A Compiler-Based Approach to Data Security*

F. Li!, G. Chen', M. Kandemir', and R. Brooks®

! Computer Science and Engineering Department,
The Pennsylvania State University, University Park, PA 16802
{feli, guilchen, kandemir}@cse.psu.edu
% Electrical and Computer Engineering Department,
Clemson University, Clemson, SC 29634
rrb@clemson.edu

Abstract. With the proliferation of personal electronic devices and embedded
systems, personal and financial data is more easily accessible. As a conse-
quence, we also observe a proliferation of techniques that attempt to illegally
access sensitive data without proper authorization. Due to the severe financial
and social ramifications of such data leakage, the need for secure memory has
become critical. However, working with secure memories can have perform-
ance, power, and code size overheads since accessing a secure memory involves
additional overheads for encryption/decryption and/or password checks. In ad-
dition, an application code may need to be restructured to work under such a
memory system. In this paper, we propose a compiler-directed strategy to gen-
erate code for a secure memory based embedded architecture. The idea is to let
the programmer mark certain data elements, called the seed elements, as secure
(i.e., need to be stored in secure memory), and let the compiler determine the
remaining secure elements automatically. We also address the problem of code
size increase due to our strategy. The experimental results obtained through
simulations clearly show that the proposed approach is effective in reducing the
total secure memory size. The results also indicate that it is possible to reduce
the resulting code size increase by clustering accesses to secure memory.

1 Introduction

Secure memories are those that provide a secure place for the storage of sensitive in-
formation to prevent undesired accesses. Such memories are becoming increasingly
important in many embedded systems such as smartcards, health-monitoring devices,
and PDAs that store vital personal/financial information. There are different ways of
implementing secure memories. For example, crypto-memories store data in an en-
crypted form and require decryption for data access. The password-protected memo-
ries, on the other hand, require a handshaking protocol for verifying the identity of the
requester.

Secure memories, while effective in providing data protection, have at least two
problems associated with them. First, accessing a secure memory takes more execu-
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tion cycles than accessing a non-secure (conventional) memory. The number of addi-
tional cycles for the required security checks depends on the type of the secure memory
employed, i.e., whether it is password-protected or crypto-memory. Second, secure
memory accesses consume extra energy, which may or may not be tolerated depending
on energy budget of the battery-operated embedded system under consideration. For-
tunately, in a given embedded application, not all the data elements demand security
(or at least the same level of security), and thus, not all the data elements need to be
stored in a secure memory. As an example, in an image processing application that
manipulates secure images, a certain portion of the frames can contain sensitive data
(and need to be stored in a secure memory), whereas the remaining parts can be stored
in a conventional (i.e., non-secure) memory. The problem then is to decide, given an
embedded program, the set of data elements that need to be stored in the secure mem-
ory. Since an error in making this decision can have serious consequences (as it can
compromise security of the application), it might be beneficial to automate this deci-
sion within an optimizer.

This paper proposes a compiler-directed approach to this problem. The idea is to let
the programmer mark certain data elements, called the seed elements, as secure (i.e.,
need to be stored in the secure memory), and let the compiler determine the remaining
secure elements automatically. The programmer can be conservative in determining
the seed elements; however, more accurate she is in marking such elements, the
smaller the total number of secure elements determined by the approach. It should be
noticed that, since the seed elements can be assigned to other data elements in the ap-
plication, the final set of secure elements determined by our approach is normally lar-
ger than the seed elements alone. We use a compiler-directed program analysis that
captures such assignments of seed elements and keeps track of the elements that need
to be stored in the secure memory. Since our approach determines the minimum set of
secure elements, it reduces the secure memory space required by the application. In
addition, reducing the number of secure elements both improves execution cycles and
reduces memory energy consumption. However, since secure and non-secure mem-
ory accesses typically make use of different load/store operations, one needs to be
careful in not excessively increasing the size of the generated code. To address this is-
sue, this paper also proposes and evaluates a loop iteration scheduling scheme. The
experiments with this scheduler indicate significant savings in the code memory space
requirements.

We implemented the proposed approach within an optimizing compiler and per-
formed several experiments with five embedded benchmark codes. Our experimental
results obtained through simulations clearly show that the proposed approach is effec-
tive in reducing the secure memory size, and the overheads associated with working
under secure memories.

