
Protecting Software Code by Guards�

Hoi Chang and Mikhail J. Atallah

1 CERIAS, Purdue University
1315 Recitation Building, West Lafayette, IN 47907, USA

2 Arxan Technologies, Inc.
3000 Kent Ave., Suite 1D-107, W. Lafayette, IN 47906, USA

{changh,mja}@cerias.purdue.edu

Abstract. Protection of software code against illegitimate modifica-
tions by its users is a pressing issue to many software developers. Many
software-based mechanisms for protecting program code are too weak
(e.g., they have single points of failure) or too expensive to apply (e.g.,
they incur heavy runtime performance penalty to the protected pro-
grams). In this paper, we present and explore a methodology that we
believe can protect program integrity in a more tamper-resilient and flex-
ible manner. Our approach is based on a distributed scheme, in which
protection and tamper-resistance of program code is achieved, not by a
single security module, but by a network of (smaller) security units that
work together in the program. These security units, or guards, can be
programmed to do certain tasks (checksumming the program code is one
example) and a network of them can reinforce the protection of each
other by creating mutual-protection. We have implemented a system for
automating the process of installing guards into Win32 executables1.
It is because our system operates on binaries that we are able to ap-
ply our protection mechanism to EXEs and DLLs. Experimental results
show that memory space and runtime performance impacts incurred by
guards can be kept very low (as explained later in the paper).

1 Introduction

Software cracking is a serious threat to many in the software industry. It is the
problem in which a cracker, having obtained a copy of the software he wants to
attack, succeeds in breaking the protection that comes built into it. Typically,
crackers would create modified versions of the software, or crackz, whose copy
protection or usage control mechanisms have been disabled. Cracked software
can then be illegally redistributed to the public, exacerbating the software piracy
problem. With commerce and distribution of copyrighted multi-media rapidly
moving online, the need for software protection is even more urgent than before:
� Portions of this work were supported by sponsors of CERIAS and the Purdue Trask

fund.
1 A US patent on the technology has been filed by Purdue University and licensed to

Arxan Technologies, Inc.

T. Sander (Ed.): DRM 2001, LNCS 2320, pp. 160–175, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Protecting Software Code by Guards 161

client software code running on untrusted machines has to be secured against
tampering.

What makes software cracking so widespread is in part caused by the simplic-
ity of direct inspection and modification of binary program code with existing
software debugging and editing tools. Here is an example of how a program
requiring online registration can typically be cracked. The program would nor-
mally go through a long sequence of procedures asking for a registration serial
number from its user, and then in a stealthy manner, comparing a function of the
true serial number with the same function of the entered one. After comparing
these two items, however, the program then ends up deciding the authenticity
of the software user with one single instruction, typically a conditional branch
that decides whether the software can henceforth be used. To defeat the entire
registration scheme, one only needs to replace that single instruction in the bi-
nary file with an unconditional jump (that jumps to a desired location), or by a
sequence of smaller no-ops (that do nothing except letting the execution flow to
the desired location naturally). The problem with this protection scheme is that
the branch instruction is a single point of failure. With sophisticated program
debuggers and hex editors (such as SoftICE [8] and HIEW), attackers are able to
trace targeted parts of the program, pinpoint the code they need to compromise,
and finally apply changes to the program files.

Many commercial protection schemes employ what we call monolithic pro-
tection schemes, in which protection is enforced by a single code module in the
program but which is loosely attached to the program and thus can be disen-
gaged easily (using methods similar to the above example).

How can software be perfectly secured against cracking? This looks like an
impossible task if one interprets “cracking” as “eventually cracking”, i.e., after a
long time. The fact that crackers have huge cracking resources makes successful
attacks possible after a long enough time (because they could rewrite the software
from scratch after sufficient analyses of the code). However, it is possible to “raise
the bar” for attackers and make it sufficiently secure. Because many software
developers only hope for a minimum length of time during which they could sell
a large enough number of a newly released product, securing software code until
the end of the period is cost-effective.

