
The Obfuscation Executive�

Kelly Heffner and Christian Collberg

Department of Computer Science
The University of Arizona

{kheffner,collberg}@cs.arizona.edu

Abstract. Code obfuscations are semantics-preserving code transfor-
mations used to protect a program from reverse engineering. There is gen-
erally no expectation of complete, long-term, protection. Rather, there
is a trade-off between the protection afforded by an obfuscation (i.e. the
amount of resources an adversary has to expend to overcome the layer of
confusion added by the transformation) and the resulting performance
overhead.
In this paper we examine the problems that arise when constructing an
Obfuscation Executive. This is the main loop in charge of a) selecting
the part of the application to be obfuscated next, b) choosing the best
transformation to apply to this part, c) evaluating how much confusion
and overhead has been added to the application, and d) deciding when
the obfuscation process should terminate.

1 Introduction

A code obfuscator is a tool which—much like a code optimizer—repeatedly ap-
plies semantics-preserving code transformations to a program. However, while
an optimizer tries to make the program as fast or as small as possible, the obfus-
cator tries to make it as incomprehensible as possible. Obfuscation is typically
applied to programs in order to protect them from being reverse engineered or
to protect a secret stored in the program from being discovered. In this paper we
will describe the design of an Obfuscation Executive (OE), implemented within
the SandMark [3] software protection research tool. The OE is the overall loop
that applies obfuscation algorithms to parts of the program to be protected.
In many ways the OE functions similar to a compiler’s optimization pass: it
reads and analyzes an application and repeatedly applies semantics-preserving
transformations until some termination condition has been reached. Ideally, the
executive should be able to pick an optimal set of transformations and an optimal
set of program parts to obfuscate. The only necessary user interaction should be
to indicate to the tool what “optimal” means: i.e. how much execution overhead
the user can accept, how much obfuscation he wants to add, and which parts
of the application are security- or performance-critical. The two major issues
with this process is the order in which transformations should be applied (the
� This work was supported in part by the National Science Foundation under grant

CCR-0073483 and the Air Force Research Lab under contract F33615-02-C-1146.

K. Zhang and Y. Zheng (Eds.): ISC 2004, LNCS 3225, pp. 428–440, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



The Obfuscation Executive 429

“phase-ordering-problem”) and how to decide that the process should terminate.
In the case of a code optimizer the order of transformations is usually fixed. The
optimizer typically terminates when there are no more changes to the applica-
tion or when all transformations have been tried at least once. As we will see
from this paper, in the case of the OE neither phase-ordering nor termination is
this simple.

For the sake of brevity, we refer to [5] for an introduction to code obfuscation
and its uses. Obfuscating transformations are characterized by their potency (the
amount of confusion they add), their resilience (the extent to which they can be
undone by a de-obfuscator), and their cost (the performance penalty they incur
on the obfuscated application) [6].

2 The Obfuscation Loop

At the heart of any OE is a loop that chooses a part of the application to obfus-
cate, chooses an appropriate obfuscating transformation from a pool of candidate
algorithms, and then applies the transformation. After the transformation has
completed, the loop computes how much the code has changed and decides if
the process should continue. Unfortunately, there are a number of complica-
tions. First of all, neither the amount of protection we would like to achieve nor
the amount of overhead we can accept are uniform over the application. Some
subroutines may be performance-critical, others not. Some subroutines may be
security-critical, others not. Secondly, given any non-trivial set of obfuscating
transformations there will be restrictions on the order in which these should be
applied. The reason is that an obfuscating transformation destroys structures in
the application. This makes the obfuscated application more difficult to analyze,
and, as a result, it might not be possible to apply any further transformations. Fi-
nally, not all obfuscations can be applied to all application objects. For example,
obfuscations which rename classes [9] cannot be applied to classes that will be
loaded dynamically by name. Also, if we are using obfuscations to hide a partic-
ular structure in the application (such as a watermark or a set of cryptographic
keys) we cannot apply transformations that will destroy these structures.

