Constructing a Virtual Primary Key for Fingerprinting
Relational Data

%
Yingjiu Li
George Mason University
4400 University Drive
Fairfax, VA 22030

yjli@smu.edu.sg

ABSTRACT

Agrawal and Kiernan’s watermarking technique for database re-
lations [1] and Li et al’s fingerprinting extension [6] both depend
critically on primary key attributes. Hence, those techniques cannot
embed marks in database relations without primary key attributes.
Further, the techniques are vulnerable to simple attacks that alter or
delete the primary key attribute.

This paper proposes a new fingerprinting scheme that does not
depend on a primary key attribute. The scheme constructs virtual
primary keys from the most significant bits of some of each tuple’s
attributes. The actual attributes that are used to construct the virtual
primary key differ from tuple to tuple. Attribute selection is based
on a secret key that is known to the merchant only. Further, the
selection does not depend on an apriori ordering over the attributes,
or on knowledge of the original relation or fingerprint codeword.

The virtual primary keys are then used in fingerprinting as in
previous work [6]. Rigorous analysis shows that, with high prob-
ability, only embedded fingerprints can be detected and embedded
fingerprints cannot be modified or erased by a variety of attacks.
Attacks include adding, deleting, shuffling, or modifying tuples or
attributes (including a primary key attribute if one exists), guessing
secret keys, and colluding with other recipients of a relation.

Categories and Subject Descriptors

H.2.7 [Database Management]: Database Administration—secu-
rity, integrity, and protection; K.6.5 [Management of Computing
and Information Systems]: Security and Protection

General Terms

Security, Algorithms, Performance

Keywords

Fingerprinting, relational databases, primary keys, robustness

*Yingjiu Li’s current address: School of Information Systems, Sin-
gapore Management University, 469 Bukit Timah Road, Singapore
259756

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DRM’03, October 27, 2003, Washington, DC, USA.

Copyright 2003 ACM 1-58113-786-9/03/0010 ...$5.00.

Vipin Swarup
The MITRE Corporation
7515 Colshire Drive
McLean, VA 22102

swarup @ mitre.org

133

Sushil Jajodia
George Mason University
4400 University Drive
Fairfax, VA 22030

jajodia@gmu.edu

1. INTRODUCTION

Fingerprinting is a class of information hiding techniques that
can help protect data from threats such as unauthorized disclosure.
Consider a generic scenario where merchants sell digital data to
buyers. Some dishonest buyers (called traitors) may redistribute
the data to others (called pirates) without permission from the mer-
chants. A merchant may use a fingerprinting scheme to embed a
buyer-specific mark into a data copy provided to a buyer; she can
subsequently detect the mark in pirated data and use the mark to
identify the traitor who distributed the data.

Fingerprinting is often discussed in comparison or extension to
watermarking. Watermarking is another class of information hid-
ing techniques whose purpose is to identify the sources of data. A
merchant may use a watermarking scheme to embed a merchant-
specific mark into her data and assert ownership of the data by de-
tecting the watermark. Thus, watermarking is used to embed marks
that identify the merchant while fingerprinting is used to embed
marks that identify legitimate buyers.

Watermarking and fingerprinting have been studied extensively
in the context of multimedia data (still images, audio, and video).
Recently, algorithms have been proposed for watermarking database
relations [1, 8, 4]. Agrawal and Kiernan [1] present a novel tech-
nique for embedding watermarks within numeric attributes of rela-
tions. They assume that merchants and buyers can tolerate a small
amount of errors in those attributes, but that introducing many more
errors will reduce the value of the data substantially. For example,
if an attribute contains values with five decimal places, then a buyer
may accept that 0.1% of the tuples have arbitrary fractional errors
as long as the rest are accurate up to five decimal places.

Li et al. [6] have generalized Agrawal and Kiernan’s watermark-
ing technique to enable the fingerprinting of relational data. The
fingerprinting technique enables a buyer-specific bitstring to be em-
bedded and extracted from a database relation, as compared to the
watermarking technique which enables a single watermark bit to be
embedded and extracted from a relation. The schemes are robust
against various attacks including flipping bits, adding or deleting
tuples, guessing secret keys, and colluding with other recipients.

Both Agrawal and Kiernan’s watermarking technique and Li et
al.’s fingerprinting technique rely on a critical assumption, namely
that a database relation has a primary key attribute that either does
not change or else can be recovered. The rationale behind this as-
sumption is that a primary key attribute contains essential informa-
tion and that modification or deletion of this information will sub-
stantially reduce the data’s value. However, as a consequence of
this assumption, those techniques cannot embed marks in database
relations without primary key attributes. Further, the techniques are
vulnerable to attacks that alter or delete the primary key attribute.

The main contributions of this paper are to propose new schemes
for fingerprinting relational data without depending on a primary
key attribute, and to demonstrate analytically that the schemes are
robust against a wide range of attacks including attacks that al-
ter, shuffle, or delete any attributes. We propose two schemes (E-
scheme and M-scheme) that construct virtual primary keys from the
most significant bits of some of each tuple’s attributes; the virtual
primary keys are then used in fingerprinting as in previous work [6].

In M-scheme, the actual attributes that are used to construct the
virtual primary key differ from tuple to tuple. Attribute selection
is based on a secret key that is known to the merchant only. Fur-
ther, the selection does not depend on an apriori ordering over the
attributes (unlike the previous schemes which do depend on a fixed
ordering of attributes). Thus, M-scheme is robust against attacks
that delete, shuffle, or modify attributes (including a primary key
attribute if one exists), or that attempt to alter the virtual primary
keys. Our analysis demonstrates that an attacker must modify or
delete a large number of attributes in order to alter or delete the
embedded mark.

The remainder of this paper is organized as follows. Section 2 re-
views a scheme [6] for fingerprinting relational data with primary
keys. Section 3 presents several schemes for fingerprinting rela-
tional data without relying on real primary keys. Section 4 presents
a detailed analysis of the new fingerprinting schemes. We examine
desirable properties such as imperceptibility and detectability. Sec-
tion 5 describes several attack classes and analyzes the behavior of
the extended fingerprinting schemes under these attacks. Section 6
discusses whether a database relation is fingerprintable and how to
choose among different fingerprinting schemes. Section 7 presents
experimental results from our prototype implementation. Section 8
summarizes the paper and suggests possible future directions.

