
A White-Box DES Implementation
for DRM Applications�

Stanley Chow1, Phil Eisen1, Harold Johnson1, and Paul C. van Oorschot2

1 Cloakware Corporation, Ottawa, Canada
{stanley.chow,phil.eisen,harold.johnson}@cloakware.com

2 School of Computer Science, Carleton University, Ottawa, Canada
vanoorschot@scs.carleton.ca

Abstract. For digital rights management (drm) software implementa-
tions incorporating cryptography, white-box cryptography (cryptograph-
ic implementation designed to withstand the white-box attack context) is
more appropriate than traditional black-box cryptography. In the white-
box context, the attacker has total visibility into software implementa-
tion and execution. Our objective is to prevent extraction of secret keys
from the program. We present methods to make such key extraction diffi-
cult, with focus on symmetric block ciphers implemented by substitution
boxes and linear transformations. A des implementation (useful also for
triple-des) is presented as a concrete example.

1 Introduction

In typical software digital rights management (drm) implementations, crypto-
graphic algorithms are part of the security solution. However, the traditional
cryptographic model – employing a strong known algorithm, and relying on the
secrecy of the cryptographic key – is inappropriate surprisingly often, since the
platforms on which many drm applications execute are subject to the control of
a potentially hostile end-user. This is the challenge we seek to address.

A traditional threat model used in black-box symmetric-key cryptography is
the adaptive chosen plaintext attack model. It assumes the attacker does not
know the encryption key, but knows the algorithm, controls the plaintexts en-
crypted (their number and content), and has access to the resulting ciphertexts.
However, the dynamic encryption operation is hidden – the attacker has no
visibility into its execution.

We make steps towards providing software cryptographic solutions suitable in
the more realistic (for drm applications) white-box attack context: the attacker
is assumed to have all the advantages of an adaptive chosen-text attack, plus full
access to the encrypting software and control of the execution environment. This
includes arbitrary trace execution, examining sub-results and keys in memory,
performing arbitrary static analyses on the software, and altering results of sub-
computation (e.g. via breakpoints) for perturbation analysis.
� This research was carried out at Cloakware.

J. Feigenbaum (Ed.): DRM 2002, LNCS 2696, pp. 1–15, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.GENERAL ----------------------------------------File Options:     Compatibility: PDF 1.2     Optimize For Fast Web View: Yes     Embed Thumbnails: Yes     Auto-Rotate Pages: No     Distill From Page: 1     Distill To Page: All Pages     Binding: Left     Resolution: [ 600 600 ] dpi     Paper Size: [ 439 666.2 ] PointCOMPRESSION ----------------------------------------Color Images:     Downsampling: Yes     Downsample Type: Bicubic Downsampling     Downsample Resolution: 150 dpi     Downsampling For Images Above: 225 dpi     Compression: Yes     Automatic Selection of Compression Type: Yes     JPEG Quality: Medium     Bits Per Pixel: As Original BitGrayscale Images:     Downsampling: Yes     Downsample Type: Bicubic Downsampling     Downsample Resolution: 150 dpi     Downsampling For Images Above: 225 dpi     Compression: Yes     Automatic Selection of Compression Type: Yes     JPEG Quality: Medium     Bits Per Pixel: As Original BitMonochrome Images:     Downsampling: Yes     Downsample Type: Bicubic Downsampling     Downsample Resolution: 600 dpi     Downsampling For Images Above: 900 dpi     Compression: Yes     Compression Type: CCITT     CCITT Group: 4     Anti-Alias To Gray: No     Compress Text and Line Art: YesFONTS ----------------------------------------     Embed All Fonts: Yes     Subset Embedded Fonts: No     When Embedding Fails: Warn and ContinueEmbedding:     Always Embed: [ ]     Never Embed: [ ]COLOR ----------------------------------------Color Management Policies:     Color Conversion Strategy: Convert All Colors to sRGB     Intent: DefaultWorking Spaces:     Grayscale ICC Profile:      RGB ICC Profile: sRGB IEC61966-2.1     CMYK ICC Profile: U.S. Web Coated (SWOP) v2Device-Dependent Data:     Preserve Overprint Settings: Yes     Preserve Under Color Removal and Black Generation: Yes     Transfer Functions: Apply     Preserve Halftone Information: YesADVANCED ----------------------------------------Options:     Use Prologue.ps and Epilogue.ps: No     Allow PostScript File To Override Job Options: Yes     Preserve Level 2 copypage Semantics: Yes     Save Portable Job Ticket Inside PDF File: No     Illustrator Overprint Mode: Yes     Convert Gradients To Smooth Shades: No     ASCII Format: NoDocument Structuring Conventions (DSC):     Process DSC Comments: NoOTHERS ----------------------------------------     Distiller Core Version: 5000     Use ZIP Compression: Yes     Deactivate Optimization: No     Image Memory: 524288 Byte     Anti-Alias Color Images: No     Anti-Alias Grayscale Images: No     Convert Images (< 257 Colors) To Indexed Color Space: Yes     sRGB ICC Profile: sRGB IEC61966-2.1END OF REPORT ----------------------------------------IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<<     /ColorSettingsFile ()     /AntiAliasMonoImages false     /CannotEmbedFontPolicy /Warning     /ParseDSCComments false     /DoThumbnails true     /CompressPages true     /CalRGBProfile (sRGB IEC61966-2.1)     /MaxSubsetPct 100     /EncodeColorImages true     /GrayImageFilter /DCTEncode     /Optimize true     /ParseDSCCommentsForDocInfo false     /EmitDSCWarnings false     /CalGrayProfile ()     /NeverEmbed [ ]     /GrayImageDownsampleThreshold 1.5     /UsePrologue false     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /AutoFilterColorImages true     /sRGBProfile (sRGB IEC61966-2.1)     /ColorImageDepth -1     /PreserveOverprintSettings true     /AutoRotatePages /None     /UCRandBGInfo /Preserve     /EmbedAllFonts true     /CompatibilityLevel 1.2     /StartPage 1     /AntiAliasColorImages false     /CreateJobTicket false     /ConvertImagesToIndexed true     /ColorImageDownsampleType /Bicubic     /ColorImageDownsampleThreshold 1.5     /MonoImageDownsampleType /Bicubic     /DetectBlends false     /GrayImageDownsampleType /Bicubic     /PreserveEPSInfo false     /GrayACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>     /ColorACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>     /PreserveCopyPage true     /EncodeMonoImages true     /ColorConversionStrategy /sRGB     /PreserveOPIComments false     /AntiAliasGrayImages false     /GrayImageDepth -1     /ColorImageResolution 150     /EndPage -1     /AutoPositionEPSFiles false     /MonoImageDepth -1     /TransferFunctionInfo /Apply     /EncodeGrayImages true     /DownsampleGrayImages true     /DownsampleMonoImages true     /DownsampleColorImages true     /MonoImageDownsampleThreshold 1.5     /MonoImageDict << /K -1 >>     /Binding /Left     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)     /MonoImageResolution 600     /AutoFilterGrayImages true     /AlwaysEmbed [ ]     /ImageMemory 524288     /SubsetFonts false     /DefaultRenderingIntent /Default     /OPM 1     /MonoImageFilter /CCITTFaxEncode     /GrayImageResolution 150     /ColorImageFilter /DCTEncode     /PreserveHalftoneInfo true     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /ASCII85EncodePages false     /LockDistillerParams false>> setdistillerparams<<     /PageSize [ 576.0 792.0 ]     /HWResolution [ 600 600 ]>> setpagedevice



