
Specifying Imperative Data Obfuscations

Stephen Drape, Clark Thomborson, and Anirban Majumdar

Department of Computer Science,
The University of Auckland, New Zealand

{stephen, cthombor, anirban}@cs.auckland.ac.nz

Abstract. An obfuscation aims to transform a program, without affect-
ing the functionality, so that some secret information within the program
can be hidden for as long as possible from an adversary. Proving that an
obfuscating transform is correct (i.e. it preserves functionality) is con-
sidered to be a challenging task.

In this paper we show how data refinement can be used to specify im-
perative data obfuscations. An advantage of this approach is that we can
establish a framework in which we can prove the correctness of our obfus-
cations. We demonstrate our framework by considering some examples
from obfuscation literature. We show how to specify these obfuscations,
prove that they are correct and produce generalisations.

Keywords: Data Obfuscation, Refinement, Specification, Correctness.

1 Introduction

Skype’s internet telephony client [2], SDC Java DRM (according to [11]), and
most software license-control systems rely heavily on obfuscation for their se-
curity. After the landmark proof of Barak et al. [1], there seems little hope of
designing a perfectly-secure software black-box, for any broad class of programs.
To date, no one has devised an alternative to Barak’s model, in which we would
be able to derive proofs of security for systems of practical interest. These the-
oretical difficulties do not lessen practical interest in obfuscation, nor should it
prevent us from placing appropriate levels of reliance on obfuscated systems in
cases where the alternative of a hardware black-box is infeasible or uneconomic.

In this paper we define obfuscation as a heuristic method whose objective is
to transform a program, without affecting relevant aspects of its functionality,
in such a way that some secret information in the program can be preserved as
long as possible from some set of adversaries. The second clause in our objective
implies that theoretical study of the effectiveness of an obfuscation will be impos-
sible until we have a validated, and theoretically-tractable, model of adversarial
attack. The first clause is, by contrast, an appropriate domain for theoretical
study. We expect our compilers to accurately preserve program semantics when
they transform our source codes into object codes. We have a similar expectation
of obfuscating compilers and object-code obfuscators. Theoretical study of the
correctness of obfuscating systems is as yet in its infancy. In this paper we de-
scribe a promising approach for specifying obfuscating transforms for imperative

J. Garay et al. (Eds.): ISC 2007, LNCS 4779, pp. 299–314, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

300 S. Drape, C. Thomborson, and A. Majumdar

languages. Our approach allows us to establish a framework for the proving the
correctness of data obfuscations which we illustrate by constructing correctness
proofs for some examples from [3] and [8] which were stated without proof.

In [7] obfuscation is considered to be data refinement [6] and obfuscations for
abstract data-types were developed using a functional language (Haskell [10]).
In this paper we extend the data refinement approach to imperative data obfus-
cations. We will consider programs consisting of assignments, conditionals and
loops and we model these statements as functions that change the state. Thus
we will be able to specify data obfuscations as functional refinements. As a con-
sequence, we find that not only can we prove the correctness of all our data
obfuscations but we can also specify more general obfuscations and study the
effects of composing different obfuscating transforms. Thus our approach may
someday be used as a method for generating obfuscated programs.

As stated earlier an obfuscation should preserve some secret information but
what do we mean by this? In [7] a function (operation) was said to be obfuscated
if it is harder to prove properties (i.e. assertions) about the function. Thus, in
that case, the goal of obfuscation was to keep a set of assertions secret. It is
beyond the scope of this paper to develop this notion for imperative programs
— however we would expect that it is harder to prove assertions about a data
obfuscated program if, for instance, it has more variables (that are not just
dummy or temporary variables) or that the expressions that are used to compute
values of variables are more complicated.

2 Creating a Specification Framework

In this section we show how to specify imperative data obfuscations as data
refinements by modelling imperative statements as functions on the state.

2.1 Modelling Statements as Functions

We define a statement to be a function on states: Statement :: State → State
where a state is defined to be a set of mappings from variables to values (or
expressions computing values). We assume that the variables are integer val-
ued and any expressions consist of arbitrary-precision arithmetic operators. We
concentrate on code fragments with no methods, exceptions or pointers.

Suppose that we have a set of states S. For some initial state σ0 ∈ S and
some statement T , the effect of statement T on σ0 is to produce a new state
σ1 ∈ S such that σ1 = T (σ0). Suppose that we have a sequential composition (;)
of statements, which we will call a block, B = T1; T2; . . . ; Tn. If the initial state
is σ0 then the final state σn is given by

σn = B(σ0) = Tn (. . . T2 (T1 (σ0)) . . .)

For our simple language, we consider the following statement types: skip, assign-
ments (var := expr), conditionals (if pred then statements else statements)
and loops (while pred do statements).