2.1 Transformation Dependencies

SandMark’s OE understands six types of dependencies between obfuscations
and tools such as software watermarkers that use them. These are pre/post-
suggestions, pre/post-requirements, and pre/post-prohibitions:

Pre-/postrequirement: Assume a software watermarking algorithm (such as
CT [4]) that embeds the watermark in a data structure in the application.
To simplify implementation and debugging the watermarker creates a class
Watermark that contains the code for building the mark: � class Watermark
{ Watermark left, right; void createGraph() { . . . } } � A call to
the method createGraph() is embedded into the application. Obviously,



430 K. Heffner and C. Collberg

this is not stealthy. Therefore the watermarking algorithm requires that an
inlining transformation and a name obfuscating transformation be run after
the watermarking algorithm. This is a postrequirement dependency.

Pre-/postprohibition: Assume an obfuscating transformation MergeArrays
that performs alias analysis to detect the location of two arrays to merge.
This algorithm should not be run after any algorithm that makes alias anal-
ysis difficult. Collberg [6] presents such algorithms. This type of dependency
is called a preprohibition.

Pre-/postsuggestion: Suggestions are similar to requirements in the result-
ing language of transformations that they allow. However, while breaking
a requirement will put the program in a corrupt state or make a software
watermark obvious, a suggestion is just a hint to the OE by the obfuscation
author that certain transformations work well together.

In our current SandMark implementation each obfuscation and watermark-
ing algorithm specifies the effects that it may have on the code. It also
specifies properties of other algorithms that are postrequired, presuggested,
etc. For example, a method splitting transformation MethodSplit might list
OBFUSCATE METHOD NAMES as a postsuggestion, indicating to the OE that some
algorithm (any one will do) that has this property should be run after
MethodSplit. In general, to fulfill a requisite dependency one algorithm with
the specified property must be run; to fulfill a suggestion dependency any one
algorithm with the specified property could be run; and to fulfill a prohibition
dependency no algorithm with a specified property should be allowed to run.

Simple obfuscators do not need to specify many dependency relationships
with other obfuscators. However, when using obfuscation with software water-
marking, dependencies are necessary to make sure that the obfuscations suc-
cessfully camouflage the watermark without destroying the structures that it
is embedded in. From a software design standpoint, the dependency framework
also allows for more complex obfuscators to be created modularly and without
concern for the transformations performed around it.

3 Modeling Dependencies

Our goal is to construct an OE algorithm to honor transformation dependen-
cies and to find the “optimal” set of transformations to apply to the “optimal”
set of application objects. In fact, we are interested in constructing families of
such algorithms, to be targeted at the many and varied applications of obfusca-
tion discussed in [5]. The most important result in this paper is the design of
a model which encodes transformation dependencies, obfuscation potency and
performance overhead, as well as the desired level of obfuscation and overhead
of each application object. The model is based on weighted finite state automata
and can be used as the basis for many on-line and off-line algorithms. Let us first
consider an example with three transformations A, B, and C. A postprohibits
a property that C has, A postrequires a property that only B has, and B pre-
requires a property that only C has:The order in which these transformations



The Obfuscation Executive 431

B

A

A

B

A postrequires B

A B

B

A prerequires B A postprohibits B

A

A

B

A preprohibits B

BA

B

(B|A+B))∗
,

B(A|B)∗|ε B∗A∗ A∗B∗

Fig. 1. An FSA for each dependency type.

can be run is CAB, CBAB, CBBAB, or, more generally, any sequence that
matches the regular expression ε|C(C|B)∗(A+B)∗.

This observation leads us to a model where the dependencies between trans-
formations are represented by a finite state automaton (FSA). The language
accepted by this machine contains all the possible sequences of transformations
that can be executed. Given this model, the design of a new OE reduces to
the problem of constructing an algorithm that chooses a finite subset of the
(typically) infinite set of strings generated by the FSA. The heuristics of such
algorithms will make use of FSA edge weights representing the “goodness” of
traversing each edge.