2 Stanley Chow et al.

Our main goal is to make key extraction difficult. While an attacker con-
trolling the execution environment can clearly make use of the software itself
(e.g. for decryption) without explicitly extracting the key, forcing an attacker to
use the installed instance at hand is often of value to drm systems providers. How
strong an implementation can be made against white-box threats is unknown.
We presently have no security proofs for our methods. Nonetheless, regardless
of the security of our particular proposal, we believe the general approach of-
fers useful levels of security in the form of additional protection suitable in the
commercial world, forcing an attacker to expend additional effort (compared to
conventional black-box implementations). Our goal is similar to Aucsmith and
Graunke’s split encryption/decryption [1]; the solutions differ.

White-box solutions are inherently (and currently, quite significantly) bulkier
and slower than black-box cryptography. These drawbacks are offset by ad-
vantages justifying white-box solutions in certain applications. Software-only
white-box key-hiding components may be cost-effectively installed and updated
periodically (cf. Jakobsson and Reiter [8]), whereas smart cards and hardware
alternatives can’t be transmitted electronically. Hardware solutions also cannot
protect encryption within mobile code. While white-box implementations are
clearly not appropriate for all cryptographic applications (see [4]), over time, we
expect increases in processing power, memory capacity and transmission band-
width, along with decreasing costs, to ameliorate the efficiency concerns.

In black-box cryptography, differences in implementation details among func-
tionally equivalent instances are generally irrelevant with respect to security
implications. In contrast, for white-box cryptography, changing implementation
details becomes a primary means for providing security. (This is also true, to
a lesser extent, for cryptographic solutions implemented on smart cards and
environments subject to so-called side-channel attacks.)

In this paper, we focus on general techniques that are useful in producing
white-box implementations of Feistel ciphers. We use des (e.g. see [11]) to pro-
vide a detailed example of hiding a key in the software. des-like ciphers are chal-
lenging in the white-box context since each round leaves half the bits unchanged
and the expansions, permutations and substitution boxes are very simple (and
known). We propose techniques to handle these problems.

We largely ignore space and time requirements in the present paper, noting
only that white-box implementations have been successfully used in commercial
practice. In the present paper we restrict attention to the embedded (fixed) key
case; dynamic-key white-box cryptography is the subject of ongoing research.
The motivation for using des is twofold: (1) des needs only linear transforma-
tions and substitution boxes, simplifying our discussion; and (2) our technique
readily extends to triple-des which remains popular. We outline a white-box
implementation for aes [5] elsewhere – see Chow et al. [4], to which we also refer
for further discussion of the goals of white-box cryptography, related literature,
and why theoretical results such as that of Barak et al. [2] are not roadblocks to
practical solutions.



A White-Box DES Implementation for DRM Applications 3

Following terminology and notation in §2, §3 outlines basic white-box con-
struction techniques. §4 presents a blocking method for building encoded net-
works. §5 provides an example white-box des implementation, with a recom-
mended variant discussed in §5.3. Concluding remarks are found in §6.

2 Terminology and Notation

We follow the terminology of Chow et al. [4]. A major concept used is the
encoding of a transformation. In our work, examples of transformations include
a substitution-box (S-box or lookup table) as well as the overall des function.
Input/output encodings are used to protect these transformations as follows.

Definition 1 (encoding) Let X be a transformation from m to n bits. Choose
an m-bit bijection F and an n-bit bijection G. Call X ′ = G◦X ◦F−1 an encoded
version of X. F is an input encoding and G is an output encoding.

〈v1, v2, v3, . . . , vk〉 is a k-vector with elements vi; context indicates whether
elements are bits. vi is the ith element; vi··j is the sub-vector containing elements
i through j. kv denotes explicitly that v has k elements. ke is any vector with
k elements (mnemonically: an entropy-vector); kei is its ith element, and kei···j
is the subvector from its ith to its jth element. x‖y is the vector concatenation
of vectors x, y. x ⊕ y denotes their bitwise xor.