The remainder of this paper is structured as follows. The next section gives an
overview of secure memories. Section 3 presents the details of our code and data
partitioning for secure memories. Section 4 presents results from our experimental
evaluation, and Section 5 discusses related work. Finally, Section 6 concludes the

paper.
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2 Secure Memory Background

The basic secure memory architecture consists primarily of a cryptographic engine and
a normal memory unit. The cryptographic engine facilitates the encryption/decryption
of the data transmitted between the CPU and the secure memory. Secure memories
[5,11] can additionally support mechanisms for password protection and authentication
in addition to the encryption functionality. The encryption and decryption are per-
formed based on whether a secure load/store is desired. The instruction set architec-
ture is augmented by special secure load and secure store operations. These secure
memory operations can be implemented through the use of an additional bit in the in-
struction format, which can be set by the compiler during code generation. If this bit is
set, a load operation requires the read data to be decrypted before it is fed to the
datapath, and a store operation requires the data to be encrypted before it is written into
the memory. However, normal loads and stores incur no additional performance pen-
alty as they can identify that the encryption/decryption can be bypassed early in the in-
struction decode stage. The encryption scheme typically employs block encryption that
translates a given plain text to a cipher text of the same length. Hence, there are no
complexities involved with mapping the encrypted data on to the memory.

Since the data is stored in an encrypted form, the proposed technique counteracts
other non-intrusive techniques such as microscope probing, determining electromag-
netic flux, and using laser beams [22,8]. Circumventing other unauthorized programs
from accessing the data locations is also possible in this technique. The compiler, in
addition to marking load/stores as secure, can also generate a unique encryption key
for use in the program. Consequently, even if another program uses a secure load or
store operation on an illegal location, the operation will not be permitted since the
keys would not match. The work presented in this paper can be also be defined as the
problem of determining the type of each memory operation (secure vs. non-secure).

3 Code and Data Partitioning

The main problem that makes it difficult to generate code for a memory architecture
that is composed of both secure and non-secure memories is that one does not want to
compromise any security, but at the same time one does not want to incur severe per-
formance or power overheads due to ensured security. In the following discussion, we
first list the constraints under which our compiler-driven approach operates. Follow-
ing that, we give the details for identifying the set of elements that need to be stored
in the secure memory, and the details of a scheduling scheme that can be used for
minimizing the code size increase.

3.1 Constraints

In restructuring an embedded application code for execution in a secure memory
based environment, there are three major constraints that need to be addressed:
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o Security Constraint: All sensitive data elements must be assigned to secure
memory. Note that, this is a correctness issue since failing to satisfy this con-
straint can lead to serious consequences and is not acceptable.

o Overhead Constraint: The data memory space occupied by the secure data ele-
ments must be minimized. In addition, the performance (execution cycles) and
energy overheads imposed by the secure accesses must be minimized. In fact,
this is one of the main goals of this paper.

o Code Size Constraint: The size of the generated code should not be excessively
large since this can increase the code memory demand. Both this and the previ-
ous constraint are important; but, if they are not satisfied, correctness is not af-
fected (unlike the security constraint).

It must be noted that, some of these constraints can conflict with each other. For ex-
ample, if one keeps the set of secure elements larger than necessary, this can increase
overheads but can also reduce the increase in code size (as the accesses to secure and
non-secure memories are not excessively interleaved and thus can be clustered in a
compact manner), and thus a more compact code can be generated.

3.2 Details

3.2.1 Determining Secure Elements

Our approach tries to reduce performance/energy overheads and code size under the
security constraint. That is, without compromising security, we want to reduce the
overheads to the greatest extent possible.

Our focus is on array-based embedded applications, where multi-dimensional ar-
rays are operated on using a series of nested loops. Let seed(U;) be the set of seed
elements (as specified by the programmer) from array U,. Then, the set of secure
elements, denoted secure(.), is initially set to \ seed(U,), that is, the union of all
seed(U,) sets. If an element s; of secure(.) is used on the right-hand-side (RHS) of a
statement that assigns a new value to an s; that does not currently belong to secure(.),
then we perform:

secure(.) < secure(.) Us;

In other words, the set of secure elements is augmented by sj. The main reason for
this is the possibility for some malicious entity to determine the value of si by looking
at (i.e., observing) the value of sj as well as the values of the other non-secure ele-
ments used in the assignment statement in question, if sj is not treated as secure.
Therefore, we conservatively add sj to secure(.).