We will next describe how the FSA is built, then how edge weights are com-
puted, and, finally, in Section 4 describe an on-line OE algorithm that makes
use of the FSA model.

3.1 Building the FSA

Each type of dependency has an equivalent regular language. It suffices to con-
sider prohibition and requirement dependencies since suggested dependencies
can be modeled by modifying the FSA edge weights. This will be shown in
Section 3.2.

Figure 1 shows the four FSAs that correspond to each dependency type.
The figures show transitions only for the two transformations involved in the
dependency; for any transformation that is not in the dependency, the transition
is just a self-loop.

To build the regular language for the entire set of obfuscating transformations
we take the intersection of the languages from each dependency and Σ∗. The
resulting language is the set of all possible sequences in which the transformations
could be applied. To model the fact that dependencies apply to properties of
transformations, rather than transformations themselves, we simply replace a
single transformation in Figure 1 with all of the transformations that have a
particular property.

Consider the running example in Figure 2 which describes five obfuscating
transformations A, B, C, D, and E with three properties p1, p2, and p3. Fig-
ure 3(a) shows the models for the four dependencies in the example. Taking
the intersection of the languages represented by these FSAs we get the FSA



432 K. Heffner and C. Collberg

Fig. 2. A running example. A and B are method level obfuscators, C and D are class
level obfuscators, and E applies to an entire application.

,

Algorithm B postrequires p1

Algorithm E postprohibits p1

Algorithm A prerequires p2

Algorithm D preprohibits p3

A,C,D,E B,D,E

A,C

B
C,E

B
A,B,C,D,E

B,D,EA,B,C,D

E

D

A,B,C,E
B,C,E

A,D

C

B

B

EE

E

EE

BB

B

C

B,E

A,C

E

A,C

B

D

A,D

B

CE

(a) (b)

Fig. 3. The transformation properties from the running example in Figure 2 produces
the four FSAs in (a). Taking the intersection of the generated languages produces the
FSA in (b). Note that no paths exist to an accepting state from some states (dashed
in (b)) so those nodes would be removed.

in Figure 3(b), which models every possible candidate sequence allowed by the
dependencies.

To make full use of the finite state machine model, we must integrate the
idea that transformations are run on application objects, not always the entire
application. By running a transformation on one application object, possibly ful-
filling prerequirements and prohibiting other transformations, the result affects
only a subset of objects. In order to keep track of these object-level changes,
the target of the transformation must be included with each transformation in
the sequence. Thus, each symbol in our alphabet for the sequence becomes an
ordered pair (transformation, target).

We should also note that modifications to single application objects do not
just affect that object. Obfuscating a method may affect not only the class that
the method is in, but the entire application. For simplicity we will assume that
when a transformation is run on an object x, the effect is spread to all objects
that contain x, and all objects that x contains. We will call this the range of an
object. This is a conservative approximation on the real spread. A less coarse
approximation would be advantageous but more difficult to compute.

During FSA construction the states represent sets of application objects. We
will refer to the set of objects for a given state q as s(q). We will refer to the set
of objects that is in the range of an application object x as r(x).



The Obfuscation Executive 433

First we will construct the FSA for a prerequirement dependency, where a
transformation T prerequires a property p. We define an FSA (Q, Σ, δ, q0, F )
with the following properties: Q, the set of states, is composed of the power set
of the set of all application objects that are a target of T ; Σ is the set of ordered
pairs (T, x) where T is a transformation and x is a target application object
for that transformation; The transition function δ is given in Figure 5; q0 is the
state such that s(q0) = ∅; F = Q is the set of accepting states. Figure 6 shows
the partial FSA for the preprohibition of property p3 before transformation D.