2. FINGERPRINTING RELATIONS WITH
PRIMARY KEYS

In this section, we briefly review a fingerprinting scheme for re-
lational data [6] based on which we shall derive our new scheme.
Since the basic data objects used in that scheme are tuples, we refer
to it as tuple-level scheme, or simply T-scheme. T-scheme is based
on Agrawal and Kiernan’s watermarking scheme [1].

2.1 Notation and Parameters

Consider a database relation R that has a single primary key at-
tribute P and v numerical attributes Ao, ..., A,—1. Without loss
of generality, let the schema of R be R(P, Ao, ..., A,_1) and let
the database have 7 tuples. For each attribute value r.A; of tuple
r € R, one of its {(r. A;) least significant bits could be used to em-
bed a fingerprint bit. £(r.A;) could depend on the number of bits in
a standard binary representation of r.A;, or it could be a constant
number that is independent of the value 7. A,. To be simple, we use
& for £(r.A;) unless otherwise stated.

Let N be the number of users (or buyers) to whom the data is
being distributed. A fingerprint (codeword) I' = (fo,..., fo—1)
is a binary string with length L > log N. Each user is assigned
a unique fingerprint with the same length L. The set of all fin-
gerprints is called the code book. A fingerprint is embedded into
each copy of R and the fingerprinted data is then distributed to the
corresponding user.

User n’s fingerprint is computed by a cryptographic hash func-
tion Ho whose input is the concatenation of a secret key /C (known
by the merchant only) and user identifier n. The output of H is
a binary string of length L. We shall assume that this results in a
unique fingerprint for each user n = 0, ..., N — 1. This is usually

134

the case when L > log IV because of the collision-free property
of the hash function. If collisions do exist, we may use a larger L,
reserve the user identifiers that cause collision, or change the secret
key.

We also use the following cryptographic hash functions in our
fingerprinting schemes:

e First Hash: H1 (K, r.P) = H(K or.P)

e Message Authenticated Code: Ha (K, 7.P) = H(KoH(K o
r.P))

where /C is a secret key, r. P is the value of the primary key attribute
P of tuple r in relation R, H is a standard hash function (e.g., MD5
or SHA), and o denotes concatenation.

2.2 Fingerprinting Scheme

Li et al [6] describe a scheme (which we call T-scheme in this
paper) for fingerprinting relational data with primary key attributes.
T-scheme assumes that changing a small number of attribute bits is
imperceptible and does not degrade the value of the data. It also
assumes that changing the primary key attribute or changing a large
number of other attribute bits does degrade the value of the data
substantially.

For fingerprint insertion, T-scheme scans each tuple and uses the
message authenticated code H to select some attribute bits in some
tuples for modification. It first selects one out of +y tuples: a tuple
is selected if H2(/C, r.P) mod ~y equals 0. Then, for each selected
tuple, it selects one out of v attributes: attribute ¢ is selected if ¢ =
H2 (K, r.P) mod v. For each selected attribute, it selects one out
of £ bits: the j-th least significant bit is selected if j = Ha (K, r.P)
mod £. Hash function H2’s properties ensure that the selections are
made uniformly. Further, the selections depend on a secret key iC.
The scheme then replaces the selected bit of the selected attribute
in the selected tuple with a computed mark bit.

T-scheme computes the mark bit by selecting one out of the L
fingerprint bits and masking the selected fingerprint bit with a uni-
formly distributed mask bit. It uses the cryptographic hash function
‘H1 in the selection of the fingerprint bit: bit f; in fingerprint I" is
selected if | = H1(IC,7.P) mod L. It also uses H; in computing
the mask bit: the mask bit is zero if H; (K, 7. P) is even; it is one
otherwise. It XOR’s the selected fingerprint bit with the mask bit to
get the mark bit. Note that the scheme uses two different hash func-
tions to compute the attribute bit location and the mark bit value;
this ensures that the fingerprint bits are not correlated with the lo-
cations in which they are embedded. On average, each fingerprint
bit is embedded into a database w times where w = n/(yL).

For fingerprint detection, T-scheme scans each tuple and com-
putes the mask bit and the marked position in exactly the same
way as in fingerprint insertion. Then it extracts the embedded fin-
gerprint bit by XORing the mask bit with the bit at the marked
position in the tuple. Recall that each fingerprint bit f; is inserted
multiple times; it should be detected the same number of times if
the data has not changed. However, due to various possible attacks
or benign updates, we expect that not all but a majority of the em-
bedded values for f; will be recovered. The scheme uses a major-
ity vote in fingerprint detection: two counting variables count|:][0]
and count[i][1] indicate the numbers of 0’s and 1’s respectively that
have been recovered for a fingerprint bit f;; after all tuples have
been processed, fingerprint bit f; is set to O if the ratio of recov-
ered 0’s (i.e., count[:][0]/(count[i][0] 4+ count[é][1])) is greater
than 7, and similarly for 1’s. Parameter 7 € [0.5,1] is the min-
imum fraction of correctly marked tuples needed for detection of
each fingerprint bit.

A traitor is detected if the recovered fingerprint I' = (fo,.. .,
fr—1) matches one of the N users’ fingerprints which can be com-
puted by the hash function Hg on the secret key and user identifiers.
Clearly, if no embedded bit is recovered for some f; (if neither the
ratio of 0’s nor the ratio of 1’s is greater than 7), then no fingerprint
is detected.

T-scheme is robust against attacks that update, delete or modify
tuples due to the following reasons: (i) every tuple is marked in-
dependently; (ii) every fingerprint bit is embedded multiple times;
and (iii) a majority vote is used in fingerprint detection. Li et al. [6]
analyze the robustness and detectability properties of this scheme.