Protection mechanisms that can effectively protect software running in un-
trusted environments should have the following properties:

– Resilience: The protection has no single points of failure and is hard to
disable.

– Self-defense: Able to detect and take actions against tampering (i.e., code
modification).

– Configurability: Protection is customizable and can be made as strong as
one needs.

– White-box security: Because any scheme for protection is likely to become
publicly known over time, its strength should not be based on its secrecy but
rather on the knowledge of a secret key used at protection-install time (but
not stored anywhere within the protected program).

162 Hoi Chang and Mikhail J. Atallah

This paper describes a security framework and system (having the above de-
sirable properties) for protecting program code against tampering. We extend
the traditional ideas of having code check and modify itself to a general set-
ting, in which a program is protected by a multitude of such functional units
(called guards) integrated with the program. To defend themselves against at-
tacks, guards form a network by which they protect each other in an interlocking
manner. The network of guards is harder to defeat because security is shared
among all the guards, and each of them is potentially guarded by other guards.
The fact that there are many ways to form a guards network, makes it hard for
attackers to predict its form. Furthermore, more guards can always be added to
the program if a greater level of protection is desired.

We believe that this guarding framework can advance the state of software
protection by making protection schemes derived from it more sophisticated
than existing schemes, and easier to apply. Using our system, we show that
protecting programs using this guarding framework is possible. Also, we show
that the guarding process can be automated (so that it will become unnecessary
for one to go through a laborious and error-prone process of manually guarding
the program code).

The paper is organized as follows. Section 2 provides some related work in
this field. In section 3, we describe the protection framework and discuss its
security issues. In section 4, we introduce the system we built. This is then
followed by experimental results in section 5. The final section concludes and
describes enhancements to the system that are currently being implemented.

2 Related Work

The protection mechanisms for software protection involve two main approaches
to the problem: hardware-based protection (which relies on secured hardware
devices for protection), and software-based protection (which only relies on soft-
ware mechanisms for protection).

One hardware solution is the use of secure coprocessors (or processors)
[18,19,15]. In secure coprocessors, programs or portions of them can be run
encrypted, so their code is never revealed in untrusted memory. Thus secure
coprocessors can provide the programs isolated execution environments that are
difficult to tamper with. Although tamper-resistant, this approach requires the
use of special hardware for executing programs, which may not be cost-effective
for widespread use (say, in typical home-user environments).

Using smart cards for software protection is another solution [2,10]. Since
smart cards contain both secure storage and processing power (although some
only provide secure storage), security-sensitive computations and data can be
processed and stored inside the cards. A major difference between smart cards
and secure coprocessors is that the former are resource-tight (i.e., limited storage
space and processing power), and can be used to protect only small fragments
of code and data.

Protecting Software Code by Guards 163

Dongles have long been in use by the industry for software protection. They
are the hardware keys plugged in the computer, without which the programs
that came with the dongles cannot execute. The major drawback of dongles is
that each dongle-enabled software usually requires a different dongle. Moreover,
the protection can often be bypassed because the communication traffic between
dongles and their programs can be intercepted and modified.

One software-based approach for protection is code obfuscation, which
“scrambles up” program code so that it results in some executable code that
has the same functionality as the original but is difficult to understand and
analyze [11,5,6,4,12,13,7,17]. This form of protection is more flexible than the
hardware-based one because it does not require special execution environments.
But exactly how secure it is is still a matter of debate [3].

There are other software-based approaches to the problem as well. These
include the use of self-modifying code [9] (code that generates other code at
run-time) and code encryption and decryption [14] (partially encrypted code
self-decrypting at run-time). A hybrid approach of the above has been proposed
by Aucsmith [1], which involves the use of cryptographic means to decrypt and
encrypt a window of security-sensitive program instructions before and after each
execution round of those instructions. One of the problems with this approach
is that it does not scale well as the size of the above-mentioned “window” gets
large (because of the time taken by encryption and decryption).