Transformations may have wide inputs and/or outputs (in the des construc-
tion, some are 96 bits input and output). To avoid huge tables, we construct
encodings as the concatenation of smaller bijections. Consider bijections Fi of
size ni, where n1 + n2 + . . . + nk = n. Having used ‖ for vector concatenation,
we analogously use ‖ for function concatenation as follows.

Definition 2 (concatenated encoding) The function concatenation F1‖F2‖
. . . ‖Fk is the bijection F such that, for any n-bit vector b = (b1, b2, . . . , bn),
F (b) = F1(b1,. . ., bn1)‖F2(bn1+1,. . ., bn1+n2)‖ . . . ‖Fk(bn1+...+nk−1+1,. . ., bn). For
such a bijection F , plainly F−1 = F−1

1 ‖F−1
2 ‖ . . . ‖F−1

k . Such an encoding F is
called a concatenated encoding.

Generally, output of a transformation will become the input to another subse-
quent transformation, which means the output encoding of the first must match
the input encoding of the second as follows.

Definition 3 (networked encoding) A networked encoding for computing Y
◦ X (i.e. transformation X followed by transformation Y ) is an encoding of the
form: Y ′ ◦ X ′ = (H ◦ Y ◦ G−1) ◦ (G ◦ X ◦ F−1) = H ◦ (Y ◦ X) ◦ F−1.

P ′ denotes an encoded implementation derived from function P . To empha-
size that P maps m-vectors to n-vectors, we write n

mP . For a matrix M , n
mM

indicates that M has m columns and n rows. (These notations naturally corre-
spond, taking application of M to a vector as function application.)



4 Stanley Chow et al.

n
mE (mnemonic: entropy-transfer function) is any function from m-vectors to

n-vectors which loses no bits of information for m ≤ n and at most m − n bits
for m > n. A function n

nf which is not an instance of n
nE is lossy.

An affine transformation (at) is a vector-to-vector function V defined for all
me by n

mV (me) = n
mMme + nd (concisely: V (e) = Me + d). M is a constant

matrix, and d a constant displacement vector, over gf(2). If A and B are ats,
then so are A‖B and A ◦ B where defined.

3 Producing Encoded Implementations

des consists of permutations, S-box lookups and xor operations, as is well known
(e.g. [11]). Our approach is to apply encodings to each of these steps. For S-box
lookups and xor operations, encoding each operation (along with its input and
output) seems to increase security adequately within our context. For the various
permutations (bit re-orderings), the problem is more difficult.

As these permutations are, by nature, very simple, it is difficult to hide the
information being manipulated. To access more tools, we find it convenient to
change the domain from bit re-orderings to linear algebra. We first express each of
the des permutations and bitwise xor operations as ats. While the resulting ats
are still very simple and fail to hide information well, the idea is that subsequent
use of non-linear encoding (see §4) significantly changes the situation.

3.1 Techniques for Tabularizing Functions

We produce implementations of conventional ciphers as networks of substitution
boxes (lookup tables). Since ats are easy to compose or decompose, we obfus-
cate even subnetworks representing affine subcomputations by using non-affine
substitution boxes. In this section we describe several building-blocks useful for
such implementations. We will use all of these except Combined Function
Encoding in our des example.

Partial Evaluation. If part of the input to P is known at implementation
creation time, we can simply input the known values to P ′ and pre-evaluate all
constant expressions. For example, in the fixed-key case where the key is known
in advance, pre-evaluate all operations involving the key. For des this essentially
means replacing the standard S-boxes with round-subkey-specific S-boxes.

Mixing Bijections. We diffuse information over multiple bits as follows.

Definition 4 (mixing bijection) A mixing bijection n
nV is a randomly chosen

n × n bijective at.

In des, for example, the permutations, represented as ats, have very sparse
matrices (i.e., contain mostly zero entries): one or two 1-bits per row or column.
To diffuse information over more bits, rewrite such a permutation P as J ◦ K



A White-Box DES Implementation for DRM Applications 5

where K is a mixing bijection and J = PK−1, replacing a sparse matrix by
two non-sparse ones with high probability. This is advantageous in subsequent
de-linearizing encoding steps (see §4).

I/O-Blocked Encoding. For large m, encoding an arbitrary function n
mP as

a substitution box for P ′ = G ◦ P ◦ F−1 takes too much space (box size varies
exponentially with m). For large n, the same problem arises for P ′’s successors.
We must therefore divide P ’s input into a-bit blocks (m = ja), and its output
into b-bit blocks (n = kb). Let m

mJ and n
nK be mixing bijections. Randomly

choose encoding bijections for each input and output block: a
aF1, . . . ,

a
aFj and

b
bG1, . . . ,

b
bGk. Define FP = (F1‖ · · · ‖Fj) ◦ J and GP = (G1‖ · · · ‖Gk) ◦ K, and

then P ′ = GP ◦P ◦F−1
P as usual. (See §4 for methods used to represent wide-input

ats such as J, K above by networks of substitution boxes.)
This permits us to use networked encoding (def. 3) with a ‘wide I/O’ linear

function in encoded form, because as a preliminary step before encoding, we need
only deal with J and K (i.e., we replace P by K ◦ P ◦ J−1), using the smaller
blocking factors of the Fi and Gi. That is, if the input to P is provided by an at
X, and the output from P is used by an at Y , we use J ◦X and Y ◦K−1 instead.
Then the input and output coding of the parts can ignore J and K – they have
already been handled – and deal only with the concatenated non-linear partial
I/O encodings F1‖ · · · ‖Fj and G1‖ · · · ‖Gk, which conform to smaller blocking
factors easily handled by substitution boxes. This easily extends to non-uniform
I/O blocked encoding (where blocks vary in size).