3. FINGERPRINTING RELATIONS WITH-
OUT PRIMARY KEYS

T-scheme uses a secret key in every step of fingerprint insertion.
Thus, a user is unable to determine where the fingerprint is embed-
ded, the embedded values, the relationship between the embedded
values and corresponding fingerprint bits, and even the fingerprint
codeword. However, T-scheme depends critically on a primary key
attribute. That is, it assumes that a relation has a primary key at-
tribute, and that modifications to the primary key cause substantial
degradation in the value of the relation. In this section, we pro-
pose fingerprinting schemes that do not require these assumptions.
These new schemes also address another minor deficiency of T-
scheme: T-scheme depends on an ordering over the attributes in a
relation while these new schemes do not.

3.1 S-Scheme: A Simple Solution

Agrawal and Kiernan [1] describe a simple extension that en-
ables their watermarking technique to apply to relations without
primary keys. Our fingerprinting technique T-scheme can be mod-
ified in a similar way to fingerprint relations without primary keys.
Assume that a relation R consists of a single numerical attribute
A. For each tuple r, partition the bits of r.A into two parts: (i)
mb(r.A): the £ bits of element r. A within which a fingerprint bit
may be embedded; and (ii) vpk(r.A): the remaining bits of ele-
ment 7. A which are used as a virtual primary key for the tuple 7.
T-scheme can then be used for fingerprinting by using the virtual
primary key in place of a real primary key.

If the “virtual primary key” vpk(r.A) is unique to every tuple r,
on average 1)/ bits are used for fingerprinting, which is the same
as in T-scheme. Further, the hash values H2 (K, vpk(r.A)) are
uniformly distributed and thus each fingerprint bit is embedded on
average 7n/(vL) times. However, vpk(r.A) is not a true primary
key and may not be unique for each tuple r. With duplicate virtual
primary keys, the average number of modified bits is no longer 1/~
and each fingerprint bit is no longer embedded into data an average
of w = n/(yL) times. In fact, some fingerprint bits may be em-
bedded fewer times than others, rendering the scheme susceptible
to attacks such as bit-flipping attacks (see Section 5.2). Some fin-
gerprint bits may not be embedded at all, in which case fingerprint
detection will always fail. We call the problem of duplicate virtual
primary keys the duplicate problem.

Another issue is that since the attribute A is not a real primary
key, an attacker may be able to drop or modify the attribute (and
hence foil detection of an embedded fingerprint) without signifi-
cantly degrading the data. We call this the deletion problem.

If a relation has n numerical attributes, then we can select any
one attribute to generate the virtual primary key as above and use
the remaining attributes for marking. The duplicate problem can
be mitigated by selecting the attribute with the fewest duplicates to
provide the virtual primary key. More generally, the virtual primary

135

key can be constructed by combining bits from several attributes so
as to minimize duplicates. However, these approaches do not solve
the deletion problem—an attacker can still defeat the scheme by
deleting or modifying any of the bits which are used to construct
the virtual primary key.

3.2 E-Scheme: Element-Based Fingerprinting

S-scheme processes each tuple in a relation and decides whether
or not to embed a fingerprint bit in the tuple. In contrast, E-scheme
examines each numerical attribute in each tuple independently, com-
puting a virtual primary key from the attribute value, then using the
computed key to decide whether or not to embed a fingerprint bit
in the attribute value.

For each element r.A; in each tuple r, E-scheme uses the vir-
tual primary key vpk(r.A;) to determine whether, where, and how
to embed or extract a fingerprint bit in the marking part mb(r.A;)
of the same element. Recall that T-scheme selects on average one
bit per v tuples, where each tuple has v attributes (i.e., elements)
for fingerprinting. E-scheme maintains the same ratio by selecting
one bit per v elements. Thus, E-scheme selects an element 7. A;
for marking if Ha(KC, vpk(r.A;)) mod yv equals 0; if r.A; is se-
lected, E-scheme selects the j-th least significant bit in mb(r.A;)
where j = Ha(KC, vpk(r.A;)) mod €. Finally, E-scheme embeds
(or extracts) a mark in the selected bit as in T-scheme. It is clear
that E-scheme does not rely on a real primary key attribute or on
the order of attributes.

E-scheme mitigates the deletion problem since deletion of any
subset of attributes will not erase an embedded fingerprint or pre-
vent its detection. However, this scheme is still vulnerable to the
duplicate problem since the numerical attributes are processed in-
dependently despite not being real primary keys.

3.3 M-Scheme: A Robust Scheme

Like S-scheme, M-scheme marks each tuple based on the tuple’s
virtual primary key. However, while S-scheme (and E-scheme)
uses the same bit positions in all tuples to construct virtual pri-
mary keys, M-scheme dynamically selects the bit positions used
to construct a virtual primary key. This makes M-scheme robust
against attacks that attempt to modify or delete only the bits used
to construct the virtual primary key.

As in S-scheme, the bits of every numerical element r.A; in
tuple 7 are partitioned into two parts: vpk(r.A;) and mb(r.A;).
For each tuple r = (r.Ao,...,m.A,_1), M-scheme computes the
virtual primary key 7.V by concatenating the two hash values in
{/H1 (K, vpk(r.A;))| : i = 0,...,v — 1} that are closest to zero
(assume v > 2). In general, we may concatenate more than two
hash values to optimize the construction of the virtual primary key.

M-scheme then uses the T-scheme technique to process the tuple,
but with two modifications. First, M-scheme uses the virtual pri-
mary key instead of a real primary key. Second, for each selected
tuple in fingerprint insertion or detection, attribute A; is selected
for embedding if its hash value |H1(KC, vpk(r.A;))] is closest to
zero among all attributes’ hash values. Multiple attributes may be
selected in a tuple if they map to the same lowest hash value. In
comparison, T-scheme selects attribute A; if i = Ho (K, r.P) mod
v. Thus, while T-scheme depends on the primary key and on the
order of attributes, M-scheme does not.

The construction of the virtual primary key is dynamic and con-
tent based. It is dynamic because for different tuples, different
attributes are selected to form the virtual primary key. Without
knowing the secret key, an attacker is unable to determine which at-
tributes are selected in each tuple. The construction is also content-
based; it depends on the hash values rather than the order of the

attributes. Because of these two properties, an attacker is unable to
destroy enough virtual primary keys through attribute modification
unless he modifies a large number of attributes (see Section 5.2).