However, the problem of determining whether si is actually used to update sj is not
a trivial one. This is because we are dealing with array indices that are expressed in
terms of loop iterators (and potentially loop-independent constants), which take mul-
tiple values during the course of execution. To identify such assignments carefully,
we employ a polyhedral approach that expresses loop based computations and array
accesses using Presburger formulas. Consider the following generic loop nest:

forl: 1,1,
UIR(D] — 9 U[Ry(D])
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Input: loop nests L, Ly, ... Ly;
seed(U,) for each array Uj.
Output:secure(.).

secure(.) = Wseed(U,);
changed = true;
while (changed) do
oldsecure = secure(.);
foreach loop nest £; do
foreach statement S; in £;
assume that Ref; is the LHS reference in S;;
foreach reference Ref, on the RHS of S;
E = the set of elements in secure(.) that can be
accessed by Ref;
L = the set of iterations at which Ref, accesses
elements in E;
NewS = elements accessed by Ref; in iterations L;
secure(.) = secure(.) NewS,
endfor
endfor
endfor
if (oldsecure '= secure(.)) then
changed = true;
else
changed = false;
endif
endwhile

Fig. 1. Algorithm for calculating secure(.)

In this nest, I represents a vector formed by the loop iterators from top to bottom; I
and 1, are loop bounds (also expressed as vectors); U; and Uy are arrays; R; and Ry are
array references to arrays U; and Uy, respectively (which are functions of /); and #is
a general function. Note that both U; and U; can be multi-dimensional.

Suppose now that an element of array U, say U,[x], are in the secure(.) set. To de-
termine the corresponding element from array U;, say Uj[y], that also needs to be
placed into the secure(.) set, we first determine the loop iteration L that accesses
Uil x]. That is, we find an L such that:

R(L)=x and I <L<I.,.

In the second step, we determine the element from array U; accessed by L. In
mathematical terms, we determine a y such that:

R(L)=y.
Finally, we perform:
secure(.) < secure(.) LUyl

Note that, this can easily be extended to the case where we have multiple array refer-
ences on the RHS. In this way, starting with the seed elements, our approach keeps
increasing the secure(.) set each time an assignment statement is processed. There-
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fore, the complexity of the approach is proportional to the number of the assignment
statements in the application code being analyzed. It should be noticed that, after se-
cure(.) is updated, we might have more secure elements referenced on the RHS. This
is because, it is possible that the same array element can be accessed by both the LHS
and RHS references within a given loop nest. Therefore, we need to repeat the above
process until we cannot add more elements into secure(.). We want to emphasize that
this approach tries to keep the size of the secure(.) set as small as possible. Fig. 1
gives our algorithm for calculating secure(.). In the innermost loop of this algorithm,
we first calculate the iterations, L, in which the RHS of the statement being consid-
ered accesses some elements from the current secure(.) set. Then, we add all the ele-
ments accessed by the LHS of this statement in iterations L to secure(.). It can be seen
that if secure(.) is changed after all the statements have been processed, which is indi-
cated by a boolean variable changed, we repeat the same process again for all the
statements until further processing would not add more elements to secure(). In our
implementation, these elements are determined using a polyhedral tool called the
Omega Library [13]. The Omega Library provides a set of routines for manipulating
linear constraints over integer variables, Presburger formulas, and integer tuple rela-
tions and sets.

3.2.2 Reducing Code Size
It must be noted, though, our approach explained thus far does not do any specific op-
timization for reducing the code size. In fact, it just determines the smallest set of data
elements that need to go to the secure memory (and this also helps reduce the runtime
performance overheads of working with secure memory). An important point is that,
if the accesses to secure and non-secure memories are interleaved (in the output code
generated), this can increase the resulting code size dramatically since these two types
of memories are typically accessed using different types of load instructions (distin-
guished using a bit in the instruction format), as explained in Section 2. As an exam-
ple, consider a loop nest that accesses five one-dimensional arrays, U;, U,, U;, Uy,
and Us:

fori:: 1, N

.. Uilil, Uslil, Uslil, Udlil, Usli] ...