Combined Function Encoding. For functions P and Q that happen to be
evaluated together, we could choose an encoding of P‖Q such as G◦(P‖Q)◦F−1.
Essentially, we combine P and Q into a single function, then encode the combined
input and output. The encoding mixes P ’s input and output entropy with Q’s,
ideally making it harder for an attacker to determine the components P and Q.
Note that this differs from concatenated encoding (def. 2) in how the encoding
is applied. Here, the encoding applies to all components as a single unit.

By-Pass Encoding. Generally, an encoded transform implementation should
have a wider input and/or output than the function it implements, to make
transform identification difficult. For example, for n

mP to have a extra bits at
input and b extra bits at output, a ≥ b, encode n+b

m+aP ′ as G ◦ (P‖ b
aE) ◦ F−1. b

aE
is the by-pass component of P ′.

Split-Path Encoding. To encode a function n
mP , use a concatenation of two

separate encodings: for a fixed function R and all me, define n+k
m Q(me) =

P (me)‖ k
mR(me). The effect is that, if P is lossy, Q may lose less (or no) in-

formation. We sometimes use this technique to achieve local security (see §3.2.)



6 Stanley Chow et al.

3.2 Substitution Boxes and Local Security

We can represent a function n
mP by a substitution box (S-box) or lookup table:

an array of 2m n-bit entries. To compute P (x), find the array entry indexed by
the binary magnitude x. The exponential growth in S-box size with its input
width limits S-boxes to the representation of narrow input functions.

When the underlying P is bijective, the encoded S-box for P ′ is locally secure:
it is not possible to extract useful information by examining the encoded S-box
alone, since given an S-box for P ′, every possible bijective P is a candidate.
(This is similar to a Vernam cipher c = m ⊕ k, where given ciphertext c, every
plaintext is a candidate m because for each, some key k exists whose xor with
m yields c.) This means only that successful attacks must be non-local.

The lossy case is not locally secure. When a lossy encoded function f is
represented as an S-box, its inverse relation f−1 relates each output element to
a set of bit-vectors, thus locally partitioning f ’s domain. Leaking this partition
can provide enough information to allow subsequent non-local attacks such as
the one in the Statistical Bucketing Attack subsection of §5.4.

4 Wide-Input Encoded ATs: Building Encoded Networks

Constructing an S-box with wide-input, say 96 bits (or even 32), consumes im-
mense amounts of storage. Thus in practice, a wide-input encoded at cannot be
represented by a single S-box. Networks of S-boxes, however, can be constructed
to do so. The following construction handles ats in considerable generality, in-
cluding compositions of ats, and for a wide variety of ats of the form n

mA
encoded as n

mA′. A network’s form can remain invariant aside from variations in
the bit patterns within its S-boxes.

For an at A, we partition the matrix and vectors into blocks, yielding well-
known formulas using the blocks from the partition which subdivide the compu-
tation of A. We can then use (smaller) S-boxes to encode the functions defined
by the blocks, and combine the result into a network using techniques from §3.1,
so that the resulting network is an encoding of A.

Consider an at A, defined by n
mA(me) = n

mM me + nd for all me. Choose
partition counts m# and n# and sequences 〈m1, . . . , mm#〉 and 〈n1, . . . , nn#〉,
such that

∑m#
1 mi = m and

∑n#
1 ni = n. The m-partition partitions the inputs

(and columns of M); the n-partition partitions d and the outputs. Block (i, j) in
partitioned M contains mi columns and nj rows; partition i of the input contains
mi elements; and partition j of d or the output contains nj elements.

At this point, it is straightforward to encode the components (of the network
forming A) to obtain an encoded network, by the methods of §3.1, and then
represent it as a network of S-boxes (see §3.2.) In such a network, no subcom-
putations are linear; each is encoded and represented as a non-linear S-box.

A naive version of this network of S-boxes is a forest of n# trees of binary
‘vector add’ S-boxes (m#(m# − 1) ‘vector add’ nodes per tree). At the leaves
are m# unary ‘constant vector multiply’ nodes. At the root is a binary ‘vector
add’ node (for no displacement), or a unary ‘constant vector add’ node. These



A White-Box DES Implementation for DRM Applications 7

constant unary nodes can be optimized away by composing them into their
adjacent binary ‘vector add’ nodes, saving the space for their S-boxes.

A potential weakness of this entire approach is that the blocking of A may
produce blocks (e.g. zero blocks) which convert to S-boxes whose output con-
tains none, or little, of their input information. This narrows the search space
for an attacker seeking to determine the underlying at from the content and be-
havior of the network. However, such blocked implementations appear to remain
combinatorially difficult to crack, especially if the following proposal is used.

Addressing the Potential Weakness. Encode n
mA via n

mA1 and m
mA2, with

mixing bijection (see def. 4) A2 and A1 = A ◦ A−1
2 . Encode A1, A2 separately

into S-box networks using this matrix and vector blocking method, connecting
outputs of A′

2’s representation to inputs of A′
1’s, thus representing A′ = A′

1 ◦A′
2.

While this helps, in general it is not easy to eliminate m × n blocks which
lose more bits of input information than the minimum indicated by m and n.
For example, if we partition a non-singular matrix kn

knM into k × k blocks, some
k×k blocks may be singular. Therefore, some information about an encoded at
may leak in its representation as a blocked and de-linearized network of S-boxes
when this blocking method is used.

5 A White-Box DES Implementation Example

We now construct an embedded, fixed-key des implementation. We begin with
a simple construction having weaknesses, in both security and efficiency. These
are addressed in §5.3.

des is performed in 16 rounds, each employing the same 8 des S-boxes (dsbs),
S1, . . .S8, and the same ats, sandwiched between initial and final ats (the initial
and final permutations). Each dsb is an instance of 4

6E (see e.g. [11]). Fig. 1(a)
shows an unrolling of 2 des rounds. The round structure implements a Feistel
network with a by-pass left-side data-path (Lr, Lr+1, Lr+2) and active right-side
data-path (everything else in the figure). Kr is the round-r subkey.