4. ANALYSIS

A fingerprinting (or watermarking) scheme for relational data
must satisfy several properties in order to be useful. For instance,
it should enable insertion and detection of fingerprints, it should
be robust against a broad class of attacks, and it should ensure that
innocent users are not identified as traitors (whether inadvertently
or due to attacks). Such properties have been identified in [1] and
[6]. In this section, we summarize those properties and focus on
the new issues introduced by E-scheme and M-scheme.

4.1 Duplicate Index

In T-scheme, if the hash values of primary key attributes are per-
fectly uniform, each fingerprint bit f; is embedded into data exactly
w = n/~ times. However, due to the duplicate problem especially
in E-scheme and M-scheme, the fingerprint bits are not embedded
evenly: some may be embedded more often and some may not be
embedded at all. Let w; be the actual times that each fingerprint
bit f; is embedded (I = 0,...,L — 1). Let Wmaezx = max; w;
and Wmin = min; w;. We use duplicate index 6 to measure the
duplicate problem.

e Duplicate index: § = (Wmaz — Wmin)/Wmin

If there is no duplicate problem (i.e., w = wo = ... = wr_1 =
n/(yL)), the duplicate index equals zero. This is the “ideal” case
of T-scheme. If some fingerprint bit is not embedded into data due
to the duplicate problem (i.e., min; w; = 0), the duplicate index
is infinity. The smaller the duplicate index, the more evenly the
fingerprint is embedded.

While previous research on fingerprinting has focused on the
case where the duplicate index equals zero [6], we study the case
where the duplicate index is greater than zero. This is the case for
E-scheme and M-scheme, and also the real case (not “ideal” case)
for T-scheme. While the “ideal” case of T-scheme has been ana-
lyzed in [6], we analyze E-scheme, M-scheme, and the real case of
T-scheme in the rest of this paper.

4.2 Imperceptibility

A critical property of any fingerprinting scheme is that embed-
ded fingerprints should be imperceptible, i.e., the original data and
fingerprinted data should be indistinguishable. As a consequence,
embedding a fingerprint will not degrade the value of data. For
multimedia data, imperceptibility requires that the human percep-
tual system should not be able to distinguish between marked and
unmarked data [9]. Since database relations are not intended for
direct human perception, we consider a different notion of imper-
ceptibility that is based on the accuracy of data; that is, the extent
to which a database relation is similar to a merchant’s original un-
marked relation. This includes errors in individual values, aggre-
gate statistics (e.g., means and deviations) of attributes, correlations
among attributes, and constraints across relations (e.g., foreign key
constraints).

We have shown in prior work [6] that T-scheme embeds finger-
prints in database relations by introducing a very small number of
errors into the relations. The scheme is applicable to data where
small changes in accuracy are not perceivable but large changes
in accuracy are. The analysis given in [6] is based on that only
1/~ attribute values are used for embedding a fingerprint. In com-
parison, the number of attribute values that are used for embed-
ding fingerprint in E-scheme or T-scheme is given by 1/’ where

136

I _m
7= Sm
ded). The same analysis on imperceptibility for T-scheme can be

applied to E-scheme and M-scheme by simply replacing y with .
The reader is referred to [6] for more details.

(w; is the times that each fingerprint bit f; is embed-

4.3 Incremental Updatability

In M-scheme, each tuple is marked independently of all other
tuples. Hence, the addition, deletion, and modification of tuples
can be handled efficiently by only recomputing and embedding fin-
gerprints for new or updated tuples. In E-scheme, each element is
marked independently and updatability is at the element level.

4.4 Key-Based System

According with Kerckhoffs’ principle in security engineering,
the entire design of the fingerprinting system may be made pub-
lic, with the exception of secret keys. In our schemes, a secret
key determines the fingerprint codebook, the marks to embed, the
relationship between the fingerprint codewords and the embedded
marks, and the positions at which the marks are embedded. Thus,
the fingerprinting schemes remain robust even if the algorithms and
other parameters are made public.

4.5 Blind System

A blind system means that a fingerprint detection algorithm does
not require knowledge of the original database, embedded finger-
print, or codebook. Our fingerprinting schemes (E-scheme and M-
scheme) are pure blind systems. Previous watermarking and finger-
printing schemes may require knowledge of the original database
if the primary key or the order of the attributes are changed in an
attack.

4.6 Detectability

In the absence of malicious attacks or benign updates, a fin-
gerprinting scheme should be able to determine if data has been
marked with a fingerprint and, if so, extract the correct embedded
fingerprint. Further, it should not extract a fingerprint (purely by
chance) from unmarked data.

It is clear that a correct fingerprint can be detected from unmod-
ified marked data if and only if the duplicate index is not infinity
(i.e., each fingerprint bit is embedded at least once). In the remain-
der of this subsection, we investigate the probability that a valid
fingerprint is detected from unmarked data. We call this probabil-
ity misdiagnosis false hit.

Recall that each codeword bit f; is embedded in data w; times.
The bit f; is detected as 0 if more than 7w, of its embedded copies
are detected to be 0. If the unmarked data has uniformly distributed
values at each of the fingerprintable bit positions, then each of the
w; bits is 0 with independent probability p = 0.5 (the case of
p # 0.5 can be analyzed similarly since the imperceptibility analy-
sis shows that fingerprinting causes minuscule changes to the data
statistics).

We model this as Bernoulli trials (repeated independent trials)
with probability p of success and g of failure. For 0 < k& < n, let
b(k;n,p) = (Z) "¢ be the probability that n Bernoulli trials

. . !
result in k successes and n — k failures where (}) = T and

let B(k;n,p) = Y7, b(i;n,p) be the probability of having
more than k successes in n Bernoulli trials. The probability of
recovering a 0, i.e., the probability that more than 7w; of the w;,
embedded bits (for codeword bit f;) are 0, is B(| 7wy |; w;,0.5).
Since the probability of recovering a 1 is given similarly, and since
each codeword bit is embedded independently, a codeword (i.e., a

binary string) is detected in unmarked data with probability
I, (2 % B(|rwi);wi, 0.5)) = 25101, B(| 7w] ; wi, 0.5)

Note that N valid fingerprints in the codebook are selected pseudo-
randomly by a hash function from 2% possible codewords. Thus,
the probability that the codeword extracted from unmarked data is
a valid fingerprint is 2%, and the overall misdiagnosis false hit rate
is:

N
or * 2LHZB(LTw1j;wl,O.5) = N« II; B(| 7w];wy, 0.5)

If the duplicate index is not infinity (i.e., each fingerprint bit is
embedded at least once), the misdiagnosis false hit rate must be less
than or equal to 2% (since 7 > 0.5 and hence B(| 7w];wi, 0.5) <
0.5). This can be lowered exponentially by increasing the length L
of the fingerprint.