3 The Guarding Framework

In this section, we describe our guarding framework and explore some of its
security issues on an informal basis.

3.1 Guards

In our guarding framework, protection is provided by a network of execution
units (or guards) embedded within a program. Each guard is a piece of code
responsible for performing certain security-related actions during program exe-
cution. Guards can be programmed to do any computations, and the following
are two useful ones:

– Checksum code 2: Checksum another piece of program code at runtime
and verify its integrity (i.e., check if it has been tampered with). If the
guarded code is found altered, the guard will trigger whichever sequence
of actions is desired for the situation, ranging from the mildest of silently
logging the detection event, to the extreme of making the software unusable
(e.g., by halting its execution, or better yet, causing an eventual crash that
will be hard to trace back to the guard). If no code changes are detected, the
program execution proceeds normally. Programs guarded by checksumming
guards are made, in some sense, “self-aware” of their own integrity.

2 In this paper, “code” refers to both the runtime data and executable code of a
program.

164 Hoi Chang and Mikhail J. Atallah

– Repair code: Restore a piece of damaged code to its original form before it is
executed or used (as data). One way to achieve code repairing is to overwrite
tampered code with a clean copy of it stored elsewhere. This repairing action
effectively eliminates the changes done to the code by an attacker, and allows
the program to run as if unmodified. Repairing guards provide a program
with “self-healing” capabilities.

3.2 Guards Network

A group of guards can work together and implement a sophisticated protection
scheme that is more resilient against attacks than a single guard. For example, if
a program has multiple pieces of code whose integrity needs to be protected, then
it can deploy multiple checksumming guards for protecting the different pieces.
Besides sharing the load of protection, guards have the flexibility to protect
one another. Figure 1 shows a possible guarding scenario in which two security-
sensitive regions of a program, C1 and C2, are protected by both checksumming
and repairing guards. Figure (a) shows the memory image of the guarded pro-
gram, in which C1 and C2 are guarded by guards G1, . . . , G5 in an interlocking
manner. The corresponding guarding relationships can be more clearly depicted
by a guard graph in Figure 1 (b), where C1 is repaired by G3 before C1 exe-
cutes, and the repaired C1 will subsequently be also checksummed by G1 and G5

(but G2 will repair G5 before G5 executes).
In order to perform their duties, a network of guards need to be placed

into the program and hooked to its execution flows in an appropriate way. For
example, a repairing guard has to be inserted into a point in the control flow that
is to be reached first (in execution order) before the guarded code is reached; i.e.,
a repairing guard has to dominate the target code in their control-flow locations.
On the other hand, a checksumming guard must be installed at a point at whose
execution time the code to be checksummed must be present in the program
image. Figure 2 (a) shows a graph that depicts the dominance relationships
between different pairs of the nodes in Figure 1 (e.g., G3 → G1 means location
of G3 dominates that of G1).

Figure 2 (b) shows two possible scenarios in which the network of guards
can be installed into the control flow graph of a program without violating the
partial ordering of their executions specified in (a). As seen from the figure, the
larger a program, the more ways there are to deploy the network of guards.

3.3 Security

Contrary to monolithic protection schemes in which security is enforced by single
security modules, protection by guards enjoys the following advantages:

– Distributedness. There is no single point of entry (exit) into (out of) the
guards network because its individual components (i.e., guards) are invoked
at different points at runtime. This makes it much harder for an attacker to
detach the network from the program. To defeat the guards, their locations

Protecting Software Code by Guards 165

G3

C1

G1

C2 G4

G5

G2

checksums

checksums

checksums

repairs

checksums

repairs

checksums

checksums

checksums

(a) Memory layout of the guarded program

G1 C2 G2 C1 G4G3 G5. . .

checksumschecksums

repairs
checksums

repairs

(b) The corresponding guard graph

Fig. 1. Program image guarded by five guards and the corresponding guard
graph

and guarding relationships need to be identified (an even more difficult task
if the program is large and complex).