5.1 Replacing the DES SBs

Fig. 1(b) shows the modified implementation of the two rounds. Each round is
represented by 12 ‘T-boxes’ (see Preparing. . . below). (Each such group of 12
is denoted by an r

KT in Fig. 1(c).) Between rounds, the left and right sides are
combined into one 96-bit representation. Each round’s rM2 transform subsumes
the P-Box, round-key xor, side flip and Expansion after the round-r S-box step
(for details, see The Transfer Functions in §5.2).

As shown in Fig. 1(c), a transform M1 is needed for an initial input expansion
from 64 to 96 bits. Likewise a transform M3 is needed to reduce the final output
size. (M0 and M4 are discussed in §5.3: Recommended Variant.)

Eliminating the Overt Key by Partial Evaluation. In each round, a dsb’s
input is the xor of ‘unpredictable’ information (i.e. data), and ‘predictable’ in-



8 Stanley Chow et al.

L r rR

L r+1 rR +1

L r+2 r+2R

Expansion

S1 S8
...

rK +1

P−Box

Expansion

S1 S8
...

rK

P−Box

M 2
r

TK
r

r+1 TK

}

}

(a) Two Rounds of DES

}

De−Linearization and Encoding
(b) Two Modified DES Rounds Before

96

8

+1r
TK 1

8

8

r+1
K 2T

8

8

r+1 TK 3

8

8

8

r+1
K 12T. . .

M 2

r

96

96

8

8

K
T12

r

8

8

K
T3

r

8

8

K
T2

r

8

8

K
T1

r . . .

96

M4M3M2
16TK

16
96 96 96 64 64

M0 M1 T1
K M2

1
64 64 96 96 96

...
(c) Modified DES Before De−Linearization and Encoding

Fig. 1. Original and Modified DES

formation (from the algorithm and the key). We can merge the ‘predictable’
information and the dsbs into new S-boxes dependent on the key and round.
The new S-boxes are identified as r

KSi. Here K is the encryption key, r is the
round number, and i is the corresponding dsb number, such that, for any given



A White-Box DES Implementation for DRM Applications 9

input, r
KSi yields the same result as Si would produce in round r if the des key

were K, but the xors of the inputs of the original dsbs have been eliminated
(see Partial Evaluation in §3.1). Each of the 16 × 8 = 128 r

KSi’s is still in 4
6E

form (6 input bits, 4 output bits).
At this point, the overt key K has disappeared from the algorithm: it is

represented in the contents of the r
KSi’s. This permits us to remove the xors

(“⊕”) with the inputs to S1, . . . ,S8 shown in Fig. 1(a).

Preparing the Modified DSBs for Local Security. In grey-box (smart
card) implementations of des, the dsbs are now known to be effective sites for
statistical attacks. To make such attacks more difficult in a white-box imple-
mentation, we prefer to employ S-boxes which are locally secure (see §3.2). This
implies replacing lossy S-boxes with something bijective. We convert the lossy
r
KSi’s into 8

8E form using split-path encoding (see §3.1) as follows. Define

r
KTi(8e) = r

KSi(8e1··6)‖ R(8e)

for all 8e, fixed key K, rounds r = 1, . . . , 16, and S-box number i = 1, . . . , 8.
Here we also define R(8e) = 〈 8e1, 8e6, 8e7, 8e8 〉 for all 8e.

The first six bits of the input of a r
KTi will be the 6-bit input to dsb i in

round r. We then add two extra input bits. The left 4-bit half of the output of
a r

KTi is the output of dsb i in round r, and the right 4-bit half contains the
first and last input bits of dsb i in round r followed by the two extra input bits.
That is, the right half of the output contains copies of four of the input bits.

Each r
KTi is a bijection, as the function Fa,b,c,d defined for any constant

bits a, b, c, d by Fa,b,c,d(4e) = r
KTi(〈a〉‖4e‖〈b, c, d〉) is a bijection. (Every row of

every dsb contains a permutation of 〈0, . . . , 15〉, with the row selected by the bits
corresponding to a, b above. The xor with the relevant bits of key K effectively
re-orders this permutation into a new one. The output of Fa,b,c,d is therefore
a bijection mapping the 4e according to a 1-to-1 mapping of the input space
determined by a permutation. Since r

KTi simply copies the bits corresponding
to a, b, c, d to the output, r

KTi preserves all of its input entropy, i.e. is a bijection.)

Providing 64 Bits of By-Pass Capacity. In our construction, we wish to hide
the difference between the left and right Feistel data-path sides, so each rM2
expects more than just 32 bits of S-box outputs. Both the left and (unchanged)
right sides are needed. We refer to this as needing 64 bits of by-pass.

As converted above, each r
KTi carries 8 bits to the next rM2: 4 bits of S-box

output, 2 bits from the right side and 2 bits that can be chosen to be from the
left. This means 8 T -boxes will carry only 16 bits from the left and 16 from the
right. Thus the by-pass capacity of the r

KTi’s is deficient by 32 bits.
Therefore we add four more S-boxes per round, designated r

KT9, . . . ,
r
K T12.

Each is a bijective at of 8 bits to 8 bits. These extra S-boxes are at’s to make it
easier to access the bypassed bits for subsequent processing. (Subsequent steps
will de-linearize every S-box, so use of ats for these by-pass paths need not



10 Stanley Chow et al.

compromise security.) These extra S-boxes provide the remaining 32 bits, 16
bits each of right-side and left-side by-pass capacity.

