class file disassembler, included in Sun JDK 1.3.1 307 7 1,117
MHP A tool for computing pairs of statements that may execute in parallel in concur-

rent programs [13]
94 29 281

HTML Parser A tool for extracting various features from HTML documents (http://
htmlparser.sourceforge.net)

81 4 157

DOJ The obfuscator itself 63 2 249

Figure 7: Programs used in the experiments with DOJ

Figure 6: DOJ Interactive Hierarchy Diagram

program under analysis. In practice, this subset may be chosen
by the user of DOJ. For example, the user may decide to obfus-
cate only classes that represent crucial intellectual property of the
company that developed the program. Since we do not have such
information about most of our test programs, we choose subsets of
classes to obfuscate randomly (this capability of random selection
is a feature of DOJ). For each of our test programs P and each ob-
fuscation technique t, we create a number of obfuscated versions7

P1,t, P2,t, ..., Pk,t in the following manner. We arbitrarily order
all classes in P : c1, ..., cit , ..., cr in such a way that obfuscation t
is applicable to subsets {c1}, {c1, c2}, ..., {c1, c2, ..., cit}. For any
i : 1 ≤ i ≤ it, we obtain Pi,t by obfuscating classes in the subset
c1, ..., ci. In some cases, an obfuscation cannot be applied to the
whole subset. For example, it is possible that one of the classes in
c1, ..., ci cannot be coalesced with the other classes in this subset.
In such cases, we do not create Pi,t.

Since one of the goals of this experiment is to compare run-time
overheads for different obfuscations, we apply each of our three
obfuscations separately. We believe that for maximum protection,
in practice, a program should be protected by all three design ob-
fuscation techniques.

First, we report on the theoretical applicability of the three de-
7We experiment with each obfuscation technique separately (i.e.
we do not create obfuscated versions of P by applying both class
coalescing and splitting to it).

Program Class coalesc-
ing, %

Class splitting,
%

Type hiding,
%

javac 31.34 99.66 99.66
javap 31.22 99.67 99.67
MHP 41.8 100 100
HTML Parser 30.86 100 100
DOJ 27.34 100 100

Figure 8: Applicability of the obfuscations

sign obfuscations to our five test programs. (The actual number
of classes that can be obfuscated by DOJ is often less because of
imperfections of this tool.) Figure 8 shows the results of the ex-
periment that computes the percentage of classes that can be ob-
fuscated. For class coalescing, this number is the percentage of all
pairs of classes that can be coalesced. This number is close to 30%
for four of the five test programs. The reason this number is so
low is that many classes in these programs subclass library classes.
For class splitting and type hiding, the reported numbers are the
percentage of classes in each program to which the obfuscation is
applicable. Only javac and javap contain classes (2 in each of
them) to which these obfuscations cannot be applied.

In the rest of this section, we report on the experimental results
of running DOJ on each test program P . For each test program, we
show a graph that plots overhead of running obfuscated versions
P1, ..., Pk compared to running time of P . (Note that version Pi

for different obfuscations may be different, depending on the ap-
plicability of these obfuscations to classes in P .) All experiments
were performed on a RedHat Linux 7.1 (kernel 2.4.2-2) PC work-
station with an AMD Athlon 1.3 GHz processor and 1 GB RAM.
The obfuscator is implemented in Java and was run on Sun HotSpot
JVM 1.3.1, with maximal size of heap set to 1256 MB8. We ran
each obfuscated version 10 times and averaged running times (we
ran each obfuscated version of the MHP test program only 5 times,
since each execution takes a substantial amount of time).

8.1 javac
Figure 9 shows the results of the experiment with the Java com-

piler javac. We used the MHP tool (see Figure 7 as input to
javac in this experiment. Of the 298 classes in this application,
we were able to coalesce 549, split 290, and type hide 94. The main
reason for not being able to split and type hide all classes is imma-
turity of DOJ. For readability, in Figure 9 we show time comparison
only for the first 100 classes in our random order. Performance of
those obfuscated versions for class splitting that are not shown dif-
fers very little from the performance of the version with 100 split
classes (running time of the version with 290 split classes is only
8In all experiments, actual memory usage was under 1GB.
9This number could be higher, but since we select classes ran-
domly, the presence of some classes in the set of coalesced classes
may prevent adding more classes to this set.
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Figure 9: Results of the experiment for javac

0.06 seconds longer than running time of the version with 100 split
classes).

From these results, it is obvious that the class splitting and type
hiding transformation add very little to the run time of this program.
Unfortunately, this is not the case for the class coalescing transfor-
mation. After coalescing about 15 classes, the run-time cost of this
obfuscation starts rising significantly.

8.2 javap
Figure 10 shows the results for the experiment with the Java de-

compiler javap. We used a component of the Soot framework as
input to javap in this experiment. DOJ was able to split 305, type
hide 189, and coalesce 141 classes. We do not show running times
for obfuscated versions with more than 141 classes split and type
hidden, since for all these versions, the impact of obfuscations on
run-time performance is insignificant. Same as for javac, appli-
cation of class splitting and type hiding obfuscations does not re-
sult in large run-time overheads. Also, if a large number of classes
are coalesced together, the run-time overheads become large. (The
sharp increase in running time after class number 100 was added
can be explained by the fact that a large number of objects of this
class are created. Since in the obfuscated program each of these
objects is significantly larger, more time is spent on their instanti-
ation.) However, where only a small number of classes were coa-
lesced, the obfuscated program was actually faster than the original.
We believe that the reason for this is that the Java run-time system
loads a small number of large classes more efficiently than a large
number of smaller classes. It is a part of our future work to de-
termine if class coalescing can generally be used for optimization
purposes.