– Multiplicity. Multiple guards can be used to guard a single piece of code,
providing it a variety of protection at different times.

– Dynamism. There are many ways in which a guards network can be con-
figured. For example, a group of ten guards can form different types of for-
mations, ranging from simple trees to general directed graphs with cycles.
Even if one knows the general mechanism for guarding programs, one is still
faced with the actual deployment scheme in the program. Furthermore, a
fixed formation can be installed in various ways because parameters such
as the physical locations of guards and the exact ranges of code they guard
could vary from installation to installation. (Consider that each installation
is driven by a different random number.)

– Scalability. It is easy for the levels of guarding to be scaled up for larger
or more security-critical programs by adding to them more guards.

166 Hoi Chang and Mikhail J. Atallah

C2

C1

G4

G3

G2

G5

G1

C2

C1

G3

G2

G1

G4

G5

Legend

Control flow

Repairing action

Checksumming
action

C2

G3

C1

G1

G4

G5

G2

(b) Two possible placements of the guards in a CFG

(a) Partial execution ordering of the guards

Fig. 2. Guards network installed into a program CFG

Protecting Software Code by Guards 167

Strengthening the Guards Network A guard cycle is a circular chain of
guards each of which protects its next neighbor, forming a cycle of guarding
relationships in the guard graph. Such a formation allows each guard in the cycle
to be protected without any “loose ends” (i.e., unprotected guards). Defeating
a guard cycle requires all of the guards to be disabled at the same time. How to
implement checksumming in guard cycles is itself an interesting problem, because
the checksumming function should have a 1-way property (we have solved the
problem but due to page limitation, we omit the discussion in this paper).

The above property of guard cycles leads to a more general guards strength-
ening scheme: Connect any disconnected components in a guard graph in such a
way that each guard in the graph can be reached by the rest of the guards (i.e.,
the resulting guard graph is strongly connected). As a result, strong connectivity
forces the amount of attack efforts to be scaled up proportionally to the total
number of the guards deployed in a program.

Strengthening Individual Guards The level of difficulty in locating guards
and understanding their semantics depend on how “stealthy” and tamper-resis-
tant the guards are.

– Stealthiness. Guard code should have no recognizable signatures (e.g., fixed
set of instructions) that an attacker can statically scan for. Also, their ac-
tions should be made as inconspicuous as possible. For example, instead
of instantly sounding an alarm upon detection of an attack, guards should
delay such an action until a later time when it is unclear why and how it
has taken place. To thwart sophisticated runtime program analyzers from
identifying the checksumming or repairing actions of guards, logical bound-
aries between the executable code and runtime data of a program should be
blurred. For example, the code sections are made to contain runtime data,
and conversely, the data sections are made to contain executable code.

– Tamper-resistance. In situations where the location of a guard has been
identified, it is important to have the guard protect itself (besides having
other guards protect it). One effective way to achieve this is to obfuscate the
guard code. There are many ways to do so. A simple way would be to rear-
range its instructions and mix them with dummy code [12]. More aggressive
obfuscating transformations are possible and can make the resulting code
very difficult to reverse-engineer. Such transformations involve both con-
trol and data flow obfuscations. Some particular techniques are discussed in
[17,7,5,6].

4 Description of System

We have built Version 1.0 of a system for guarding Win32 executables. It takes an
EXE program file as input and inserts into it guards that can perform functions
such as checksumming and repairing program code. The guard installation is
an automated process guided by a user-provided guarding script that specifies

168 Hoi Chang and Mikhail J. Atallah

 (Unguarded)

Guard graph specification

pgm.exe
(Guarded) pgm.exe

Installation
Guard

System

Fig. 3. The guarding system

what and how guards will protect the program code and themselves (i.e., the
description of a guard graph). Figure 3 gives an overview of our system.