Next, we construct the FSA for a postrequirement dependency, where trans-
formation T postrequires property p. The FSA is identical to the previous one,
except for the transition function in Figure 5 and that F = {q0}. The transi-
tion functions for FSAs for preprohibition and postprohibition dependencies are
similar and shown in Figure 5.

3.2 Building the Probabilistic FSA

The FSA generates a language of strings of (obfuscation, target) tuples. These
strings represent a series of obfuscations to run on the application. Obviously,
some strings are more desirable than others in that they result in more highly
obfuscated programs with lower performance penalty. To capture this, we create

a probabilistic FSA by giving each edge an edge weight. In an edge a
(T,x),w−−−−−→ b,

w represents the “goodness” of applying transformation T to application object
x when the OE is in state a. In Section 4 we will show how this model allows
for a very simple, yet effective, on-line OE algorithm.

The tuple

〈Potency(T ),Degradation(T ),ObfLevel(x),PerfImport(x)〉
forms the FSA edge weight weight(T, x), where each element is a real number in
the range [0, 1]. Potency(T ) measures the obfuscation potency of T . It is com-
puted by running each obfuscation on a set of benchmarks and computing the
change in software complexity. See Section 3.3. Degradation(T ) measures the
performance degradation of T . This is computed by running each obfuscation
on a set of benchmarks and computing the change in execution time. See Sec-
tion 3.3. ObfLevel(x) is the desired obfuscation level of application object x, as
assigned by the user. PerfImport(x) is the importance of performance of appli-
cation object x, a combination of user assignment and profiling data. Our model
does not specify how a particular OE will make use of the weight tuple. In our
current implementation the tuple is mapped down to a single real number which
represents the overall goodness of choosing a particular edge. This is explained in
Section 3.3. We will next show how to estimate Potency(T ) and Degradation(T ).

3.3 Computing Edge Weights

Each obfuscating transformation T is assigned a real number (in the range [0, 1])
Potency(T ) that represents the relative potency of the transformation in compar-
ison with the rest of the transformations known to the obfuscator. Potency(T )



434 K. Heffner and C. Collberg

(a) ∆(P, M, T ) =
∑

m∈M |m(P )−m(T (P ))|
|M| (b) Potency(T ) = ∆(M,T )−∆min(M)

∆max(M)−∆min(M)

(c) Γ (P, T ) = max(time(T (P ))−time(P ),0)
time(P ) (d) Degradation(T ) = Γ (T )−Γmin

Γmax−Γmin

(e) Fold(w) = Potency(T ) · ObfLevel(x) · (1 − PerfImport(x)) · (1 − Degradation(T ))

Fig. 4. Formulas for computing edge weights.

is determined by calculating a set of software engineering metrics, M , on sample
programs before and after obfuscation and taking the average of the change in
those metrics (see Section 4.1 for discussion on what metrics were used).

The change in a set of metrics M for a program P on a transformation T is
given by Figure 4(a) where m(P ) is a software metric calculated on P and T (P )
is P obfuscated by transformation T . We get ∆(M, T ) by averaging ∆(P, M, T )
over all benchmark programs.

To compute the obfuscation potency for a transformation T we normalize
using the highest and lowest changes in the metrics (∆max(M) and ∆min(M))
over all of the obfuscations, yielding the formula in Figure 4(b). Since we consid-
ered obfuscation as simply a change in metrics, rather than raising or lowering
the metrics, we chose to calculate ∆(P, M, T ) as given by Figure 4(a). Another
method of selecting metrics, such that more obfuscation mapped to higher metric
values would eliminate the absolute value bars from the calculation.

Each obfuscating transformation T is assigned a real number Degradation(T )
(in the range [0, 1]) that represents T ’s expected performance hit.
Degradation(T ) is calculated by running every transformation T on a set of
“priming” applications. These could either be a set of benchmarks such as the
SpecJVM, or the application to be obfuscated itself. Γ (P, T ) is the raw perfor-
mance degradation of T on program P , shown in Figure 4(c). We get Γ (T ) by
averaging over all benchmark programs. To compute Degradation(T ) we nor-
malize using the highest and lowest performance hits (Γmax and Γmin), yielding
the formula in Figure 4(d).