5.2 Connecting and Encoding the New SBs to Implement DES

Data-flow for our des implementation just before at de-linearization and S-box
encoding (§3.1, §3.2) is shown in Figs. 1(b,c). After de-linearization and encoding,
M0 and M4 are composed with their diagrammatically adjacent transforms and
all M’s and T’s are replaced with corresponding M′’s and T′’s. Except for this
composition and addition of “ ′ ” characters (indicating de-linearized, encoded
functionality, including, where required, the ‘anti-sparseness’ treatment in The
Transfer Functions below), the figures are unchanged.

Data-Flow and Algorithm. Before de-linearization and encoding, each Mi or
rMi is representable as a matrix, with forms 96

64M1, 64
96M3, and, for each round’s

rM2, 96
96M2. (See §5.1, and for more details The Transfer Functions below.)

In Figs. 1(b,c), arrows represent data-paths and indicate their direction of
data-flow. The italic numbers 8, 64, and 96 denote the length of the vectors
traversing the data path arrow next to them. The appearance of rows of r

KTi’s
in order by i in Fig. 1(b) does not indicate any ordering of their appearance in
the implementation. The intervening rM2 transformations can handle any such
re-ordering.

The Transfer Functions. In constructing M1, rM2’s, and M3, we must deal
with the sparseness of the matrices for the ats used in standard des. The bit-
reorganizations, such as the Expansion and P-box transforms in Fig. 1(a), are
all 0-bits except for one or two 1-bits in each row and column. The xor op-
erations (“⊕” in Fig. 1(a)) are similarly sparse. Therefore, we use the method
proposed for handling sparseness in §4’s Addressing the Potential Weak-
ness: doubling the implementations into two blocked implementations, with the
initial portion of each pair being a mixing bijection. We will regard this as part
of the encoding process, and discuss the nature of the Mi’s prior to this ‘anti-
sparseness’ treatment.

The following constructions are straightforward, all involving only various
combinations, compositions, simple reorganizations, and concatenations of ats.

M1 combines the following: (1) the initial permutation of des; (2) the Ex-
pansion (see Fig. 1(a)), modified to deliver its output bits to the first six inputs
of each 1

KTi; combined with (3) the delivery of the 32 left-side data-path bits to
be passed through the by-pass provided by inputs 7 and 8 of 1

KT1, . . . ,
1
KT8 and

16 bits of by-pass provided at randomly chosen positions in the four ‘dummies’,
1
KT9, . . . ,

1
KT12, all in randomly chosen order.

rM2 for each round r combines the following: (1) the P-box transform (see
Fig. 1(a)); (2) the xor of the left-side data with the P-box output; (3) extraction
of the original input of the right-side data-path; (4) the round’s Expansion



A White-Box DES Implementation for DRM Applications 11

(which was provided by M1 for the first round); and (5) the left-side by-pass
(provided by M1 for the first round).

M3 combines the following: (1) ignoring the inputs provided for simultaneous
by-pass; (2) the left-side by-pass (provided by M1 and M2 for the previous
rounds); (3) inversion of the Expansion, ignoring half of each redundant bit
pair; (4) swapping the left- and right-side data (des effectively swaps the left
and right halves after the last round); and (5) the final permutation.

Blocking and Encoding Details. We recommend 4×4 blocking for the Mi’s.
As a result of the optimization noted in §4, this means the implementation
consists entirely of networked 8 × 4 (‘vector add’) and 8 × 8 ( r

KT′
i) S-boxes.

Aside from M1’s input coding and M3’s output coding, both of which are
simply 64 × 64 identities (appropriately blocked), all S-boxes are input- and
output-coded using the method of §3.1 in order to match the 4-bit blocking
factor required for each input by the binary ‘vector add’ S-boxes.

5.3 Recommended Variant

The above section completes a naked variant of white-box des. The recommended
variant applies input and output encodings to the whole des operation. Referring
to Fig. 1(c), we modify our scheme so that M1 is replaced by M1 ◦ M0 and M3
is replaced by M4 ◦ M3, where the M0 and M4 ats are 64

64E mixing bijections.
As part of our encoding, we combine M1 ◦ M0 and M4 ◦ M3 into single ats.
When encoded in 4-bit blocks, they become non-linear.

One issue that arises is whether this recommended variant of des (or other ci-
phers) is still an implementation of the standard algorithm. Although it employs
an encoded input and output, we can pre- and post-process the input to this
computation by the inverses of the pre- and post-encodings, to effectively cancel
both. One might refer to this as operating on de-encoded intext and outtext. The
de-encoding process can be done in any one or a combination of several places,
for example: the software immediately surrounding the cryptographic compu-
tation; more distant surrounding software; or ideally, software executing on a
separate node (with obvious coordination required). The pre- and post-encoding
itself can be folded into the component operations of the standard algorithm,
e.g., des, as explained under I/O-Blocked Encoding per §3.1. Taking into ac-
count the de-encodings, the overall result is again equivalent to the standard
algorithm.

The overall result is a data transformation which embeds des. By embed-
ding the standard algorithm within a larger computation we retain the (black-
box) strength of the original algorithm within this embedded portion (which
does implement the standard algorithm). Furthermore the encompassing com-
putation provides greater resistance to white-box attacks. By using pre- and
post-encodings that are bijections, we have in effect composed 3 bijections.

White-Box ‘Whitening’. It is sometimes recommended to use ‘pre- and post
whitening’ in encryption or decryption, as in Rivest’s desX [9]. We note that the



12 Stanley Chow et al.

recommended variant computes some cipher, based on the cipher from which
it was derived, but the variant is far from obvious. In effect, it serves as an
aggressive form of pre- and post-whitening, and allows us to derive innumerable
new ciphers from a base cipher. Essentially all cryptographic attacks depend on
some notion of the search space of functions which the cipher might compute.
The white-box approach increases the search space.