Specifying Imperative Data Obfuscations 301

The statement skip does not change the state and so if S ≡ skip then S(σ0) =
σ0. For an assignment A of the form A ≡ x := e, if the initial state contains the
mapping x �→ x0 then the state after the assignment will have a mapping x �→ e.
Note that if the expression e is a function of x, say f(x), then the mapping
x �→ x0 will be replaced by the mapping x �→ f(x0). As an alternative, if x �→ x0
is the initial mapping for x then we can write

A(σ0) = σ0 ⊕ {x �→ e[x0/x]}

using functional overriding (⊕) and substitution (/).
A conditional statement C has the form C ≡ if p then T else E where p is

a predicate with type p :: State → B and T and E are blocks. Then for some
initial state σ0 we have that

C(σ0) =
{

T (σ0) if p(σ0)
E(σ0) otherwise

A loop statement L has the form L ≡ while p do T where p is a predicate
and T is a block. Then for some initial state σ0 we have that

L(σ0) = T i(σ0) where i = min{i :: N | p (T i(σ0)) = False}

Note that this minimum does not exist if the loop fails to terminate.

2.2 Using Refinement

The obfuscations that we will consider in this paper are data obfuscations and we
will suppose that such an obfuscation will act on a state σ to produce a new state
O(σ). Thus we can consider the set of states S to be obfuscated to produce a
new set of states O(S). To specify a data obfuscation O we will supply a function
cf :: State → State which we call the conversion function which satisfies

cf(σ) = σ′ ⇒ σ ∈ S ∧ σ′ ∈ O(S)

Note that the type of the conversion function is the same as the type of a
statement and so cf usually takes the form of an assignment.

For a (functional) refinement we require an abstraction function af with type
af :: State → State which maps a state from O(S) to a state from S and is
a post sequential inverse for cf (i.e. cf ; af ≡ skip). As well as an abstraction
function, for refinement, we need an invariant I on the obfuscated state such
that for states σ ∈ S and O(σ) ∈ O(S)

σ � O(σ) ⇔ (σ = af(O(σ))) ∧ I(O(σ)) (1)

Note that for most of our transformations unless otherwise stated I ≡ True.
The expression “σ � O(σ)” means that the state σ is obfuscated (refined) into
O(σ). Using the conversion function we have that cf(σ) = O(σ) ⇒ σ � O(σ).

302 S. Drape, C. Thomborson, and A. Majumdar

Suppose that we have a block B and we want to obfuscate it using data
refinement to obtain a block O(B) which preserves the correctness of B. We say
that O(B) is correct (with respect to B) under the obfuscation O if it satisfies

(∀σ ∈ S) • σ � O(σ) ⇒ B(σ) � O(B)(O(σ)) (2)

Using Equation (1) we obtain the following equation:

af ; B ≡ O(B); af (3)

By writing the abstraction function as a statement we can construct two blocks
af ; B and O(B); af and proving the equivalence of these blocks establishes that
O(B) is correct.

Since cf ; af ≡ skip an alternative correctness equation can be obtained by
pre-composing Equation (3) by cf :

B ≡ cf ; O(B); af (4)

If we also have that af ; cf ≡ skip then we can post compose Equation (3) by
cf to obtain

O(B) ≡ af ; B; cf (5)

In Appendix A we discuss in detail how to use these equations to construct
proofs of correctness for imperative obfuscations.

2.3 Obfuscating Statements

Suppose that we have a data obfuscation that changes a variable x using a
conversion function cf and abstraction function af satisfying cf ; af ≡ skip.
This means that af and cf are statements of the form

af ≡ x := G(x) cf ≡ x := F (x)

for some functions F and G.
Suppose we have an obfuscation for x (with cf and af defined as above) then

let us consider the statement P1 ≡ x := e where e is an expression that may
contain an occurrence of x. We have that:

O(x := e) ≡ x := F (e′) where e′ = e[G(x)/x] (6)

For example, the expression x := x+1 would be transformed to x := F (G(x)+1).
Note that the expression e[G(x)/x] denotes how a use of x is obfuscated.

Now let us suppose that P2 ≡ if p(x) then T else E for some predicate p
(which depends on a variable x) and blocks T and E. We propose that

O(P2) ≡ if p[G(x)/x] then {af ; T ; cf} else {af ; E; cf}

with af as above. Using Equation (3) we can show that O(P2); af ≡ af ; P2.