Pi U] Uz U3 U4 U5 Iterations Ul U2 U3 U4 U5

P, s s s s s 1 s n n s s

P, s s s s n 2 n n s s n

P; s s s n s 3 n s s s K

P;, n n N n n N s s n n s
(a) (b)

Fig. 2. (a) Possible load patterns (P;) for a loop iteration that accesses five arrays. (b) Example
load patterns for different iterations. In both (a) and (b), s represents load,,.,,., and n represents
loadnnm‘ecure



194 F.Lietal.

After our approach has been applied, different loop iterations can have different
load instruction patterns from each other (i.e., different combinations of secure and
none secure loads). For each array reference, there are two possible load instructions:
loadsecure and loadnonsecure. For all the five array references in this example, there
are 32 (=25) possible load (instruction) patterns as shown in Fig. 2(a). In each row of
this figure, s (or n) means that loadsecure (or loadnonsecure) is used to load the corre-
sponding array element. The original loop nest might not be able to cover such cases
due to different load patterns exhibited by the different iterations (i.e., in generating
code, we cannot keep the original loop structure). A naive way that the compiler can
generate code is to fully unroll the original loop nest, and use the appropriate load in-
structions for each iteration. Fig. 2(b) presents such a scenario of complete unrolling.
In this figure, each row represents an iteration, and there are a total of N iterations.
The last five columns represent accesses to our five arrays, Ul, U2, U3, U4, and US.
Each row gives the load pattern for the five array references in the corresponding it-
eration. In a real environment, iteration number N could be very large, e.g., more than
one million. Consequently, the naive solution leads to considerable code expansion in
this case. At this point, one might point out that there could be some regularity in the
load patterns across the iterations. But, since the seed sets for these arrays, seed(Uk)
(1=k<5), are specified by the programmer (i.e., they can exhibit very irregular pat-
terns), the compiler might not be able to extract any regularity from the load patterns
and generate simple loop nest(s) to enumerate them. Even if this is possible, the com-
piler has to unroll all the iterations first before it can analyze the unrolled loop itera-
tions, and this could be a significant overhead for the compiler in terms of both mem-
ory space and performance.

An alternative that we employ here is a load pattern centric approach. This ap-
proach can be explained as follows. Let us first assume that there is no loop-carried
dependence in the original loop nest above. For each load pattern among the 32 possi-
bilities, we calculate the set Gi (1<i<32) containing the iterations that have that load

PAVAA) ssssn sssns nnnnn 55888 ssssn sssns nnnnn

@ @@ OIIGN®
@ @
O OO

Fig. 3. (a) Sample iteration groups when there is no loop-carried dependence. Each G; (1<i<32)
contains the iterations that have the load pattern given above the corresponding node. (b) Ex-
ample iteration groups when there are loop-carried dependences. The arrows indicate the de-
pendences
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pattern. For example, we can obtain the iteration set, G3, for load pattern P3 (sssns),
using the Omega Library. That is, using the Omega Library, we build a set that con
tains only the iterations that generate the pattern sssns. Fig. 3(a) illustrates this sce-
nario. In this figure, each node represents a set of iterations with the same pattern
(written above the node), and there are 32 nodes associated with 32 possible load pat-
terns. Once we obtain all the iteration sets Gi, we make use of the “codegen” utility
provided by the Omega Library. Given an iteration set, the Omega Library can gener-
ate the corresponding loop nest(s) that enumerates all the loop iterations in that set.
Note that, in the ideal case, each node results in a single loop nest. However, if the it-
erations in a given group could not be enumerated using a single loop nest, the Omega
Library can generate multiple nests with the same pattern, and this may lead to an in-
crease in the size of the generated code.

The approach discussed above needs some modifications when there are loop-
carried dependences. Fig. 3(b) illustrates such a scenario. In this figure, all the itera-
tions (in the nest for which code is being generated) form a layered dependence graph.
Each node G;; represents a subset of G;, the iterations that have the load pattern P;
given in Fig. 2(a). Note that, each iteration in node G;; (j>1) depends on at least some
iteration in G; ;. The arrows in the graph indicate the dependences between the
nodes. It should be emphasized that there cannot be any dependence from G;to G;;,
where j> j. Obtaining such a graph can be done in an iterative way. For each G;
(1<i<32), we determine all iterations in G; that do not depend on any other iteration,
and add them to G;;. After all the nodes in layer j have been built, we add G; j,, the it-
erations (from the remaining iterations in Gj;) that depend only on the iterations in
Gy, where j’<j. This process is repeated until all the iterations have been assigned to
the nodes in the graph. When the entire process is complete, we can schedule the
nodes of this graph using any scheduling algorithm (e.g., list scheduling). Then, using
the “codegen” utility provided by the Omega Library, we generate code for each node
(when we visit that node during scheduling). Fig. 4 gives our scheduling algorithm,