Our system processes binary code directly because high-level code lacks much
binary information that guards need (such as memory addresses and binary
contents of the program code). Also, manipulating code at the binary level makes
it easier to transform program code to whatever form is desired without typical
structural restrictions imposed by high-level languages.

Guard installation by our system involves inserting a guard into the program
and parameterizing it appropriately. We call this guard instantiation, in which
guards are instantiated from predefined guard templates, which are object code
and stored in a database (of course these are “polymorphic” in the sense that
even if two of them have the same functionality they look different; this prevents
attacks based on pattern matching techniques). Below is a simple example of a
guard template, which is programmed to corrupt stack frame pointer ebp if the
computed checksum is different from checksum. 3

guard:
add ebp, -checksum
mov eax, client_addr

for:
cmp eax, client_end
jg end
mov ebx, dword[eax]
add ebp, ebx
add eax, 4
jmp for

end:

During instantiation of the guard, the system initializes client addr and
client end with the addresses of the target code range that the guard needs
to protect. The other parameter, checksum, is later patched to the guard code
3 The sample template is shown in the NASM assembler language [16].

Protecting Software Code by Guards 169

0

32

64

96

C8

FA
00

40
02

B
8

00
40

16
40

00
40

29
C

8

00
40

3D
50

00
40

50
D

8

00
40

64
60

00
40

77
E

8

00
40

8B
70

00
40

9E
F

8

00
40

B
28

0

M
em

or
y

ad
dr

es
se

s
m

od
ul

ar
 0

x1
00

Memory addresses of the program code

Memory layout of the guarded program

Orig exe code Guard code Guarded code

Fig. 4. The memory image of a program heavily guarded by 307 guards

 Before guarding After guarding (without increasing file size)
File size # instructions File size # instructions # guards installed Avg guard size

gzip 172 KB 38348 172 KB 38897 25 76 bytes
disasm 376 KB 54931 376 KB 56456 70 75 bytes

avi2mpg 380 KB 51647 380 KB 54913 144 78 bytes

Fig. 5. Statistics of the guarded programs and their guards

when the checksum value of the target range has been obtained by the system.
This illustrates why it is convenient to operate at the binary level: Had we
attempted this at the source code level, we would not have had the needed
address information (because it is not possible for us to precisely predict the
effect of the subsequent compilation on that source code).

Figure 4 shows the memory image of a program after it has been installed
with 307 guards. (Its linear address space is represented by a two-dimensional
space for easy interpretation of the image contents.) Shown in dark colors are
the four executable regions of the program. (The white regions are file format-
ting and data areas of the program.) These four regions include three types of
code: original (executable) program code, the inserted guard code, and the code
protected by the guards (which includes portions of the program code and guard
code).

It is important that guard installations be automated. If done manually, it
is a very laborious and error-prone process, as it requires one to deal with bi-
nary information in the program files directly (consider implementing by hand

170 Hoi Chang and Mikhail J. Atallah

a function that checksums its own code). The manual task will become more
difficult and time-consuming as the number of guards and complexity of their
inter-locking relationships increase. Furthermore, programs with “hand-patched”
checksumming guards would be very hard to maintain because one cannot change
the code without recomputing checksums of the modified code. Our system
streamlines the guarding process by separating the task of software development
from that of software protection (which is now done post-compilation).

5 Experimental Results

In this section, we examine how much program resouces guards would need from
several software applications. By program resources we mean increases in pro-
gram size and program execution time. We applied our system to three software
applications: disasm, gzip, and avi2mpg. disasm is an Intel x86 disassembler
that is branch-intensive; gzip is a GNU file compressing and decompressing tool
that has a mixed use of branches and loops; and finally, avi2mpg is a Win32 ap-
plication which converts an AVI video file into an MPEG one. Our experiments
were conducted on a Pentium III 600MHz machine running Windows NT.