White-Box Asymmetry and Watermarking. The recommended variant
has additional advantages. The effect of using the recommended variant is to
convert a symmetric cipher into a one-way engine: possession of the means to
encrypt in no way implies the capability to decrypt, and vice versa. This means
that we can give out very specific communication capabilities to control com-
munication patterns by giving out specific encryption and decryption engines
to particular parties. Every such engine is also effectively watermarked (finger-
printed) by the function it computes, and it is possible to identify a piece of
information by the fact that a particular decryption engine decrypts it to a
known form.

5.4 Attacks on Naked Variant DES Implementation

The attacker cannot extract information from the r
KT′

i’s themselves: they are
locally secure (see §3.2). Consequently all attacks must be global in the sense of
having to look at multiple S-boxes and somehow correlate the information. We
know of no efficient attacks on the recommended variant.

By far the best place to attack the naked variant of our implementation seems
to be at points where information from the first and last rounds is available. In
round 1, the initial input is known (the M1 input is not coded), and in round
16, the final output is known (the M3 output is not coded). Both known attacks
(see below) on the naked variant exploit this weak point.

The Jacob Attack on the Naked Variant. The attack of Jacob et al. [7] is a
clever dfa-like [3] attack, inducing a controlled fault by taking advantage of the
unchanged data in the Feistel structure, thus bypassing much of the protection
afforded by the encodings. However it requires that the input (or output) be
naked (i.e., unencoded), and simultaneous access to a key-matched pair of en-
crypt and decrypt programs, a situation unlikely with an actual drm application
using white-box des. It is not obvious how to relax either of these requirements.
It is also not clear how this attack can apply to ciphers that are not Feistel-like.

Statistical Bucketing Attack on Naked Variant. This attack is somewhat
similar to the dpa attacks [10]. In the dpa attacks, keys are guessed and differ-
ences in power profiles are used to confirm or deny the guesses. Our statistical
bucketing attack also involves guessing keys, but guesses are confirmed or denied
by checking if buckets are disjoint.

Attacks should be focussed on the first and final rounds. Cracking either
round 1 or round 16 provides 48 key bits; the remaining 8 bits of the 56-bit des



A White-Box DES Implementation for DRM Applications 13

key can then be found by brute-force search on the 256 remaining possibilities
using a reference des implementation. For ease of explanation, we discuss only
attacking round 1 of the encryption case.

Consider S-box 1Si in round 1 of standard des. Its 6 bits of input come
directly from the input plaintext, and it is affected by 6 bits of round 1 sub-
key. Its output bits go to different dsbs in round 2 (with an intervening xor
operation). We focus on one of these output bits, which we denote b. 2Sj will
refer to (one of) the round 2 dsbs affected by b. That is, we pick 1Si in round
1 which produces bit b, which is then consumed by 2Sj in round 2. Potentially,
bit b can go to two different S-boxes in round 2 (either one will suffice).

Make a guess on the 6 bits of sub-key affecting 1Si, run through the 64 inputs
to it, and construct 64 corresponding plaintexts. The plaintexts must feed the
correct bits into 1Si as well as the xor operation involving b. For convenience,
fix the left side to all zeros. This effectively nullifies the xor operations. The
other 26 bits in the plaintexts should be chosen randomly for each plaintext.
Using any reference implementation of des, divide these 64 plaintexts into two
buckets, I0, I1, which have the property that if the key guess is correct, bit b will
have a value of 0 for the encryption of each plaintext in the I0 set; similarly, for
each plaintext in the I1 set, if the guess is correct, b will have a value of 1.

Next take these two buckets of plaintexts and run them through the encoded
implementation. Since the implementation is naked, one can easily track the
data-flow to discover which 2Tzj encodes 2Sj . Examine the input to 2Tzj to
confirm or deny the guess. The encryption of the texts in I0 (resp. I1) will lead
to a set of inputs I ′

0 (resp. I ′
1) to 2Tzj

. The important point is that if the key
guess is correct, I ′

0 and I ′
1 must necessarily be disjoint sets. Any overlap indicates

that the guess is wrong. If no overlap occurs, the key guess may or may not be
correct: this may happen simply by chance. (The likelihood of this happening
is minimized when the aforementioned 26 bits of right hand side plaintext are
chosen randomly.) To ensure the effectiveness of this technique, we would like
the probability that no collision (an element occurring in both I ′

0 and I ′
1) occurs

in the event of an incorrect key guess to be at most 2−6. Experimentally, this
occurs when |I0| = |I1| ≈ 27 – 54 chosen plaintexts in all – so the 64 plaintexts
mentioned above are normally adequate.

The above description works on one S-box at a time. We can work on the 8 S-
boxes of a round in parallel, as follows. Due to the structure of the permutations
of des, output bits {3, 7, 11, 15, 18, 24, 28, 30} have the property that each bit
comes from a unique S-box and goes to a unique S-box in the following round.
By tracking these bits, we can search for the sub-key affecting each round 1 dsb
in parallel (this requires a clever choice of elements for I0 and I1, because of the
overlap in the inputs to the round 1 dsbs). Experimentation shows that fewer
than 27 plaintexts are necessary in total to identify a very small set of candidates
for the 48-bit round 1 subkey. The remaining 8 bits of key can subsequently be
determined by exhaustive search.

This gives a cracking complexity of 128 (chosen plaintexts) × 64 (number of
6 bit sub-keys) + 256 (remaining 8 bits of key) ≈ 213 encryptions. This attack



14 Stanley Chow et al.

on the naked variant has been implemented, and it successfully finds the key in
under 10 seconds.