Most simple OE algorithms will want to fold the weight tuple w =
weight(x, T ) into a single real number Fold(w) to represent the goodness of
choosing a particular edge. See Figure 4(e). The probability of taking an edge

a
(T,x),Fold(w)−−−−−−−−−→ b is thus proportional to how potent the transformation T is and

how important it is to obfuscate application object x. It is inversely propor-
tional to how performance critical x is and how much T is expected decrease its
performance.

4 Algorithms

Once the probabilistic FSA has been constructed, the model is used to find
an effective, yet not optimal, obfuscation sequence. Our broad definition for
an optimal obfuscation sequence is a sequence such that the application has
maximal obfuscation, has minimal performance degradation, and is a minimal



The Obfuscation Executive 435

Fig. 5. Transition functions δ(q, (t, x)).

sequence. Here, we describe a simple on-line algorithm to determine a sequence.
Given the probabilistic FSA and the Fold formula from Section 3.3, the on-
line algorithm computes the obfuscation sequence and performs the associated
obfuscating transformations.

The algorithm performs a random walk of the nodes of the FSA, starting
in the start node. Each iteration selects an outgoing edge e from the current
node S, performs the corresponding obfuscating transformation, and updates
the edge weights to reflect the changing obfuscation level. The probability of
a particular outgoing edge being chosen is proportional to its weight. As the
desired obfuscation level of each application object approaches zero, the weights
of the edges that represent obfuscating that application object also approach
zero. Edges with a zero weight are removed from the FSA. The loop terminates
when there are no available edges out of the current, accepting, state.

This algorithm is a random walk of the FSA, using the edge weights to guide
traversal. While this algorithm will not yield an optimal obfuscation sequence,
it will produce a sequence that obfuscates heavily with acceptable performance
degradation. Furthermore, since this algorithm produces a very random obfus-
cation sequence, attacks against the obfuscated code are difficult. Given a list of
the obfuscations available to the loop, the attacker still does not know the sub-
sets of obfuscation that the application objects have been obfuscated with, nor
the order in which the obfuscations have been applied. We can use this loop to
obfuscate a fingerprinted application each time it is sold. Each copy will become
entirely different, allowing us to protect against collusive attacks.



436 K. Heffner and C. Collberg

2

3

1 4

(D,c2):0.275

(E,all):0.002

(B,m1):0.09
(B,m2):0.09
(C,c1):0.09

(B,m):0.02
(C,c2):0.1

(B,m2):0.1
(C,c1):0.024
(D,c2):0.045(A,m2):0.2

(A,m1):0.2
(A,m):0.2

(B,m1):0.1

(B,m):0.1
(C,c2):0.024
(D,c1):0.045(A,m2):0.2

(A,m1):0.2
(A,m):0.2

(B,m):0.1

(E,all):0.002
(C,c2):0.029

(B,m1):0.1
(B,m2):0.1

(E,all):0.0.002
(C,c1):0.029

(A,m2):0.21

(A,m):0.21
(A,m1):0.21

(B,m):0.106
(B,m1):0.106
(B,m2):0.106
(C,c1):0.025
(C,c2):0.025
(E,all):0.002

(D,c1):0.275
(A,m2):0.15
(A,m1):0.15
(A,m ):0.15

Fig. 6. The FSA that models the preprohibition of property p3 before transformation
D. Each edge is labeled with a set of tuples (T, x) : w where T is the obfuscation trans-
formation to run on application object x and w is the weight of tuple (see Section 3.2).
For each node the weights of the outgoing edges sum to 1, which allows the FSA model
to be used as a probabilistic FSA.