5. ROBUSTNESS

A fingerprinting scheme should be robust against benign database
operations and malicious attacks that may destroy or modify em-
bedded fingerprints. That is, it should be hard for attacks and be-
nign updates to erase embedded fingerprints; to modify embedded
fingerprints so that an innocent user is implicated as a traitor; or
to modify unmarked data so that the fingerprinting scheme detects
a valid fingerprint codeword in the modified data. Benign opera-
tions include adding tuples, deleting tuples, and updating tuples in
database relations. Malicious attacks include selective modifica-
tions of fingerprinted relations, and taking subsets of the relations,
with the express purpose of modifying or erasing the embedded
fingerprint.

We investigate false miss rate: the probability of failing to detect
an embedded codeword correctly. The false miss rate is the sum
of false negative and misattribution false hit. The false negative is
the probability of detecting no valid codeword from fingerprinted
data. And the misattribution false hit is the probability of detecting
an incorrect but valid codeword from fingerprinted data.

Embedded marks can always be destroyed by making substantial
modifications to marked data. Thus, we consider the robustness of
our fingerprinting schemes relative to the data modifications made
by attacks and updates. We assume that when attacks modify data,
they also degrade the value of the data. Benign updates, however,
usually enhance the value of data.

5.1 Attacks

Fingerprinting schemes are subject to several common attacks
which have been identified in [1, 6]. Some attacks reduce the ac-
curacy of data, e.g., by reducing the precision of attribute values
or by introducing errors into the data. This type of attacks includes
randomization attacks (some bits are assigned random values), zero
out attacks (the values of some bits are changed to zero), bit flip-
ping attacks (the values of some bits are inverted), rounding attacks
(some bits are deleted due to the rounding of numerical values),
and primary key attacks (primary key attribute values are deleted
or modified).

Some attacks modify relations without reducing accuracy. This
type of attacks includes subset attacks (only a subset of tuples or
attributes of a fingerprinted relation appear in a pirated database)
and superset attacks (new tuples or attributes are added to a finger-
printed relation).

Some attacks seek to provide a traitor or pirate with evidence
that raises doubts about a merchant’s claims. This type of attacks
includes additive attacks (add an additional fingerprint to a pirated
copy thus confusing a third party) and invertibility attacks (discover

137

a fictitious fingerprint in a relation, e.g., by trying different secret
keys to find one that matches the data by random chance).

Finally, some attacks, called collusion attacks, require attackers
to have access to multiple fingerprinted copies of the same relation
but with different embedded fingerprints. Collusion attacks include
majority attacks (create a new relation with the same schema as the
copies but with each bit value computed as the majority function
of the corresponding bit values in all copies) and mix and match
attacks (create a pirated copy by combining subsets of tuples and
attributes from each fingerprinted copy).

If a fingerprint detection algorithm is applied to data which has
been subject to attacks and benign updates, then the algorithm may
possibly return no valid fingerprint (as measured by the false nega-
tive rate) or it may possibly return a valid but incorrect fingerprint
(as measured by the misattribution and misdiagnosis false hit rates).
These rates depend on the nature of the attacks and updates.

Let R be a fingerprinted relation with the embedded codeword
' = (fo,..., fr—1). We analyze the robustness of our fingerprint
detection algorithm against representative attacks in the above at-
tack classes. Unless otherwise stated, our analysis applies to all
three fingerprinting schemes.

5.2 Bit-Flipping Attacks

In a bit-flipping attack, an attacker selects some bits and tog-
gles their values. Now, the bit positions used by the fingerprint
algorithms to embed and detect fingerprints are computed using a
cryptographic hash function. We assume that an attacker does not
know the secret key and so has no information about the values or
positions of embedded bits. We also assume that he possesses a
single fingerprinted copy of the data.

Suppose that the attacker toggles some randomly selected bits
that are available for embedding fingerprint bits rather than for con-
structing virtual primary keys. This is a reasonable assumption
since toggling some significant bits that are used in construction
of virtual primary key would cause large data errors.

Let the attacker examine each fingerprintable bit independently
and select it for toggling with probability p. Letq = 1 — p. We
model bit flipping as Bernoulli trials (repeated independent trials)
with probability p of success and q of failure (see Section 4.6).

Let the attacker apply the attack to an unmarked relation. Then,
since the attacker toggles randomly selected bits, the resulting data
will have the same characteristics as the original data for fingerprint
detection. Thus, from Section 4.6, the misdiagnosis false hit rate is

N I, B(| 7w |; wi, 0.5).

Now, let the attacker apply the attack to a fingerprinted relation.
Consider the probability p; that one particular fingerprint codeword
bit f; is destroyed. Now, each fingerprint bit f; is actually embed-
ded w; times in R. For the detection algorithm to fail to recover
the correct fingerprint bit, at least (1 — 7)w; embedded bits that
correspond to the fingerprint bit must be toggled (or, equivalently,
more than w; — |7w;| — 1 bits must be toggled). Thus,

p = B(w — [Twi] — 1w, p)

The probability that the codeword bit is recovered correctly is g; =
1 — p; . Then, the probability that the entire codeword is recovered
correctly is II;q;. The probability that the codeword is not recov-
ered correctly (i.e., the false miss rate) is 1 — II;g;. This false miss
rate is bounded by 1 — (min, ql)L, where min; ¢; = 1 —max; p; ~
1— B(wmm — _TwminJ - 1; wminvp)'

Figures 1 and 2 plot the probability of a successful attack for
different parameter values. The three parameter values which are
varied are wavy = »_, wi/L which is the average number of times

L=100, 6=1,1=0.5

_
o

N
Ou
:

-
ou
o

&

-
ou
8
.