Input: dependence graph G for iteration groups
Output:loop nests that load all the elements in the iteration groups

Ready = all nodes that have no predecessor;
Scheduled = @,
while (Ready # @)
remove a node n from Ready;
codegen(n);
added n to Scheduled,
for each successor p of nin G do
if (all of p’s predecessors are in Scheduled) then
add p to Ready;
endif
endfor
endwhile

Fig. 4. Scheduling algorithm for the dependence graph of iteration groups
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which is a variant of list scheduling, in the pseudo-code format. In this algorithm, at
any scheduling step, we select a node whose all predecessors are already scheduled,
so that the dependence requirements can be observed. After selecting a node, we use
the “codegen” utility to generate the loop nest(s) that can enumerate the iterations in
the group represented by this node. As can be seen, this code generation strategy is
oriented towards reducing the number of static load operations in the generated code
(through load pattern reuse).

4 Experimental Evaluation

We implemented the proposed strategy within an optimizing compiler built upon
SUIF [2], and made experiments with five different embedded benchmark codes. Ba-
sically, our compiler reads the input code using SUIF, and fills the Omega Library
data structures with necessary information. After this, the Omega Library determines
the set of secure elements and secure loop iterations, and the collected information is
used by the compiler to construct the dependence graph between the iteration groups.
The algorithm given in Fig. 4 is invoked on this dependence graph. Each node of this
graph is processed by the Omega Library and the generated enumeration codes are
translated into the SUIF internal structures, which in turn is used for emitting the out-
put code. Table 1 shows the five embedded benchmark codes used in this study. The
second column gives a brief description of each benchmark, and the third column
gives the total data sizes (i.e., the total number of array elements manipulated by the
benchmark).

In our experiments, we use the memory access latency values shown in Table 2,
which are typical of those memories used in 3.5MHz smartcards [21]. We define the

Table 1. The benchmarks used in this study

Benchmark Brief Description Dataset Size
Med-Im04 medical image reconstruction 825.55KB
MxM triple matrix multiplication 1,173.56KB
Radar radar imaging 905.28KB
Shape pattern recognition 1.284.06KB
and shape analysis
Track visual tracking control 744.80KB

Table 2. The latency values used in our experiments

Access Type Non-secure Secure
Read 25msec 42msec

Write 50msec 67msec
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seed size as follows: (the total number of seed elements marked by the program-
mer)/(the total number of input elements). We performed experiments with different
seed sizes.

The graph in Fig. 5 gives the secure and non-secure memory sizes (percentages)
determined by our approach for different sizes of the seed set (as specified by the pro-
grammer), namely, seed sizes of 10%, 25%, and 50%. We see from these results that the
average secure memory sizes (across all applications) are 29.6%, 55.7%, and 66.9% for
the seed sizes of 10%, 25%, and 50%, respectively. Note that, if we conservatively as-
sume that all data elements are secure (i.e., without any compiler analysis), their total
sizes (as given in the last column of Table 1) would determine the required capacity

M secure O non-secure

100%
80%
60%
40%
20%

0%

Memory Space Division

Fig. 5. Memory space division between secure and non-secure components

Normalized Memory Access Time (%)

Fig. 6. Memory access time
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of the secure memory (i.e., for each bar in Fig. 5, the secure portion would be 100%).
In other words, through our compiler-directed approach, we are able to reduce the re-
quired secure memory size significantly. The graph in Fig. 6 illustrates how our ap-
proach impacts the memory access time. The experiments have been performed in a
simulation environment that models a simple five-stage pipelined embedded machine.
The values, again given for different seed sizes, are normalized with respect to the
case when all data elements are stored in and accessed from the secure memory. We
see that our approach reduces the memory access time of this naive scheme by 64.8%,
60.2%, and 58.7% for the seed sizes of 10%, 25%, and 50%, respectively. Although
not quantified here explicitly, one can also expect similar savings in energy consump-
tion as well.