Consider again the running example from Figure 2 and the FSA model shown
in Figure 6. The weights are shown as they would be computed before the first
iteration of the loop. We assume that the obfuscation level of all objects is 1 and
that performance importance is 0. On the first iteration we randomly choose to
move from state 1 (the start state) to state 3 by running algorithm C on class c2.
This will cause c2 to be obfuscated, lowering its remaining ObfLevel(c2). During
the next iteration any edge with c2 as its target will have a lower weight, lowering
its probability to be obfuscated again. Note that moving to state 3 eliminates
the possibility of ever running D on c2. This is because algorithm D preprohibits
any algorithm with property p3, such as C.

4.1 Implementation

The probabilistic FSA constructed in Section 3 provides a clean model for the
dependencies between transformations. It has also allowed us to construct the
simple random walk OE algorithm above. However, a straight-forward imple-
mentation of these ideas turns out to be impractical. The reason is that for sets
of transformations with very few dependencies the size of the FSA grows ex-
ponentially. The solution to this problem is to lazily build and walk the FSA
concurrently.

In our implementation, the metric set M used for Potency(T ) is computed
based on a suite of standard software complexity metrics [8], including the stan-
dard ones proposed by McCabe, Halstead, Chidamber, Harrison, Munson, and
Henry.

To compute Degradation(T ) we use a large suite of standard Java benchmarks
including SPEC JVM98 (www.specbench.org/osg/jvm98) and the Ashes test
suite (www.sable.mcgill.ca/ashes).

www.specbench.org/osg/jvm98
www.sable.mcgill.ca/ashes


The Obfuscation Executive 437

ran

set

nfa

ran

set

nfa

ran

set

nfa

ran

set

nfa

ran

set

nfa

ran

set

nfa

ran

set

nfa

ran

set

nfa

0
50

100
150
200
250

%
 s

pe
ed

 in
cr

ea
se

48

489

78 64
1 5 4

5747

259

22

123

13 10 4 826

210 222
693

7 16 2 23

ran

set

nfa

ran

set

nfa

ran

set

nfa

ran

set

nfa

ran

set

nfa

ran

set

nfa

ran

set

nfa

ran

set

nfa

0

20

40

60

%
 s

iz
e 

ch
an

ge

19

0

89
52

0 2 0

29

11
0

9 5 0 0 0
7

138

0

37
25

1 0 0

23

ran

set

nfa

ran

set

nfa

ran

set

nfa

ran

set

nfa

ran

set

nfa

ran

set

nfa

ran

set

nfa

ran

set

nfa

0
20
40
60
80

%
 m

et
ri

cs
 c

ha
ng

e

check compress jess raytrace db mpgaudio mtrt jack

4

57

1

24 22
12 17 20

28
38

0 0

20

0
18

0

77 80 

1 1

39

0

30

0

Fig. 7. Results from implemented obfuscation loops on SpecJVM.

Our current implementation supports three OEs: a simplistic set-based model
(described in Section 4.2 below), the complete FSA-based model, and the lazy
FSA model. All are on-line algorithms. We are currently exploring an off-line OE
which uses the probabilistic FSA to compute an “optimal” obfuscation sequence
ahead of time.

4.2 Evaluation

To evaluate the FSA-based OE algorithm we compare it to two simpler OE al-
gorithms. Each algorithm was run on SpecJVM benchmarks with the desired
obfuscation level for each object maximized and no user input about application
hotspots. Figure 7 shows the result of running the three OEs. For each bench-
mark we show the change in code size, execution time, and software complexity
metrics.

Random Select OE. The first OE algorithm, Random, does not split the pro-
gram into obfuscation objects but instead applies obfuscating transformations to
the entire program with each pass. Random applies a few heuristics to manage
transformation dependencies, specifically enforcing the prerequisite, preprohi-
bition, and postprohibition rules, but makes no effort to ensure postrequisites
can be fulfilled. After determining which transformations cannot be applied to
the program, a transformation is chosen at random from the remaining candi-
dates. If the executive detects that the program has been transformed into a
corrupt state, it simply halts. After each obfuscation, it computes the change in
complexity metrics and halts when the desired amount of obfuscation has been
applied.