8.3 MHP
Figure 11 shows the results for the experiment with the MHP

(May Happen in Parallel) tool. We used a large concurrent Ada
program as input to this tool. While, similar to javac and javap,
application of the class splitting obfuscation does not result in large
run-time overheads, application of type hiding to more than 8 cla-
sses results in about 25% increase in the running time. Methods
of objects of the ninth class are called frequently in the program,
often from within nested loops. A type cast before each such invo-
cation is expensive, resulting in the observed loss of performance.
Unfortunately, in this case the optimization of the type hiding ob-
fuscation, described in Section 6, is not sufficient to avoid this large
overhead. On the other hand, class splitting seems to scale very
well; in fact, running time of the version with 2 split classes is ex-
actly the same as running time of the version with 83 split classes
— 72.9 sec.

8.4 HTML parser
Figure 12 shows the results for the experiment with the HTML

parser. We used an HTML file of size about .5 Mb as input to this
tool. For this test program, none of the obfuscations significantly
added to the running time of the program. This is not surprising,
since this is the smallest program in our tests and so the number of
classes used in the obfuscations was small compared to the other
test programs.

8.5 DOJ
Figure 13 shows the results for the experiment in which we ob-

fuscated DOJ itself. We used the Concurrent Train Simulation pro-
gram created by Jim Tsanakaliotis as input to DOJ versions in this
experiment. The increase in running time was very insignificant for
class coalescing and type hiding. For class splitting, we observed a
slight improvement in the running time (0.3 seconds for the version
with 59 split classes), but this could be a result of our imprecise
time measurement. Overall, good scalability of our obfuscation
techniques in this test can be explained by the fact that DOJ does
not create a large number of objects. Furthermore, a large portion
of running time is spent in calls to the underlying Soot libraries,
which were not obfuscated in this experiment.

8.6 Summary
In all of our experiments, the class splitting obfuscation had little

or no effect on the program running time. In several cases, appli-
cation of this obfuscation actually seems to improve program per-
formance somewhat. In our future work, we plan to investigate the
possibility of using techniques from our design obfuscations for
general optimization of Java programs.

In most cases, the type hiding obfuscation had very little or no
effect on the program running time. The only exception was the
MHP example. In this example, a number of objects of a class that
was type hidden are called intensively from inside nested loops.
Since a type cast is inserted before each such call, the cumulative
cost of performing the type casts results in a significant run-time
penalty. In practice, the user of DOJ would need to decide whether
obfuscation of this class with the type hiding obfuscation is neces-
sary for concealing uses of this class in the program. If the class
does not represent important intellectual property, a decision can be
made not to apply type hiding to it, thereby improving performance
of the obfuscated program.

The class coalescing obfuscation appears to be the most expen-
sive of our three design obfuscation techniques. However, in our
experiments we used this obfuscation technique in a somewhat ex-
treme way, coalescing a large number of classes into a single class.
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Figure 10: Results of the experiment for javap
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Figure 11: Results of the experiment for MHP

As a result, although the number of objects dynamically created in
the program stays constant, many of these objects are much larger,
resulting in higher memory consumption and the resulting slow-
down. We believe that in practice, it may make more sense to coa-
lesce a number of small groups of classes. In our future work, we
plan to investigate a number of patterns of application of this and
other obfuscation techniques, evaluating the impact of the choice
of a pattern on the running time of the obfuscated program, as well
as the strength of obfuscation.

9. CONCLUSIONS AND FUTURE WORK
In this paper, we introduced the notion of design obfuscations

for object-oriented programs. These obfuscations alter high-level
class structure of a program, concealing the original design. We
described three design obfuscations: class coalescing, class split-
ting, and type hiding. We showed results of an experiment apply-
ing these obfuscations to a medium-size Java program. The ex-
periment explored scalability of these obfuscations with respect to
run-time overheads caused by them. Based on these preliminary
results, it seems that run-time overhead of the class splitting obfus-
cation tends to be insignificant, under 10% of the total running time
of the program, even after most classes in the application have been
split. Run-time overhead of type hiding also tends to be insignif-
icant, except in rare cases where an obfuscated class is used very
intensively by the program. Finally, run-time overhead of class
coalescing seems to be proportional to the number of classes coa-
lesced. Note that in this experiment we coalesced a large number of
classes into a single class, instead of coalescing many small groups
of classes. We leave experiments with different patterns of coalesc-
ing for future work.

More experiments with design obfuscations are needed to eval-
uate their scalability and run-time overheads. In addition to these
experiments, we will evaluate compatibility of design obfuscations
with other, low-level types of obfuscations. Finally, it is important
to evaluate the degree of protection against reverse engineering pro-
vided by our obfuscations. Unfortunately, such protection is a sub-
jective measure and may require experiments with human subjects.
Instead, we plan to estimate protection provided by our obfusca-
tions for other protection mechanisms, such as license files and
software watermarking [8]. On other area where protection pro-
vided by our obfuscation techniques can be objectively measured is
that of automated program understanding and refactoring [9] tools.
For example, researchers at the University of Passau in Germany
are currently implementing a class refactoring technique based on
concept analysis[15]. When their tool becomes available, we will
be able to determine if our class coalescing obfuscation provides
adequate protection against automated improvements of the design
by splitting classes.
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