After having presented our secure memory size and performance results, we next
focus on the code size increase due to our compiler-based approach. As mentioned
earlier, this increase occurs due to the requirement that we have different types of load
operations for different types of memories (i.e., secure vs. non-secure). The first bar
for each benchmark in Fig. 7 gives the percentage increase in code size when our
code re-ordering strategy explained in Section 3.2.2 is used. We see that the code size
increase incurred (with respect to the code size where all the data is stored in and ac-
cessed from non-secure memory) is about 84% when averaged over all five bench-
marks. On the other hand, the second bar for each benchmark represents the code size
increase if we use our approach without code reordering (iteration group scheduling).
In this case, we observe an average of 243% increase in code size. These results
clearly emphasize the importance of our code reordering component.

It is to be noted that the number of secure elements typically determines the capac-
ity of the secure memory in an embedded system. This size of the memory is an im-
portant consideration when the underlying secure memory employs additional fabrica-
tion steps such as metal shielding that add to the cost of the secure memory. While the
approach presented so far is very effective in achieving a reduction in the number of
secure elements, one can further reduce the secure memory space needed by consider-
ing the lifetimes of secure data elements.

B with reordering O without reordering

o 350%

N o

& 300% —

8 250% — —

§ 200% +——

3 150%

% 100%

g 509 —I

S 0%--|-¢..2 ~ | .
9o © o [$]
$E 2 § g &8

o )] =

Fig. 7. Impact of code reordering
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The main rationale behind the approach studied in this part of the paper is that not
all the secure elements are needed for the entire duration of the program execution. In
this part of our presentation, we evaluate a framework based on linear algebra to de-
termine (and increase the number of) the cases where the lifetime of two secure array
elements do not overlap with each other. When this happens, these two array elements
can share the same location in the secure memory, thereby reducing the demand in the
secure memory capacity. For array-based embedded applications, in a given loop nest,
one can define the lifetime of an array element as the difference (in loop iterations)
between the time it is first assigned (written) and the time it is last used (read). For a
given array index a (which might be multi-dimensional), the start of its lifetime is re-
ferred to as S(a), whereas the end of its lifetime is denoted using E(a) - both in
terms of loop iterations. Using these definitions, the lifetime vector for this array ele-
ment can be given as s = E(a) - S(a), where “-* denotes vector subtraction. Note that
the lifetime of a is expressed as a vector as in general there might be multiple loops in
the nest, and expressing lifetime as a vector allows the compiler to measure the im-
pact of loop transformations on it. As an example, if an array element (that is accessed
in a nest with two loops) is produced in iteration (2 2)" and consumed (i.e., last-read)
in iteration (6 7)", its lifetime vectoris s = (6 7)" - (2 2)" = (4 5)". It should be
noted that before S(a) and after E(a) the secure memory location allocated to this ar-
ray element could be used for storing another array element (which belongs to the
same array or to a different array). Obviously, the shorter the difference between E(a)
and S(a), the better, as it leaves more room for other secure elements.

As stated earlier in Section 3.2.1, the loops in an array-based program surrounding
any statement can collectively be represented using a column vector (called the itera-
tion vector) I = (i; iy ... i,,)T, where n is the number of the enclosing loops. Here, i, is
the k™ loop index from top. The loop range or affine bounds of these loops can be
described by a system of inequalities, which define a polyhedron. The integer values
that can be taken on by [/ collectively define the iteration space of the nest. In a simi-
lar fashion, data (memory) layout of an array can also be represented using a polyhe-
dron. This rectilinear polyhedron, called the index space, is delimited by array
bounds, and each integer point in it, called an array index, is represented using an in-
dex vector a = (a; a; ... am)T, where m is the number of dimensions of the array.
Based on the iteration space and index space (data space) definitions, an array access
(i.e., an array reference) can be defined as a mapping from iteration space to index
space, and can be described as GI + o. Assuming a nest with n loops that accesses an
array of m dimensions, in the expression above, I denotes the iteration vector, G is an
m x n matrix (called the access matrix or the reference matrix, and o is an m-entry
constant vector (called the offset vector) [26]. As an example, in a nest with two
loops (i; and i) that contains array reference X;[i;+2][i;-3], G is two-by-two identity
matrix and 0 = (2 -3)".