The Random implementation fails to find an appropriate cost-benefit trade-
off for obfuscation, notably in check, compress, and jess where the change in



438 K. Heffner and C. Collberg

metrics is low in comparison to the FSA for a large trade-off in size and speed. It
is important to note that the random implementation applies each obfuscation
to the entire program. The results of the Random OE shows that simply running
all of the obfuscations on the program randomly does not produce an acceptable
amount of obfuscation; there is a need for an intelligent OE.

Set-Based OE. The second OE algorithm implements a set-based model. In
this algorithm, each application object is associated with a set of obfuscation
candidates, transformations that are allowed to be run on that object. In each
iteration the loop uses a set of heuristics to trim the candidate set to remove
algorithms that have been disqualified by running the previous obfuscation. The
target application object is chosen based on the desired obfuscation level for each
object and the amount of obfuscation already applied to the object. Another set
of heuristics is used to extract a subset of obfuscations that can be run and
in most cases will not lead to a corrupted state where required dependencies
cannot be fulfilled. A candidate is then chosen at random from this subset.
The set heuristics fail to detect cases such as two obfuscating transformations
conflicting with each other, yielding only the empty-string as a valid obfuscation
sequence. The set-based model halts when each application object reaches the
desired obfuscation level.

The set-based model fails to impact the complexity metrics over the entire
program, while still incurring the cost of speed and size for the attempted obfus-
cations. Presumably, this is due to the fact that the set-based implementation
chooses the next obfuscation target in isolation to the entire application, without
considering which (transformation, object) pair will yield the most obfuscation
overall.

FSA-Based OE. As expected, the FSA produces a large increase in software
complexity, at the cost of program size and performance. The lack of user input
about hotspots is most evident in the cases of extreme performance hit, like
raytrace. It would also be useful to re-calculate profiling data between each
iteration of the obfuscation loop, with the obvious performance implications.

Overall, the numbers show that there is much to be gained over random OEs.
We see that the FSA-based model had the largest average change to engineering
metrics at 28.5% (compared to 19.6% and 13% for random and set) however at
the cost of a larger speed penalty (50% speed increase compared to an increase for
random and set of 93% and 60%). The important thing to note is that the other
two models show a large downgrade to the software (random has an average size
increase of 24%, very close to the FSA-based change of 27%) without affecting
the metrics by the same degree as the FSA-based OE (the set based model
had an average speed increase of 60% with only an average change in metrics of
13%). More analysis of individual obfuscations and their effect on speed, size, and
complexity, using complexity measures to drive the direction of obfuscation, and
integrating knowledge of the program designer will lead to a more intelligent OE.



The Obfuscation Executive 439

The FSA-based model is superior to the other approaches. It elegantly han-
dles the obfuscation dependencies, without the use of conservative restrictions
to guarantee that the loop will not go into a corrupted state. The FSA-based
model can yield several algorithms using different analyses, whereas the set-
based approach is tied to the trimming algorithm and can only be adjusted
in the way that the obfuscation target and candidate are chosen. In addition,
modeling obfuscation sequences as weighted members of a regular language pro-
vides a straightforward solution for deriving a family of effective transformation
sequences for use in artificial diversity.

5 Discussion and Summary

To the best of our knowledge, Collberg et al. [5] is the first description of an
OE. This algorithm does not take into account restrictions on transformation
ordering. Wroblewski [12] describes an OE for x86 machine code. This OE applies
obfuscations in a single pass over the program using a hardcoded sequence of
transformations. Lacey et al. [7] presents an algorithm which decides whether
applying one optimizing transformation to a piece of code will prevent another
one from being applied.