Probability of a successful bit-flipping attack
o

107F 3
1 0'6 | | | I | | i | |
0 5 10 15 20 25 30 35 40 45 50
Percentage of fingerprintable bits changed 100p(%)
Figure 1: False miss rate under a bit-flipping attack
L=100, w_ =200, t=0.5
o avg

10 T T — ¢
« -—+-- 8=0
8 —— =1
B10"Y o 8=5 i
=2 —— §=10
&
£10% 1
o
3
210° 1
Q
o
=
w
S 10 :
S
=
5.5
T10°}]
[
o

10 ‘ ‘ ‘ ¢ ‘ g ‘ ‘

0 5 10 15 20 25 30 35 40 45 50

Percentage of fingerprintable bits changed 100p (%)

Figure 2: False miss rate under a bit-flipping attack

that a fingerprint bit is embedded into the relation, § = (Wmas —
Wimin)/ Wmin Which is the duplicate index, and p which is the flip-
ping probability. The figure uses a value of 100 for L and 0.5 for 7.
The probability of a successful attack (i.e., the false miss rate) de-
pends on the distribution of w; (I = 0, ..., L—1) which is assumed
to be uniform in the interval® [Wimin, Wmae| With mean waug-
Figure 1 shows that, for a fixed duplicate index §, the larger the
average number wq.g Of fingerprint bit embeddings, the harder it
is for bit-flipping attacks to succeed. When the average number
of fingerprint bit embeddings is fixed, Figure 2 shows that a larger
duplicate index renders the scheme more vulnerable to bit-flipping
attacks. Both figures show that with a proper choice of parame-
ters, a successful attack requires p to be large, causing a percepti-
ble change to the relation. The figures also show that the average
embedding rate wq.4 does not need to be large to achieve this.

5.3 Subset Attacks

Consider a subset attack where the pirated data is a subset of tu-
ples of a fingerprinted relation. Suppose that a relation has 7 tuples

Y Wmin and Wimae can be computed from the two parameters Wavg

2 2(146
and §: Wnin = —i;jg and Wiy = 2EE)Wave ';J:;“‘“’)

138

and that an attacker examines each tuple independently and selects
it with probability ¢’ = & for inclusion in the pirated relation. The
pirated relation will thus have ¢ tuples on average. The probability
that a tuple is deleted is p’ = 1 — ¢’.

Let the attack be applied to an unmarked relation. Fingerprint
detection will deal with a relation with ¢ = ¢’ %7 tuples on average.
Then, from Section 4.6, the misdiagnosis false hit rate is

N + I, B(| 7w} |;wy, 0.5)

where w; = ¢'w; is the number of times each fingerprint bit f;
would have been embedded in the relation had the relation been
fingerprinted (assume wj is an integer). The misdiagnosis false hit
rate still has an upper bound QEL if w; > 0 for all [.

Suppose that a subset attack is applied to a fingerprinted relation
and that there is no other attack or benign update on the data. Then,
for the attack to be successful, it must delete all embedded bits for
at least one codeword bit. Now, each codeword bit f; is embed-
ded w; times in the original relation, so the probability u; that a
codeword bit f; is erased completely is:

w = Bwi;wy,p') = p'™"

Then, v; = 1 — wu; is the probability that a codeword bit f; is
detected, I1;v; is the probability that the entire codeword is detected
correctly, and 1 — II;v; is the false miss rate.

Subset attacks have similar trends as bit-flipping attacks. Fig-
ure 3 shows that, for fixed duplicate index, the larger the average
number wqvg Of fingerprint bit embeddings, the harder it is for sub-
set attacks to succeed. When the average number of fingerprint bit
embeddings is fixed, Figure 4 shows that a larger duplicate index
renders the scheme more vulnerable to subset attacks.

5.4 Superset Attacks

Consider a superset attack where the pirated data is a superset
of tuples of a fingerprinted relation. Statistically, for those newly
added tuples, we have 50% probability to detect correct bits (purely
by chance). If we set 7 = 0.5 in fingerprinting, the superset attack
will never succeed.

5.5 Attribute Attacks

Consider an attack that adds some new attributes into a finger-
printed relation. Since T-scheme depends on an ordering over the
attributes, it must relate the new relation’s attributes to the original
relation’s attributes and recover the original ordering. E-scheme
is unaffected since fingerprint detection is element-based. As with
superset attacks, adding attributes will never succeed if 7 = 0.5.

M-scheme is affected little by the addition of attributes. Recall
that M-scheme selects two hash values, say h1 and hz, in {|H:
(K,r.A")| : i = 0,...,v — 1} that are closest to zero in con-
struction of the virtual primary key, and marks attribute(s) A; if
its(their) hash value |H1 (KC, . A;"?)] is closest to zero. Consider
that one attribute A, is added. The embedded fingerprint can be
extracted correctly if the hash value |H1 (K, 7.A5%)| does not be-
come one of the two hash values h; and ho. Theoretically, if the
distribution of hash values |H1 (I, r. A5'9)| is uniform from zero to
U (here U could be the largest integer in a computer system), the
probability that the hash value |H; (I, 7. A5'9)| becomes one of the
two hash values is max(hi, ha)/U.

If an attacker deletes some attributes from a fingerprinted rela-
tion, a similar situation holds. T-scheme must recover the original
ordering over the attributes; tuples in which the deleted attributes
were marked must be considered deleted. For E-scheme, attribute
deletion can be analyzed the same way as tuple deletion (see sub-
section 5.3). For M-scheme, fingerprint detection for some tuples

L=100, 6=1,1=0.5

T T T A4

Probability of a successful subset attack
o

10’ L L L L L ! L L L
50 55 60 65 70 75 80 85 90 95 100
Percentage of tuples deleted 100p' (%)

Figure 3: False miss rate under a subset attack
L=100, w_ =200, 1=0.5
avg

10° : 5
- §=0
—— §=1

107} o 8=5 1
—— 3=10

)

—
O‘
:

&

=
ou
S
:

Probability of a successful subset attack
o

50 55 60 65 70 75 80 85 90 95 100
Percentage of tuples deleted 100p' (%)

Figure 4: False miss rate under a subset attack

r is affected only if the deleted attributes in r have hash values that
are used in the construction of the virtual primary key.