Specifying Imperative Data Obfuscations 303

Thus, since cf ; af ≡ skip (and using the definition of O) then

O(if p then T else E) ≡ if O(p) then O(T) else O(E) (7)

Finally, suppose that P3 ≡ while p(x) do S then we propose that

O(P3) ≡ while p[G(x)/x] do {af ; S; cf}

with af as above. For the correctness of O(P3) we need to show that af ; P3 ≡
O(P3); af and so for the LHS of the identity we will need to “move” af . In
executing af ; P3 we will obtain a block of the form af ; Sn where n :: N. Since
cf ; af ≡ skip then

af ; Sn ≡ (af ; S; cf)n; af

To move af through the while loop we need to change the expression for the
guard. When af is before the loop we have an assignment to x and so this
assignment needs to put into the guard and so the guard becomes p[G(x)/x].
Now af ; S; cf is a refinement (obfuscation) of S with respect to af and so the
value of x is obfuscated while the loop is executed — thus the change to the
guard is correct as the predicate p will need the original value of x. Thus, since
cf ; af ≡ skip, we have shown that

af ; while p(x) do S ≡ while p[G(x)/x] do {af ; S; cf}; af (8)

Suppose that we want to obfuscate a sequential composition of blocks. Let B1
and B2 be two blocks of code and by using Equation (3) we can show that

O(B1; B2) ≡ O(B1); O(B2) (9)

So when applying a data obfuscation to a sequence of statements (blocks) we
can obfuscate each statement (block) individually and compose the results.

3 Variable Transformations

We now give some examples of data transformations that can be used to obfus-
cate variables.

3.1 Encoding

In [3] an obfuscation for variables called an encoding is given. A simple example
of an encoding for some variable x is x � α∗x+β where α and β are constants.
For this transformation we have the following refinement functions:

cf ≡ x := α ∗ x + β af ≡ x := (x − β)/α

For exact arithmetic, we have that cf ; af ≡ skip ≡ af ; cf . The conversion and
abstraction functions are of the form of the functions used in Section 2.3 and so
we can use the equations given in that section for transforming statements.

304 S. Drape, C. Thomborson, and A. Majumdar

In [8], the following example was discussed:

P ≡ {i := 1; s := 0; while (i < 15) do {s := s + i; i := i + 1 } }

This example was then converted using the mapping i � 2 ∗ i to give:

O(P) ≡ {i := 2; s := 0; while (i < 30) do {s := s + (i/2); i := i + 2 } }

This transformation was given without a proof of correctness. The refinement
functions for this obfuscation are:

cf ≡ i := 2 ∗ i af ≡ i := i/2

To prove that O(P) is correct we use Equation (3) to show that: af ; P ≡
O(P); af . This proof is given in Appendix A.3.

A more complicated variable transformation for x can be obtained by using
cf ≡ x := α ∗x+β ∗ y where α and β are constants and y is a program variable.

3.2 Variable Splitting

Another variable transformation mentioned in [3] is the concept of variable split-
ting. This is where a variable x (say) is represented by two or more new variables
so that the information contained in x is “split” across these new variables. For
an example transformation, we will split the integer variable x into two new
integers variables a and b such that a = x div 10 and b = x mod 10. We can
write the conversion and abstraction functions as follows:

af ≡ x := 10 ∗ a + b cf ≡ {a := x div 10; b := x mod 10}

For this transformation we have the invariant I ≡ 0 ≤ b ≤ 9. This invariant
ensures that the definition of af is valid and if this invariant holds then cf ; af ≡
skip and af ; cf ≡ skip.

Under this transformation, the assignment x ++ (i.e. x := x + 1) becomes:

a := (10 ∗ a + b + 1) div 10; b := (b + 1) mod 10

Note that ((10 ∗ a) + b + 1) mod 10 ≡ (b + 1) mod 10.
As an alternative, we propose that a correct transformation of S ≡ x ++ is

O(S) ≡ if (b == 9) then {a := a + 1; b := 0} else {b := b + 1}

and this can be proved correct by showing that S ≡ cf ; O(S); af . The advantage
of the latter transformation is that it does not have traces of the abstraction and
conversion functions. The proof is given in Appendix A.4.

4 Array Transformations

Various array transformations are mentioned in [3] such as: Folding (1-D arrays
are transformed into n-D arrays), Flattening (n-D arrays are changed into 1-D
arrays), Splitting (one array is transformed into two or more arrays) and Merging
(two or more arrays are combined into one array).

Specifying Imperative Data Obfuscations 305

4.1 Changing Array Indices

Folding and flattening can be considered to be transformations that change an
array index — how can we specify these transformations? For example, suppose
that we have an array A of size n and an array R of size p×q (where p×q = n).
One way to convert between A and R is to use the transformation A[i] :=
R[i div q, i mod q] which has the inverse R[j, k] := A[j ∗ q + k].

How can we write a conversion function for this kind of transformation? We
need to consider how A[0], A[1], . . . , A[n−1] are all transformed. So we could give
a set of n transformations (one for each element of the array) but in a program
the index for an array is usually a variable (or an expression). Thus we need
to write an expression for A[j], where j ∈ [0..n), which shows how the array is
transformed. Note that this is not a variable transformation of j as j is merely
a dummy variable acting as a placeholder. When using such an expression at a
particular point we need to instantiate j with the expression for the array index.