There are few theoretical results related to obfuscation. Barak et al. [2]
shows that there exist programs that cannot be obfuscated. Appel [1] shows
deobfuscation to be NP-easy. The proof idea is based on a simple algorithm
which nondeterministically guesses the original program S and obfuscation key
K. The obfuscating transformation is then run over S and K, verifying that the
result is the obfuscated program. To use this algorithm to defeat our random
walk obfuscation loop, K must include the seed to our random number generator.
However, Appel’s algorithm is only valid for obfuscating transformations that
are injective; transformations such as name obfuscation or instruction reordering
cannot be reversed using Appel’s method.

Determining the order in which to run obfuscation and watermarking algo-
rithms is similar to the phase ordering problem for optimizations in compilers.
In the case of optimizers, the phases consist of code analyses and optimizing
transformations. While most compilers hardwire the order of the optimizations,
some work [11,10] has been done on automated phase selection and ordering.

The widely differing uses of software obfuscation have led us to the very
general probabilistic FSA model of Section 3. The model encodes all valid ob-
fuscation sequences as well as the goodness of any particular sequence. Two
on-line OE algorithms have been implemented that makes use of this model.
These algorithms compare favorably to an algorithm based on a simplistic
set-based OE model. The SandMark framework can be downloaded from
http://sandmark.cs.arizona.edu. SandMark consists of 130,000 lines of
Java, and includes 39 obfuscation, 17 watermarking, 3 OE algorithms, and sev-
eral tools for automatically and manually analyzing and attacking software pro-
tection algorithms.

http://sandmark.cs.arizona.edu


440 K. Heffner and C. Collberg

References

1. A. Appel. Deobfuscation is in np.
www.cs.princeton.edu/˜appel/papers/deobfus.pdf.

2. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and
K. Yang. On the (im)possibility of software obfuscation. In Crypto01, pages 1–18,
2001. LNCS 2139.

3. C. Collberg, G. Myles, and A. Huntwork. Sandmark - a tool for software protection
research. IEEE Security and Privacy, 1(4):40–49, 2003.

4. C. Collberg and C. Thomborson. Software watermarking: Models and dynamic
embeddings. In POPL’99, San Antonio, TX, Jan. 1999.

5. C. Collberg, C. Thomborson, and D. Low. A taxonomy of obfuscating transfor-
mations. Technical Report 148, Department of Computer Science, University of
Auckland, July 1997.

6. C. Collberg, C. Thomborson, and D. Low. Manufacturing cheap, resilient, and
stealthy opaque constructs. In POPL’98, San Diego, CA, Jan. 1998.

7. D. Lacey and O. de Moor. Detecting disabling interference between program trans-
formations. citeseer.nj.nec.com/464977.html.

8. S. Purao and V. Vaishnavi. Product metrics for object-oriented systems. ACM
Comput. Surv., 35(2):191–221, 2003.

9. H. P. V. Vliet. Crema — The Java obfuscator.
web.inter.nl.net/users/H.P.van.Vliet/crema.html, Jan. 1996.

10. D. Whitfield and M. L. Soffa. An approach to ordering optimizing transformations.
In PPOPP’90, pages 137–146, 1990.

11. D. Whitfield and M. L. Soffa. Automatic generation of global optimizers. In
PLDI’91, pages 120–129, 1991.

12. G. Wroblewski. A General Method of Program Code Obfuscation. PhD thesis,
Wroclaw University, 2002.

www.cs.princeton.edu/~appel/papers/deobfus.pdf
citeseer.nj.nec.com/464977.html
web.inter.nl.net/users/H.P.van.Vliet/crema.html

	Introduction
	The Obfuscation Loop
	Transformation Dependencies

	Modeling Dependencies
	Building the FSA
	Building the Probabilistic FSA
	Computing Edge Weights

	Algorithms
	Implementation
	Evaluation

	Discussion and Summary