If an attacker modifies some attributes from a fingerprinted re-
lation, the order of attributes does not change. T-scheme and E-
scheme can be analyzed the same way as in bit-flipping attacks.
M-scheme can be analyzed the same way as in attribute deletion.

Section 7 presents experimental results on attribute attacks. A
detailed statistical analysis will be provided in an extended version
of this paper.

5.6 Collusion Attacks

Fingerprinting schemes are susceptible to collusion attacks by
coalitions with access to multiple fingerprinted copies of the same
relation but with different embedded fingerprints. Members of a
coalition may be able to create a useful data copy that does not im-
plicate any member of the coalition. During fingerprint detection,
either the copy may yield the fingerprint of an innocent buyer, or it
may not yield a valid fingerprint at all.

A well-known solution to the collusion problem was proposed
by Boneh and Shaw [2], and many other solutions have been pro-
posed subsequently (e.g., [S]). These schemes focus on the choice
of codewords used by a fingerprinting scheme. They show that

by proper choice of codewords (usually very long), fingerprinting
schemes can be made collusion secure. Most of these schemes
do not address the problem of inserting or detecting fingerprints
in data, but rather apply to any embedding schemes that satisty
two properties. First, an attacker can only detect that a bit position
was used during fingerprint insertion if the attacker has data copies
that differ in value at that position. Second, although an attacker
may determine that a particular data bit was used to embed some
codeword bit, the attacker cannot determine which codeword bit it
represents.

The fingerprinting schemes discussed in this paper satisfy these
properties since both the locations of embedded bits and the rela-
tionship between codeword bits and embedded bits are hidden us-
ing a keyed pseudorandom function. Thus, we can use any of those
collusion-secure codeword schemes by replacing the hash func-
tion Ho and the subroutine detect in the fingerprinting algorithms.
The resulting fingerprinting schemes will have the collusion-secure
properties of the codeword scheme. This has been demonstrated for
T-scheme [6] using an adapted version of Boneh and Shaw’s algo-
rithm. The same arguments also apply to E-scheme and M-scheme.

5.7 Invertibility Attacks

An invertibility attack [3] discovers a fictitious secret key that
extracts a valid mark from pirated data. A pirate can use the dis-
covered key to claim legitimate ownership of the data. Alternately,
a pirate can claim innocence by claiming that a merchant used this
attack to obtain evidence of piracy. Since our marking schemes
are all symmetric [7], invertibility attacks are only relevant if the
schemes are used to embed watermarks.

Consider an invertibility attack where an attacker randomly se-
lects a secret key. The key may cause the fingerprint detection algo-
rithm to extract a random codeword from the pirated relation. The
probability of this is the same as the misdiagnosis false hit rate:

N I, B(| 7w |; wi, 0.5)

An attacker may choose parameters v, L, 7, and N to increase his
probability of success. In particular, if he selects 7 = 0.5, this
probability reduces to 2% This attack can be thwarted by requiring
(in convention or standard) long fingerprints.

5.8 Additive Attacks

In an additive attack, a traitor inserts another mark before dis-
tributing a pirated database. A traitor may insert a watermark to
claim ownership of the database and he may insert a fingerprint
to claim that the database was provided to a user legitimately. This
type of attack is discussed in [1] in the context of watermarking; the
solution they propose is applicable to our fingerprinting schemes as
well.

6. DISCUSSION

Note that a database relation is not always fingerprintable due to
the following reasons. First, if n < v'L or n < L, then the relation
does not have enough tuples to embed a fingerprint. Collusion-
secure codes are usually very long and hence are only suitable for
large databases. Other codes are not problematic since their lengths
are usually several orders of magnitude smaller than the typical
sizes of databases. For example, a fingerprint length of hundred
bits is good enough for practical use provided that collusion attacks
are not a threat. Second, if the duplicate index is infinity, then
at least one fingerprint bit cannot be embedded into data and the
embedded fingerprint is not detectable. The duplicate index can be
lowered either by decreasing £ or 4’ or by using more attributes in
construction of the virtual primary key. Third, if varying L, 7 and

139

other fingerprinting parameters is insufficient to yield low enough
false hit rate and false miss rate, then fingerprint detection is not
trustworthy.

For fingerprintable database relations, a selection of fingerprint-
ing schemes depends on the primary key and the duplicate index.
In the case that the relation has a primary key attribute and the pri-
mary key is not expected to be changed in an attack, T-scheme is
the best choice because it tends to yield the lowest duplicate index.
Roughly speaking, the lower the duplicate index, the more robust a
fingerprinting scheme.

If a database relation has no primary key attribute or the primary
key might be changed in an attack, we need to choose between
E-scheme and M-scheme. Because E-scheme tends to yield the
largest duplicate index, we often select M-scheme over E-scheme.
However, in the case that the duplicate indices of these two schemes
are the same, E-scheme could be a better choice because it supports
element-level updatability.

7. EXPERIMENTS

The experiments were performed on a Dell OPTIPLEX GX260
computer with the Windows 2000 operating system, 2 GHz Intel
Pentium 4 processor, 512 MB of memory, and a 40 GB hard disk
drive. We used the real-life Forest Cover Type dataset, available
from the University of California-Irvine KDD Archive (http://
kdd.ics.uci.edu/databases/covertype/covertype.html
). The dataset has 581,012 tuples, each with 61 attributes and no
primary key. We chose the first ten integer-valued attributes as can-
didates for fingerprinting. We focused on M-scheme unless other-
wise stated.

Figure 5 illustrates the impact that fingerprinting has on the mean
and variance of the values of marked attributes. Blank entries in the
table indicate that the variance of the attribute was unchanged. The
mean of each attribute’s values was unchanged when rounded to
the nearest integer. The minuscule change in these statistics val-
idates our assertion that fingerprint insertion is imperceptible. In
our experiments, 1/£’ is the fraction of the least significant bits in
r.A; that are used for embedding a fingerprint. Note that £ and &
are negatively correlated.