If we want to transform the array A into the array R using an index change
function f then the conversion and abstraction functions are:

cf ≡ R[f(j)] := A[j] and af ≡ A[j] := R[f(j)]

Suppose that we want to transform the statement A[i] := A[i − 1] + 1. From
Equation (5) we have:

A[j] := R[f(j)]; A[i] := A[i − 1] + 1; R[f(j)] := A[j]

Using the proof techniques discussed in Appendix A we can reduce the set of
statements to:

R[f(i)] := R[f(i − 1)] + 1

4.2 Array Splitting

An array split aims to split an array A (of size n) into two new arrays P (of size
mp) and Q (of size mq). This idea was generalised in [8] as follows. For an array
split which uses two new arrays, we need three functions c (called the choice
function), fp and fq (these functions determine the positions of the elements in
each of the arrays). The types of the functions are as follows:

c :: [0..n) → B fp :: [0..n) → [0..mp) fq :: [0..n) → [0..mq)

The relationship between A and P and Q is given by the following rule:

A[i] =
{

P [fp(i)] if c(i)
Q[fq(i)] otherwise

Note that we can only apply this transformation to statements that use A with
an index. For example, we could not easily transform statements which pass the
array A to other methods.

306 S. Drape, C. Thomborson, and A. Majumdar

In [3], an example array split was given in which one of the new arrays con-
tained the elements of A, in order, which had an even index and the other array
contained the rest of the elements. For this split, we can define

c = (λi.i % 2 == 0) fp = fq = (λi.i/2)

In [7], a program for producing Fibonacci numbers using arrays was obfuscated
using the example array split from [3]. For this obfuscation, the statement

S ≡ A[i] := A[i − 1] + A[i − 2] (10)

was transformed to:

if (i % 2 == 0) then P [i/2] := Q[(i − 1)/2] + P [(i − 2)/2]
else Q[i/2] := P [(i − 1)/2] + Q[(i − 2)/2] (11)

Is this transformation correct? Let us show how to derive a correct obfuscation
for the statement (10) using the generalised array split.

We can write a conversion function for the generalised array split as follows

cf ≡ if (c(j)) then P [fp(j)] := A[j] else Q[fq(j)] := A[j]

and so the abstraction function can be written as

af ≡ if (c(j)) then A[j] := P [fp(j)] else A[j] := Q[fq(j)]

We can show that cf ; af ≡ skip ≡ af ; cf . Note that when we use these functions
we will have to instantiate the index j to a particular value (or expression). To
derive a correct obfuscation for S (in Equation (10)) we can use Equation (5)
to compute af ; S; cf . A sketch of the derivation can be seen in Appendix A.5
which gives the general form for O(S) as:

if (c(i)) then {if (c(i − 1))
then {if (c(i − 2)) then P [fp(i)] := P [fp(i − 1)] + P [fp(i − 2)]

else P [fp(i)] := P [fp(i − 1)] + Q[fq(i − 2)]}
else {if (c(i − 2)) thenP [fp(i)] := Q[fq(i − 1)] + P [fp(i − 2)]

else P [fp(i)] := Q[fq(i − 1)] + Q[fq(i − 2)]}}
else {if (c(i − 1)) then {if (c(i − 2))

then Q[fq(i)] := P [fp(i − 1)] + P [fp(i − 2)]
else Q[fq(i)] := P [fp(i − 1)] + Q[fq(i − 2)]}

else {if (c(i − 2))
thenQ[fq(i)] := Q[fq(i − 1)] + P [fp(i − 2)]
else Q[fq(i)] := Q[fq(i − 1)] + Q[fq(i − 2)]}}

We can simplify the expression for O(S) for this split by removing infeasible
paths. For example, when we have a statement of the form:

if (c(i)) then {if (c(i − 1)) then X else Y }

Specifying Imperative Data Obfuscations 307

then X cannot be reached since c = (λi.i % 2 == 0) and when c(i) is True then
c(i− 1) must be False. By removing all the infeasible paths and substituting the
functions c, fp and fq we obtain

if (i % 2 == 0) then P [i/2] := Q[(i − 1)/2] + P [(i − 2)/2]
else Q[i/2] := P [(i − 1)/2] + Q[(i − 2)/2]

Thus the transformation given in [7] was correct.

5 Applying Data Obfuscations

In the previous sections we have given examples of data obfuscations and in this
section we demonstrate some of the choices that we can make when applying
our data obfuscations.