5.1 Impacts on Program Size

The amount of program space required for storing guard code is proportional
to the number of installed guards and their average size. But sometimes, Win32
executables can accommodate a number of guards without needing more file
space. To illustrate this, we ran our system on the test programs and installed
into each as many guards (of the same size) as possible (while keeping their file
sizes unchanged). Figure 5 shows the maximum numbers of guards that can fit
into each program without increasing its size. For the sake of this experiment,
the guards inserted into each program were instantiated from the same guard
template (of size 62 bytes), which is similar to the one shown previously. The
instantiated guards need more bytes because extra instructions are needed to
hook their code to the program flows (of course in a “production run” of our
system we would use guards having a variety of sizes).

We believe the issue of storage space does not pose a problem to guarding.
As storage media such as hard disks are getting more spacious and cheaper,
software applications also tend to expand in size (because more functionality
can be included). Increasing the size of a program by a few kilobytes (as a result
of guarding) does not even show up on the radar screen when compared to the
natural increase in the size of software.

5.2 Impacts on Program Performance

In this section we examine how guarding affects program performance. In par-
ticular, we want to answer the basic question: Would guards impose prohibitive
time-performance penalty on programs?

Protecting Software Code by Guards 171

We tested the performances of disasm, gzip, and avi2mpg as follows. For
each program, its original performance (before guarding) was measured. Then
we created a set of guarded versions of each program, each version executing
a different number of guards. Inserted into the program at random locations,
the guards were invoked every time the execution flow reached them. All of the
guards performed checksumming on some piece of code of 0x50 bytes long using
the same checksumming algorithm. The execution times of this set of guarded
programs are keyed as “uncontrolled guard invocations” in Figures 6, 7, and 8.

These performance results (and many others that we ran) show that if guards
are placed within highly repetitive loops and execute as many times as they
iterate, the performance would suffer. But the results also suggest that if the
execution frequency of guards is restricted to a small number, then the programs
would likely perform well without much degradation in speed. Indeed, in many
cases, guards do not need to execute over and over again if all they do is to repeat
the same checksumming or repairing actions that they have repeated many times
already.

To test how controlled invocations of guards affect program performance, for
each test program we created another set of guarded versions of it, which were
exactly the same as the set created earlier except that in this case each guard
executed once only (no matter where it was located in the CFG). The execution
times of these guarded programs are shown in the same figures as “controlled
guard invocations.” Clearly, the new results indicate only slight increase in exe-
cution times, as compared to the previous results.

In situations where one could avoid installing guards within performance-
sensitive code, the performance results are expected to be better than those
reported here. (Our system includes a graphical user interface that makes it easy
to highlight portions of program code where guard-installation is recommended,
and portions where it is not recommended, in addition to highlighting which
portions of the program code should be guarded.) The reason we decided to
not use this facility in our experiments is the difficulty in quantifying what
“good guard-placement hints” are, and in accounting for their variability from
one test application to the next. Instead, we ran our system in “random guard-
installation” mode, because it makes comparisons easier between one protected
application and another.

6 Conclusion and Further Remarks

We have explored a software-based methodology for making program code
tamper-resilient by using guards. Guards are special code segments in the pro-
gram which, when deployed collectively, can make the following possible:

– Distributed protection. Spreading the load of protection among guards
essentially eliminates the “single point of failure” problem.

– Variety of protection schemes. There are many ways to group the guards
together. As a result, a software developer can have different copies of its

172 Hoi Chang and Mikhail J. Atallah

disasm

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60

Number of guards executed

P
ro

g
ra

m
 e

xe
cu

ti
o

n
 t

im
e

(s
ec

o
n

d
s)

Controlled guard invocations Uncontrolled guard invocations

Fig. 6. Comparison between the runtime performances of disasm in two scenarios

gzip

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12 14

Number of guards executed

P
ro

g
ra

m
 e

xe
cu

ti
o

n
 t

im
e

(s
ec

o
n

d
s)

Controlled guard invocations Uncontrolled guard invocations

Fig. 7. Comparison between the runtime performances of gzip in two scenarios

Protecting Software Code by Guards 173

avi2mpg

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

Number of guards executed

P
ro

g
ra

m
 e

xe
cu

ti
o

n
 t

im
e

(s
ec

o
n

d
s)