Figure 6 shows the change of duplicate index as a function of
&' and v (fraction of tuples used for fingerprinting). The larger
the parameter ¢’, the less the duplicate index §. As ¢’ increases,
more of the most significant bits are used in the construction of vir-
tual primary keys, and the likelihood of generating duplicate virtual
primary keys decreases.

Figure 7 compares M-scheme with T-scheme and E-scheme in
terms of the duplicate index. For T-scheme, we added an extra at-
tribute called id to serve as the primary key. Due to the uniqueness
of such a primary key, the duplicate index of T-scheme is closest to
zero compared with that of M-scheme and E-scheme. On the other
hand, the duplicate index of E-scheme is always infinity, indicating
that E-scheme cannot be used to fingerprint this relation.

Figures 8 and 9 report the performance of M-scheme under sub-
set attacks and attribute deletion attacks. We used the following
parameters v = 10, = 4,L = 58,7 = 0.5 and N = 1000 (N
has no effect on these results) and tested different v values. For
each value of gamma (v = 12,25, 50, 100) and tuple percentage
(1-10%), we randomly selected the percentage of tuples from the
fingerprinted dataset and tested whether the detection algorithm re-
turned the correct fingerprint. We repeated this test 100 times and
calculated the percentage of fingerprints that were detected cor-
rectly. The attribute deletion test was performed analogously.

In our experiments, fingerprint insertion took about 36 seconds
and fingerprint detection took about 13 seconds on average. In the

140

n=581,012, v=10, L=58

—— =100
\
10° b -6 - vy=50 1§
\\ —— =25
N N - y=12
| .
o \ N
x \ \
3 S
£ 4 ! '
10 ' N
©
Qo
a
=]
a
10°

Figure 6: Change of duplicate index

0% 1

T-scheme | M-scheme | E-scheme
100 0.58 6.89 infinity
50 0.61 2.70 infinity
25 0.14 1.41 infinity
12 0.07 0.75 infinity

Figure 7: Duplicate index for different fingerprinting
schemes (¢' = 4)

worst case where v = 1 (i.e., each tuple was designed to be modi-
fied), fingerprint insertion took about 42 seconds and detection took
about 14 seconds.

8. CONCLUSION

We have presented schemes for embedding and detecting finger-
prints in database relations without relying on primary keys. These
schemes can mark relations that have no primary keys and relations
which retain value even if their primary keys are altered in attacks.
We identified the duplicate and deletion problems in fingerprinting
such database relations and proposed techniques for constructing
virtual primary keys to mitigate these problems.

An interesting extension to this work is to optimize the construc-
tion of virtual primary keys. The goal is to maximize the robustness
of the fingerprinting scheme for a fixed set of fingerprinting param-
eters. Future work also includes extending our embedding scheme
so that it marks both non-numeric and numeric attributes, and de-
veloping an asymmetric version of our scheme.

9. REFERENCES

[1] R. Agrawal and J. Kiernan. Watermarking relational
databases. In Proceedings of VLDB, 2002.

D. Boneh and J. Shaw. Collusion secure fingerprinting for
digital data. IEEE Transactions on Information Theory,
44(5):1897-1905, 1998.

S. Craver, N. Memon, B.-L. Yeo, and M. M. Yeung. Resolving
rightful ownerships with invisible watermarking techniques:
Limitations, attacks and implications. IEEE Journal on
Selected Areas of Communications, 16(4):573-586, May
1998.

D. Gross-Amblard. Query-preserving watermarking of
relational databases and XML documents. In Proceedings of

(2]

(3]

(4]

= 100 50 25 12
Attribute Mean | Variance | € =24 8] 2 [4[8] 2 [4[8] 2]4]8
Elevation 2959 78391 +2 +2 -17
Aspect 156 12525
Slope 14 56
Horz-Dist-To-Hydrology 269 45177
Vert-Dist-To-Hydrology 46 3398
Horz-Dist-To-Roadways 2350 | 2431272 -34 -25 -24 +4] -1
Hillshade-9am 212 717
Hillshade-noon 223 391
Hillshade-3pm 143 1465
Horz-Dist-To-Fire-Points | 1980 | 1753490 +5 +IT] -2 +28 | -2 +3

Figure 5: Change in variance introduced by fingerprinting (After rounding to the nearest integer, the mean does not change)

the twenty-second ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, pages
191-201. ACM Press, 2003.

[5] H. Guth and B. Pfitzmann. Error and collusion secure n=581,012, v=10, L=58, &'=4
fingerprinting for digital data. In Information Hiding ‘99, ‘ ‘ ‘ ‘ ‘ ‘
LNCS 1768, Springer-Verlag, pages 134—145, 2000. 100

[6] Y. Li, V. Swarup, and S. Jajodia. Fingerprinting relational
databases. Technical report, Center for Secure Information
Systems, George Mason University, Fairfax, VA, May 2003.

[7] B.Pfitzmann and M. Waidner. Asymmetric fingerprinting for
larger collusions. In Proceedings of the ACM Conference on
Computer and Communications Security, pages 151-160,
1997.

[8] R. Sion, M. Atallah, and S. Prabhakar. Rights protection for
relational data. In Proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data, pages
98-109, 2003.

[9] N. Tran. Hiding functions and computational security of
image watermarking systems. In /5th IEEE Computer

Security Foundations Workshop, pages 295-306, 2002. 1 2 3 4 5 6 7 8 9 10
Tuples selected (%)

D N o ©
o o o o

[
[=]

Fingerprint detected (%)
[}
o

= N
o o

o

Figure 8: Fingerprint detection under subset attacks
n=581,012, v=10, L=58, £'=4

100 TN 0 mn mn W men
90t 1
gol| HI y=100 |
Bl =50
70r| [y=25 1
ol L =12 1
50t 1
40t 1
30f |
20t .
10r .
o R 1 (T | il [
9

Fingerprint detected (%)

2 3 4 5 6 7 8
Attributes selected (out of ten)

10

Figure 9: Fingerprint detection under attribute deletion at-
tacks

141