5.1 Program Blocks

If we have a piece of code P ≡ B1; B2 (where B1 and B2 are blocks) and an
obfuscation O with conversion function cf and abstraction function af that
satisfy cf ; af ≡ skip ≡ af ; cf . Using Equations (5) and (9) we have two ways
to obfuscate P . Either we can obfuscate B1 and B2 separately and compose the
results or we can obfuscate both blocks together i.e.

O(P) ≡ {af ; B1; cf}; {af ; B2; cf} or O(P) ≡ af ; {B1; B2}; cf

The two obfuscations that we obtain are equivalent but they may look different.
In particular the second derivation may reduce the number of assignments.

For example, suppose that P ≡ {x := x+1; B; x := 3∗x} where B is a block
of code in which x does not occur and cf ≡ x := x + 2 and af ≡ x := x − 2. If
we obfuscate the two assignments separately then we have that

O(P) ≡ {x := x + 1; B; x := 3 ∗ x − 4}

However computing af ; P ; cf will give us the following set of simultaneous
equations (see Appendix A for more details how to compute this set):

x1 = x0 − 2; x2 = x1 + 1; B; x3 = 3 ∗ x2; x4 = x3 + 2 (12)

Reducing this set of equations (with x not occurring in B) gives us:

B; x4 = 3 ∗ (x0 − 1) + 2

Thus O(P) ≡ {B; x := 3 ∗ x − 1}.
The two derivations produce equivalent programs but the second program only

has one assignment to x. From an obfuscation point of view, the first program
would appear to be better as it has more assignments to x and so it is (slightly)
harder to work out the value of x at the end of O(P).

308 S. Drape, C. Thomborson, and A. Majumdar

Instead of completely reducing a set of simultaneous equations we can partially
reduce them. For instance for the set of equations in (12), we can substitute x1
and x3 to obtain:

O(P) ≡ {x := x − 1; B; x := 3 ∗ x + 2}

Thus we have some flexibility when deriving obfuscation for a sequence of state-
ments using a particular conversion function.

5.2 Combining Transformations

Since we are considering our obfuscations as functions we may naturally want to
compose obfuscations. For some variable x suppose that we have two obfusca-
tions O1 and O2 with conversion functions cf1 ≡ x := f1(x) and cf2 ≡ x := f2(x)
and corresponding abstraction functions af1 ≡ x := g1(x) and af2 ≡ x := g2(x).
To obfuscate a statement S by applying O1 followed by O2 we have:

O2(O1(S)) ≡ af2; af1; S; cf1; cf2

This is equivalent to having a single obfuscation O1;2 with conversion function
cf1;2 ≡ x := (f2 · f1)(x) and abstraction function af1;2 ≡ x := (g1 · g2)(x). We
can define O1;2 ≡ O2 · O1.

For example, we can combine a variable transformation with an array obfus-
cation given in Section 4.1. For instance if we had the functions f :: Z → Z

and p :: [0..n) → [0..n) (with appropriate inverses) then a possible conversion
function is cf ≡ A[i] := f(A[p(i)]) in which f acts as a variable transformation
and p is an array index permutation.

6 Conclusion

In this paper we have extended work from [7] and considered imperative data
obfuscations as data refinements. By using functional refinement and modelling
statements as functions on the state we were able to prove the correctness of
imperative data obfuscations, including some of the data obfuscations from [3,8]
which were stated without proof. For data refinement we give functions (the
conversion and abstraction functions) describing the relationship between the
before and after states of a obfuscated variable. Using these functions we can
prove that a sequence of statements has been correctly obfuscated. Initially we
considered simple variable obfuscations and then we showed how to extend our
work to deal with more complicated obfuscations such as array transformations.
In Section 5 we saw that we often have a choice about how we can apply data
obfuscations such as using single statements vs. blocks of statements or reducing
a set of simultaneous equations differently. Thus, by applying a data obfuscation
to the same piece of code in different ways, we can produce different obfuscations.

Our purpose in this contribution has not been to propose new obfuscating
transforms but to show a way to specify and prove existing transforms. This, we

Specifying Imperative Data Obfuscations 309

believe, is an important step towards ensuring that the obfuscated program and
its unobfuscated counterpart are functionally equivalent (same I/O behaviour)
after the obfuscating transforms are applied. The simple program constructs
that we have targetted form the basis for all imperative languages and therefore
our method is generic enough to be applicable to a wider class of imperative
languages (we chose not to target language-specific constructs). An application
of using our framework for specifying and proving correctness of obfuscations can
been seen in design of slicing obfuscations [9], which are used to impede static
program analysis with a slicer (which can be used as a tool by an adversary to
reverse engineer programs [3]).