Controlled guard invocations Uncontrolled guard invocations

Fig. 8. Comparison between the runtime performances of avi2mpg in two sce-
narios

0 5 10 15 20 25

 0 (0%) 2 (40%) 4 (40%) 6 (40%) 10 (50%) 13 (52%)
% increase Uncontrolled guard invoc. (bad) 0.0% 23.5% 21.2% 22.4% 20.6% 21.7%
in exe time Controlled guard invoc. (preferable) 0.0% 1.1% 1.6% 3.4% 1.4% 4.1%

0 14 28 42 56 70

0 (0%) 10 (71%) 21 (75%) 30 (71%) 41 (73%) 50 (71%)
% increase Uncontrolled guard invoc. (bad) 0.0% 6.7% 3.3% 4.8% 5.7% 32.2%
in exe time Controlled guard invoc. (preferable) 0.0% 0.5% 2.1% 3.1% 4.3% 4.9%

0 27 55 82 109 136

0 (0%) 2 (7%) 4 (7%) 6 (7%) 10 (9%) 12 (9%)
% increase Uncontrolled guard invoc. (bad) 0.0% -0.1% 5.4% 5.5% 5.5% 5.7%
in exe time Controlled guard invoc. (preferable) 0.0% 0.0% 0.5% 0.6% 0.7% 0.7%

No. (%) of guards executed in a typical run

 gzip
Total no. of installed guards

No. (%) of guards executed in a typical run

 disasm
Total no. of installed guards

No. (%) of guards executed in a typical run

 avi2mpg
Total no. of installed guards

Fig. 9. Increases in execution time under the scenarios of controlled and uncon-
trolled guard invocations

174 Hoi Chang and Mikhail J. Atallah

software applications protected differently so that successful attacks against
one of the copies would not work for the others (i.e., no “wholesale” attacks).
We have developed techniques for preventing “diff” attacks that would com-
pare two differently protected copies of the same software.

– Configurable tamper-resistance. The guarding approach makes it flex-
ible for a software developer to control the levels of protection (e.g., how
many guards) its software applications need, allowing configurable tamper-
resistance with little performance degradation. That our system works after
compilation makes it unnecessary to recompile if we later modify the pro-
tection scheme (like the number of guards, the guarding network, etc).

We have implemented a system that automates the process of installing
guards in Win32 executables in a configurable manner. Our experiences have
convinced us that it is possible to easily guard software which is difficult to
“unguard”—i.e., asymmetry in the efforts (small effort to protect, large effort to
attack).

Our results show that if configured appropriately, guards cause only slight
impacts on the performance of guarded programs. We believe that such impacts
are insignificant in most situations, and that they are reasonable tradeoffs for
the levels of protection received.

We are currently in the process of completing Version 1.1 of our system.
This version has the convenience of a graphical user interface integrated with
Microsoft Visual C++ 6.0, and will extend the obfuscation capabilities of the
current Version 1.0. Although the paper[3] gives theoretical evidence of the dif-
ficulty of absolute obfuscation, “practical” obfuscation (in the sense of delaying
attacks on the software by substantially “raising the bar” for an attacker) are
still a worthwhile endeavor in many practical situations. In our case what we
really need out of obfuscation is limited to “code entanglement”, that is, the
binding of guard code with the original program’s code so it is hard to disen-
tangle them, that is, difficult to distinguish binary-level guard code from the
original binary code (as mentioned in Section 2, there are many ways to achieve
such binding, ranging from the use of artificially introduced dependencies and
“dummy code”, to the use of complex mathematical identities, etc). What we
need is more limited, and experiments performed at Purdue and elsewhere lead
us to believe that it is achievable in a practical sense. This implies that even
if the regions of code containing guards were roughly located by an attacker, it
would still be very difficult to “separate” and remove the guard code from the
code needed by the program’s functionality.