The application of a loop transformation represented by a square, non-singular ma-
trix T can be accomplished in two steps [26]: (i) re-writing loop body and (ii) re-
writing loop bounds. For the first step, assuming that / is the original iteration vector
and J = TI is the new (transformed) iteration vector, each occurrence of I in the loop
body is replaced by T'J (note that T is invertible as the transformation must be one-
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Fig. 8. Impact of lifetime analysis

to-one). In other words, an array reference represented by GI+o is transformed to GT
[1+o. Determining the new loop bounds, however, is more complicated and, in general,
may require the use of complex methods such as Fourier-Motzkin elimination (a
method for solving an affine system of inequalities [26, 3]). One can see that applica-
tion of a loop transformation changes the execution order of loop iterations and, con-
sequently, the order in which array elements are accessed. As a result, a loop trans-
formation 7 changes the lifetime vectors as well.

In more technical terms, let s = I, — I; be the original lifetime vector for an array
element, where [ is the first iteration that accesses the array element, and I, the last
access. After applying 7, we have I,” = T, and I,” = TI;. Now, we have:

s’=1"-I=TI,-Tl,=T (I, - I,).

That is, if s is the original lifetime vector, s’ is the transformed lifetime vector. Our
objective is then to select a suitable 7 such that s’ = (000 ... 0 0 1)" for as many ar-
ray references that access secure elements as possible. In other words, we want to
achieve the minimum lifetime vector. Note that, while a more sophisticated imple-
mentation can try other lifetime vectors as well (for s’) — as long as they are smaller
than the original lifetime vector s — in this paper we restrict ourselves to s’ = (000 ...
00 I)T. Obviously, a loop transformation (7)) must also preserve the data dependences
in the code. In our approach, when we determine a candidate loop transformation, we
check whether it preserves data dependences in the code; if it does not, we drop it
from consideration.

The memory space results with the lifetime analysis are presented in Fig. 8. All the
applications in our experimental suite show significant improvements when the life-
time analysis for secure array elements explained above is used. That is, when appli-
cable, the lifetime analysis of secure elements can be very effective in practice. On an
average, using lifetime analysis reduces the secure memory size by 15.3% over our
base approach that does not employ any lifetime analysis.
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5 Related Work

Several prior efforts address the problem of secure remote execution using a circuit
based model as part of the general problem of confidentiality [1,9,27,28]. The integ-
rity of the computation is the ability of the circuit owner to verify the correctness of
the execution of the circuit. This problem has been widely studied from the general
reliability angle but not from the viewpoint of a malicious server. In a framework
proposed by [23,24], the privacy of a function is assured by an encrypting transforma-
tion on that function. Yee [29] suggested proof-based techniques in which the un-
trusted host has to forward a proof of correctness of execution together with the result.
In [17,18], a function is encrypted using error coding and sent to the untrusted host
that provides the cleartext input. The enciphered output generated by the host is then
sent back to the original host, where it is decrypted and the result is verified. The de-
crypted result matches the result which would have been obtained if the original func-
tion had been directly applied to the cleartext input. The authors argue for the need of
tamper proof hardware (TPH) to store and provide the control flow between the nu-
merous functions that make up a program. Control flow is located on the TPH and is
supplied to the untrusted host. In contrast to these studies, our work is more oriented
towards using secure memory in an embedded system. Techniques similar to our use
of the Omega Library have been suggested in [19] and [20] in an entirely different
context (optimizing data cache locality and interprocessor communication). Slicing
[25] is a well-studied program analysis technique that can be used for different opti-
mization goals. In comparison to these studies, our approach targets secure access to
data with minimal performance and power overheads.

6 Conclusions

The need for protecting sensitive data from illegal access has resulted in the adoption of
secure memories in embedded systems such as smartcards. It is anticipated that securing
data will become important for other embedded systems and applications as well. This
is because ensuring data security can impose overheads such as increased memory cost,
code size, reduced performance or higher power consumption. This work focuses on
transforming code structures, with the help of a polyhedral tool, to minimize these over-
heads when selectively protecting sensitive data identified by the programmer. Experi-
mental results demonstrate that the proposed approach provides required data security
by keeping the performance and code size overheads under control.
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