One drawback with our method for producing data obfuscations is that the
conversion and abstraction function can remain visible in the code. To prevent
this we can try to combine these functions with surrounding statements. Some-
times our obfuscations may need extra assignments, temporary variables and
extra computations. Thus we may have a trade-off between the efficiency and
the complexity of our obfuscations. We should ensure that our obfuscations do
not adversely affect the efficiency of our programs and so we may need to restrict
how complicated we make our obfuscations. Ways to do this has been shown in
[9]. Also, it would seem that an optimizing compiler will effectively strip out the
conversion and abstraction functions in the code if they are trivially analysable
by static analysis. We argue that this is not an immediate concern to us since
commercially distributable software will be obfuscated after the optimization
phase of the developer’s compiler.

We made various restrictions and an area for future work would be to see how
these restrictions could be removed. We used only arbitrary-precision arithmetic
but if we relaxed this restriction we may not be able to use obfuscations such
as x � α ∗ x + β since this may cause x to overflow and we may not be able
to construct an inverse (as it requires division). All the obfuscations that we
have considered have been data obfuscations but another class of obfuscations
is control flow obfuscations (for example, using predicates [4] and control flow
flattening [12]). Can control flow obfuscations be specified using refinement?

References

1. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Proceedings of the
21st Annual International Cryptology Conference on Advances in Cryptology, pp.
1–18. Springer, Heidelberg (2001)

2. Biondi, P., Desclaux, F.: Silver needle in the skype. Presentation at BlackHat
Europe, March, Slides available from (2006), URL http://www.blackhat.com/
html/bh-media-archives/bh-archives-2006.html

3. Collberg, C., Thomborson, C., Low, C.: A taxonomy of obfuscating transforma-
tions. Technical Report 148, Department of Computer Science, University of Auck-
land (July 1997)

4. Collberg, C., Thomborson, C., Low, D.: Manufacturing cheap, resilient and stealthy
opaque constructs. In: ACM SIGACT Symposium on Principles of Programming
Languages, pp. 184–196. ACM Press, New York (1998)

http://www.blackhat.com/html/bh-media-archives/bh-archives-2006.html
http://www.blackhat.com/html/bh-media-archives/bh-archives-2006.html

310 S. Drape, C. Thomborson, and A. Majumdar

5. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph. ACM
Transactions on Programming Languages and Systems 13(4), 451–490 (1991)

6. de Roever, W.-P., Engelhardt, K.: Data Refinement: Model-Oriented Proof Meth-
ods and their Comparison. Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, Cambridge (1998)

7. Drape, S.: Obfuscation of Abstract Data-Types. DPhil thesis, Oxford University
Computing Laboratory (2004)

8. Drape, S., de Moor, O., Sittampalam, G.: Transforming the .NET Intermediate
Language using Path Logic Programming. In: Principles and Practice of Declara-
tive Programming, pp. 133–144. ACM Press, New York (2002)

9. Drape, S., Majumdar, A.: Design and Evaluation of Slicing Obfuscations. Technical
Report 311, Department of Computer Science, The University of Auckland, New
Zealand (June 2007)

10. Peyton Jones, S.: The Haskell 98 language and libraries: the revised report. Journal
of Functional Programming 13(1) (2003)

11. Santos, N., Pereira, P., eSilva, L.M.: A Generic DRM Framework for J2ME Appli-
cations. In: Pitkänen, O. (ed.) First International Mobile IPR Workshop: Rights
Management of Information (MobileIPR), August 2003. Helsinki Institute for In-
formation Tecnhology, pp. 53–66 (2003)

12. Wang, C., Hill, J., Knight, J.C., Davidson, J.W.: Protection of software-based sur-
vivability mechanisms. In: DSN ’01: Proceedings of the 2001 International Confer-
ence on Dependable Systems and Networks (formerly: FTCS), pp. 193–202. IEEE
Computer Society Press, Los Alamitos (2001)

A Proofs of Correctness

In the main part of the paper we gave a way of specifying imperative data ob-
fuscations. We now discuss how to use this specification to construct correctness
proofs for some of our example obfuscations.

A.1 Simultaneous Equations

Suppose that we obfuscate S to obtain O(S) where af and cf are the abstrac-
tion and conversion functions for the obfuscation. We can use Equation (4) to
prove that O(S) is a correct obfuscation of S by showing that the sequence of
statements cf ; O(S); af is equivalent to S. Suppose that we have an obfuscation
that transforms a variable x (say) then this proof could take the form:

x := f(x); x := u(x); x := g(x)

where f , g and u are functions. To simplify this expression we can substitute
values of x in sequential order by rewriting the sequence of statements as a set of
simultaneous equations. Each definition of a variable will have a different name
which is usually the name of the variable with a subscript (e.g. x2) and we will
use the convention that the initial value of a variable has a subscript 0. All the
uses of a variable are renamed to correspond to the appropriate assignment.