Additional work is also under way to port the system to other platforms, and
to develop a facility that allows efficient and safe software patch distributions
using the scheme described in this paper; here “efficient” is in the sense that the
patch can have a small size compared to the total program, and “safe” in the
sense that it is does not compromise the guarding network.

Protecting Software Code by Guards 175

References

1. David Aucsmith. Tamper-resistance software: an implementation. In Ross Ander-
son, editor, Information Hiding – Proceedings of the First International Workshop,
volume 1174 of LNCS, pages 317–333, May/June 1996. 163

2. T. Aura and D. Gollman. Software licence management with smart cards. In
Proceedings of the USENIX Workshop on Smartcard Technology (Smartcard ’99),
pages 75–85, May 1999. 162

3. Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In
CRYPTO 2001, August 2001. 163, 174

4. Clark Thomborson Christian Collberg. Watermarking, tamper-proofing, and ob-
fuscation – tools for software protection. 163

5. Christian Collberg, Clark Thomborson, and Douglas Low. Breaking abstractions
and unstructuring data structures. In IEEE International Conference on Computer
Languages, ICCL’98, Chicago, IL, USA, May 1998. 163, 167

6. Christian Collberg, Clark Thomborson, and Douglas Low. A taxonomy of obfus-
cating transformations. Technical Report 148, Department of Computer Science,
The University of Auckland, Private Bag 92019, Auckland, New Zealand, 1998.
163, 167

7. Cloakware Corporation. Introduction to cloakware tamper-resistant software (trs)
technology, March 2001. http://www.cloakware.com/pdfs/TRS intro.pdf. 163,
167

8. Compuware Corporation. Numega softice. 161
http://www.numega.com/drivercentral-/components/softice/si features.shtml.

9. H. G. Joepgen and S. Krauss. Software by means of the ‘protprog’ method. ii.
Elektronik, 42(17):52–56, Aug. 1993. 163

10. O. Kommerling and M. Kuhn. Design principles for tamper-resistant smartcard
processors. In Proc. USENIX Workshop on Smartcard Technology, Chicago, IL,
May 1999. 162

11. Josh MacDonald. On program security and obfuscation. 163
12. Masahiro Mambo, Takanori Murayama, and Eiji Okamoto. A tentative approach

to constructing tamper-resistant software. In New Security Paradigms Workshop.
Proceedings, pages 23–33, New York, NY, USA, 1998. ACM. 163, 167

13. Landon Curt Noll, Jeremy Horn, Peter Seebach, and Leonid A. Broukhis. The
International Obfuscated C Code Contest, 1998. http://www.ioccc.org/. 163

14. A. Schulman. Examining the Windows AARD detection code. Dr. Dobb’s Journal,
18(9):42,44–8,89, Sept. 1993. 163

15. S. Smith and S. Weingart. Building a high-performache programmable secure
coprocessor. Computer Networks, 31:831–860, 1999. 162

16. Simon Tatham and Julian Hall. Netwide Assembler. http://www.web-
sites.co.uk/nasm. 168

17. Chenxi Wang, Jonathan Hill, John Knight, and Jack Davidson. Software tamper
resistance: Obstructing static analysis of programs. Technical Report CS-2000-12,
12 2000. 163, 167

18. Steve R. White and Liam Comerford. ABYSS: An architecture for software pro-
tection. IEEE Transactions on Software Engineering, 16(6):619–629, June 1990.
162

19. Bennett Yee and J. D. Tygar. Secure coprocessors in electronic commerce appli-
cations. pages 155–170, 1995. 162

	Protecting Software Code by Guards
	Introduction
	Related Work
	The Guarding Framework
	Guards
	Guards Network
	Security
	Strengthening the Guards Network
	Strengthening Individual Guards

	Description of System
	Experimental Results
	Impacts on Program Size
	Impacts on Program Performance

	Conclusion and Further Remarks