5.5 Comments on Security of the Recommended Variant

While we are aware of no effective attack on the recommended variant, we also
have no security proofs. The assumed difficulty of cracking the individual encod-
ings leads us to believe the attack complexity will be high. The weakest point
appears to be the block-encoded wide-input ats. We note it is not merely a
matter of finding weak 4 × 4 blocks (ones where an output’s entropy is reduced
to 3 bits, say, where there are only 38,976 possible non-linear encodings). The
first problem is that the output will often depend on multiple such blocks, which
will then require some power of 38,976 tries. Of course, as previously noted, part
of such encodings may be guessed. However, the second, apparently much more
difficult problem, is that once the attacker has a guess at a set of encodings,
partial or otherwise, for certain S-boxes, how can it be verified? Unless there is
some way to verify a guess, it appears such an attack cannot be effective.

Whether the recommended variant herein is reasonably strong or not remains
to be seen. However, even should the answer be negative for this particular
variant, we believe the general approach remains promising, due to the many
variations possible using the multiplicity of approaches discussed.

5.6 Supplementary Notes on Cardinality of Transformations

For a given m and n, there are 2mn+n m-input, n-output ats, but we are pri-
marily interested in those which discard minimal, or nearly minimal, input in-
formation – not much more than m − n bits (cf. lossy in §2 and locally secure
in §3.2). If m = n, then there are 2n

∏n−1
i=0 (2n − 2i) bijective ats, since there

are
∏n−1

i=0 (2n − 2i) nonsingular n × n matrices [6]. It is the latter figure which
is of greater significance, since we will often use ats to reconfigure information,
and changing the displacement vector, d, of an at, can at most invert selected
output vector bits: it can’t affect the at’s redistribution of input information to
the elements of its output vector.

We note that while the number of bijective ats is a tiny fraction of all bijec-
tions of the form n

nP (there being 2n! of them), the absolute number of bijective
ats nonetheless is very large for large n. This ensures a large selection space of
bijective ats which we use, e.g. for pre- and post-encodings.

6 Concluding Remarks

For des-like algorithms, we have presented building blocks for constructing im-
plementations which increase resistance to white-box attacks, and as an example
proposed a white-box des implementation. The greatest drawbacks to our ap-
proach are size and speed, and as is common in new cryptographic proposals,
the lack of both security metrics and proofs. Our techniques (though not using



A White-Box DES Implementation for DRM Applications 15

des itself) are in use in commercial products, and we expect to see increased
use of white-box cryptography in drm applications as their deployment in hos-
tile environments (including the threat of end-users) drives the requirement for
stronger protection mechanisms within cryptographic implementations. While
the current paper addresses fixed-key symmetric algorithms, ongoing research
includes extensions of white-box ideas to the dynamic-key case, and to public-
key algorithms such as rsa.

References

1. D. Aucsmith, G. Graunke, Tamper-Resistant Methods and Apparatus, U.S. Patent
No. 5,892,899, 1999.

2. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, K. Yang,
On the (Im)possibility of Obfuscating Programs, pp. 1–18 in: Advances in Cryptol-
ogy – Crypto 2001 (lncs 2139), Springer-Verlag, 2001.

3. Eli Biham, Adi Shamir, Differential Fault Analysis of Secret Key Cryptosystems,
pp. 513–525, Advances in Cryptology – Crypto ’97 (lncs 1294), Springer-Verlag,
1997. Revised : Technion – Computer Science Department – Technical Report
cs0910-revised, 1997.

4. S. Chow, P. Eisen, H. Johnson, P.C. van Oorschot, White-Box Cryptography and
an AES Implementation, Proceedings of the Ninth Workshop on Selected Areas in
Cryptography (sac 2002), August 15–16, 2002 (Springer-Verlag lncs, to appear).

5. J. Daemen, V. Rijmen, The Design of Rijndael: AES – The Advanced Encryption
Standard, Springer-Verlag, 2001.

6. Leonard E. Dickson, Linear Groups, with an Exposition of Galois Field Theory,
p. 77, Dover Publications, New York, 1958.

7. M. Jacob, D. Boneh, E. Felten, Attacking an obfuscated cipher by injecting faults,
proceedings of 2nd acm workshop on Digital Rights Management – acm ccs-9
Workshop drm 2002 (Springer-Verlag lncs to appear).

8. M. Jakobsson, M.K. Reiter, Discouraging Software Piracy Using Software Aging,
pp.1–12 in: Security and Privacy in Digital Rights Management – acm ccs-8 Work-
shop drm 2001 (lncs 2320), Springer-Verlag, 2002.

9. J. Kilian, P. Rogaway, How to protect DES against exhaustive key search, pp.252–
267 in: Advances in Cryptology – Crypto ’96, Springer-Verlag lncs, 1996.

10. Paul Kocher, Joshua Jaffe, Benjamin Jun, Differential Power Analysis, pp. 388–
397, Advances in Cryptology – Crypto ’99 (lncs 1666), Springer-Verlag, 1999.

11. A.J. Menezes, P.C. van Oorschot, S.A. Vanstone, Handbook of Applied Cryptogra-
phy, pp. 250–259, crc Press, 2001 (5th printing with corrections). Down-loadable
from http://www.cacr.math.uwaterloo.ca/hac/


	1 Introduction
	2 Terminology and Notation
	3 Producing Encoded Implementations
	3.1 Techniques for Tabularizing Functions
	3.2 Substitution Boxes and Local Security

	4 Wide-Input Encoded ATs: Building Encoded Networks
	5 A White-Box DES Implementation Example
	5.1 Replacing the DES SBs
	5.2 Connecting and Encoding the New SBs to Implement DES
	5.3 Recommended Variant
	5.4 Attacks on Naked Variant DES Implementation
	5.5 Comments on Security of the Recommended Variant
	5.6 Supplementary Notes on Cardinality of Transformations

	6 Concluding Remarks
	References