Specifying Imperative Data Obfuscations 311

The sequence above can be rewritten as the following set of equations:

x1 = f(x0); x2 = u(x1); x3 = g(x2)

To distinguish between programs and sets of equations, whenever we convert to
a set of simultaneous equation we will use the convention that the assignment
symbol := is replaced by equality =. By substituting the values for x1 and x2
we obtain the following:

x1 = f(x0); x2 = u(f(x0)); x3 = g(u(f(x0)))

We can remove the assignments for x1 and x2 as they are now redundant. So now
we have x3 = g(u(f(x0)) which corresponds to the statement x := g(u(f(x))).

This conversion from assignments to simultaneous equations is similar to con-
verting code to SSA (Static Single Assignment) form which is often used in
conjunction with compiler optimisations (for example, [5] gives details about
how to compute SSA form). In SSA form, each definition of a variable is given a
different name and each use is renamed according to the appropriate definition.
When there are different control flow paths, a special statement called a φ (phi)
function is added. However, as we are only aiming to simplify a set of simulta-
neous equations, we will not use the SSA form directly. In particular, our proofs
will not need to use phi functions as we will use the results of Section 2.3 to
enable us to deal with if and while separately and we can obfuscate a sequence
of statements by obfuscating the individual statements. We will only use the
SSA form as a guide to help us to specify a set of simultaneous equations which
we can manipulate and simplify.

A.2 Steps in a Proof

There are four main steps in constructing our proofs of correctness.
Simultaneous Equations. The first step is to convert a sequential program into
a set of simultaneous equations using the SSA form as a guide. This means that
each new definition of a variable has a unique subscript and each use of a variable
should refer to the last instance of the variable.
Substitution. Once we have converted our sequential code to a set of simultaneous
equations then the next phase is to reduce the set of equations by performing
substitutions and in particular we want to hide the occurrence of the conversion
and abstraction functions. However, sometimes problems can arise.

Suppose that we have the following set of simultaneous equations:

y1 = x0 + 1; x1 = x0 + 2; y2 = y1 − 1

Substituting the value for y1 gives

y1 = x0 + 1; x1 = x0 + 2; y2 = x0

We can see that the “last” definition for x is at x1 but the expression for y2
uses an earlier definition of x. Whenever this type of situation occurs then we
cannot immediately convert such sets of equations back to sequential code. The
last step discusses possible solutions for this problem.

312 S. Drape, C. Thomborson, and A. Majumdar

Redundant Definitions. We would like to remove traces of the conversion and
abstraction functions and so the next step after substitution is to remove re-
dundant definitions. A definition xi := e is redundant in a set of simultaneous
equations if no equation uses xi and there exists some definition xj := e′ where
j > i. This last condition ensures that we do not remove the “last” definition
of a variable (and since we convert using a form of SSA we know that the last
definition of a variable will have the largest subscript).

Converting back. Once the set of simultaneous equations has been reduced they
need to be converted to sequential code. As mentioned earlier, sometimes we
cannot immediately convert the set of equations back to sequential code. For
example, suppose that after substitution and refinement we are left with the
following pair of simultaneous equations:

x1 = x0 + 2; y2 = x0

This cannot be converted to:

x := x + 2; y := x

as the final value of y in this sequence is equivalent to x1 not x0 as required.
One solution is to introduce a new variable which holds the value of x0:

t1 = x0; x1 = x0 + 2; y2 = t1

So this can be converted to:

t := x; x := x + 2; y := t

A.3 A Loop Proof

In Section 3.1 a variable encoding was used in a while loop. Here is the proof of
correctness to show that af ; P ≡ O(P); af .

af ; P
≡ {definitions}

af ; i := 1; s := 0; while (i < 15) do {s := s + i; i := i + 1}
≡ {cf ; af ≡ skip}

af ; i := 1; s := 0; cf ; af ; while (i < 15) do {s := s + i; i := i + 1}
≡ {Equations (5) and (6)}

i := 2; s := 0; af ; while (i < 15) do {s := s + i; i := i + 1}
≡ {Equation (8)}

i := 2; s := 0; while ((i/2) < 15) do {af ; s := s + i; i := i + 1; cf}; af

≡ {Equation (6)}
i := 2; s := 0; while ((i/2) < 15) do {s := s + (i/2); i := 2 ∗ ((i/2) + 1)}; af

Specifying Imperative Data Obfuscations 313

≡ {exact arithmetic}
i := 2; s := 0; while (i < 30) do {s := s + i/2; i := i + 2}; af

≡ {definitions}
O(P); af

A.4 Variable Split

In Section 3.2 we give a transformation for the statement S ≡ x + +. We show
that cf ; O(S); af ≡ S and so the transformation is correct.

cf ; O(S); af

≡ {af ; cf ≡ skip}
cf ; if (b == 9) then {af ; cf ; a := a + 1; b := 0; af ; cf}

else {af ; cf ; b := b + 1; af ; cf }; af

≡ {Equation (7)}
cf ; af ; if ((x mod 10) == 9) then {cf ; a := a + 1; b := 0; af}

else {cf ; b := b + 1; af}; cf ; af

≡ {definitions and cf ; af ≡ skip}
if ((x mod 10) == 9)
then {a := x div 10; b := x mod 10; a := a + 1; b := 0; x := 10 ∗ a + b}
else {a := x div 10; b := x mod 10; b := b + 1; x := 10 ∗ a + b}

≡ {simultaneous equations in branches}
if ((x0 mod 10) == 9) then {a1 = x0 div 10; b1 = x0 mod 10; a2 = a1 + 1;

b2 = 0; x1 = 10 ∗ a2 + b2}
else {a3 = x0 div 10; b3 = x0 mod 10; b4 = b3 + 1; x2 = 10 ∗ a3 + b4}

≡ {substitutions}
if ((x0 mod 10) == 9) then {x1 = 10 ∗ (x0 div 10) + 10}

else {x2 = 10 ∗ (x0 div 10) + (x0 mod 10) + 1}
≡ {modular arithmetic}

if ((x0 mod 10) == 9) then {x1 := x0 + 1} else {x2 := x0 + 1}
≡ {convert back to assignments}

if ((x mod 10) == 9) then {x := x + 1} else {x := x + 1}
≡ {identical branches}

x := x + 1

A.5 Array Splitting

We sketch a derivation for the array transformation from Section 4.2 by com-
puting af ; S; cf which, by Equation (5), is equivalent to O(S). Note that for
arrays, when converting to a set of simultaneous equations, we use the normal

314 S. Drape, C. Thomborson, and A. Majumdar

subscripts to denote new assignments on the arrays and the index i but not on
the dummy variable j.

af ; S; cf
≡ {definitions and convert to simultaneous equations}

if (c(j)) then A1[j] = P0[fp(j)] else A1[j] = Q0[fq(j)];
A2[i] = A1[i − 1] + A1[i − 2];
if (c(j)) then P1[fp(j)] = A2[j] else Q1[fq(j)] = A2[j]

≡ {substitute value for A1 with j = i − 1 and then with j = i − 2}
if (c(j)) then A1[j] = P0[fp(j)] else A1[j] = Q0[fq(j)];
if (c(i − 1)) then {if (c(i − 2)) then A2[i] = P0[fp(i − 1)] + P0[fp(i − 2)]

else A2[i] = P0[fp(i − 1)] + Q0[fq(i − 2)]}
else {if (c(i − 2)) . . .}

if (c(j)) then P1[fp(j)] = A2[j] else Q1[fq(j)] = A2[j]
≡ {substitute values in P1 and Q1 with i = j}

. . . if (c(i)) then {if (c(i − 1)) then
{if (c(i − 2)) thenP1[fp(i)] = P0[fp(i − 1)] + P0[fp(i − 2)] else . . .} else {. . .}

else {if (c(i − 1)) then
{if (c(i − 2)) then Q1[fq(i)] = P0[fp(i − 1)] + P0[fp(i − 2)] else . . .}

else{. . .}
≡ {sequential code (removing redundant assignments)}

if (c(i)) then {if (c(i − 1))
then {if (c(i − 2)) then P [fp(i)] := P [fp(i − 1)] + P [fp(i − 2)]

else P [fp(i)] := P [fp(i − 1)] + Q[fq(i − 2)]}
else {if (c(i − 2)) thenP [fp(i)] := Q[fq(i − 1)] + P [fp(i − 2)]

elseP [fp(i)] := Q[fq(i − 1)] + Q[fq(i − 2)]}}
else {if (c(i − 1)) then {if (c(i − 2))

then Q[fq(i)] := P [fp(i − 1)] + P [fp(i − 2)]
else Q[fq(i)] := P [fp(i − 1)] + Q[fq(i − 2)]}

else {if (c(i − 2))
thenQ[fq(i)] := Q[fq(i − 1)] + P [fp(i − 2)]
else Q[fq(i)] := Q[fq(i − 1)] + Q[fq(i − 2)]}}

≡ {Equation (5)}
O(S)

This last expression can often be simplified by removing infeasible paths.

	Specifying Imperative Data Obfuscations
	Introduction
	Creating a Specification Framework
	Modelling Statements as Functions
	Using Refinement
	Obfuscating Statements

	Variable Transformations
	Encoding
	Variable Splitting

	Array Transformations
	Changing Array Indices
	Array Splitting

	Applying Data Obfuscations
	Program Blocks
	Combining Transformations

	Conclusion
	Proofs of Correctness
	Simultaneous Equations
	Steps in a Proof
	A Loop Proof
	Variable Split
	Array Splitting

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

