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Abstract. In this paper we propose a new scheme for software obfuscation and 
license protection that is based on an original transformation of the program’s 
call tree. The idea is based on the observation of similarities between a 
program’s call tree and Context Free Grammars. First, this paper proposes a 
practical technique for applying well studied LALR methodologies to transfor-
ming a program’s call tree. Second, we suggest methods of effective binding of 
the transformed program to the program’s installation site. Finally, we note that 
the given scheme provides us with a series of difficult to remove unique 
identifications integrally embedded into the transformed programs that could be 
used for software watermarking purposes. 
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1   Introduction 

Intellectual Property Protection (IPP) related to software distribution and production 
is a longstanding problem. Early works in that area were mainly focused on copy 
protection. For examples of early work, see [9] where the author proposes some 
technical means of software copy protection. IPP problems related to reverse 
engineering and de-compilation were not considered to be as important at the time of 
Gosler’s writing due to perceived complexity of reverse engineering of large binary-
compiled programs. However, the problems of program protection against reverse 
engineering and de-compilation became increasingly more important and anticipated 
since the invention of Architecture Neutral Distribution Format (ANDF) and Virtual 
Execution Environment (VEE) such as Xerox-PARC’s Smalltalk, Sun’s Java and 
Microsoft’s .Net. One of the major reasons for that change is that VEE/Virtual 
Machine (VM) Architecture Independency usually requires inclusion of rich metadata 
for the VEE/VM. Presence of rich metadata allows much easier de-compilation with 
higher than ever readability of reverse-engineered code.  

In this paper we propose a new software obfuscation and copy protection scheme 
that is based on an original idea of program call tree transformation. We believe that 
the presented scheme opens a new venue for solving problems related to Software IPP. 

A series of excellent theoretical and practical work in area of general Software IPP 
was published during the last decade. The most relevant preceding works are listed in 
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the references section. In the remaining part of our introduction we want to emphasize 
the most important publications. Among these are: [5] with the first systematic 
classification of known obfuscating transformations, [7], [6], [16] and [18] which 
describes techniques that either are used or could be effectively used for augmenting 
the software protection framework presented in this paper.  

An elegant mathematical framework studying security aspects of obfuscating 
transformation was introduced by [1], where authors prove the existence of classes of 
unobfuscatable functions. Also note a couple of later mathematical works with 
positive results of obfuscation [14] and [19] using the mathematical framework 
introduced by [1]. 

Context Free Grammars, LR and LALR Parsers, Call Graphs 

The concept of Context Free Grammars (CFG) was first introduced by Noam 
Chomsky in his study of natural languages and syntactic structures. The earliest 
publications concerning CFG are dated to 1957-1959 with the introduction of CFG 
and their application to computer programming languages and formal systems. The 
most significant contribution to the study of CFG and parsers was done by A.V. Aho, 
F.L. DeRemer, J.C. Earley, D.E. Knuth and J.D. Ullman. LALR parsers were 
introduced by F.L. DeRemer. For further references and treatments on GFG we would 
refer to the reference [8].  

For an account of the study of Call Graph analysis applicable to software profiling 
refer to works of S.L. Graham, P.B. Kessler, D. Grove and J.R. Larus. Also note [13] 
which suggests the use of Context Free Grammars for purposes of program profiling 
and introduces the notion of Whole Program Path. Other related works in the area of 
Program Path profiling includes publications by Melski, Ammonds, Larus, Andler 
and others. 

Scope of Writing and Remarks 

In this paper we only present an application of the algorithm to the simplest form of a 
call tree. Even so, the presented algorithm works well with any other type of Call 
Graph.   

We will not discuss any details of the generation of LR(k)/LALR(1) automaton, 
state tables, lookup/lookahead tables but refer to related work listed in the references 
section. 

We refer to [5] for a definition of obfuscation transformation.  
For software copy protection we limit our scheme to the following:  

− illegal program execution shall result in undefined random behavior; 
− correct program execution shall only be guaranteed when the protected program is 

running in a designated environment. 

The methods of identification of the program installation site, protection of the 
delivery path of the identification data or methods of processing of identification data 
are out of scope for this paper.  

In this paper we will not provide any details of the application of the algorithm to 
exception handling; virtual methods, events and delegates; multithreading; and other 
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advanced elements of the program control flow graphs. However we strongly believe 
that all mentioned programming constructs could be properly handled by an enhanced 
version of the presented algorithm.  

2   Idea 

A Context Free Grammar (CFG) is a formal grammar in which every production rule 

is of the form A → w where A is a non-terminal symbol and w is a string consisting 
of terminals and/or non-terminals.  
    CFG parsers could be implemented in several different ways, but the most usual 
ways are: 

− a recursive descent parser – which could be thought of as a traditional procedural 
parser with the shape of the call tree quite closely reflecting the shape of the CFG; 

− an LALR parser driver routine relying on a set of state, transition and lookahead 
tables with shallow and flat-shaped call tree structure;   

Both are implementation of the same algorithm - «Parser», but the former 
implementation tends to be easier to understanding and reverse engineering than the 
latter.  

From the other side, it’s quite intuitive that CFG could be effectively used for 
representing a call tree; there are known works in the area of program profiling that 
relies on a CFG representation of a program call tree – see for example [13].  
    This makes us believe that we should be able to apply techniques found in LALR 
parsers for automatic generation of alternative representations of a program’s call 
tree, which should provide us with an alternative representation of a program’s 
algorithm and strong obfuscation of the source program.  

In this paper we propose an obfuscation algorithm that combines several earlier 
ideas from C. Collberg, C. Thomborson and C. Wang1 with original transformations 
of the program call tree that uses the LALR interpretation of the control flow. The 
algorithm also relies on obfuscation-time scrambling and runtime descrambling of 
LALR tables for achieving resilience against automatic de-obfuscation tools and 
strong copy protection. As an extra benefit, it also allows us to apply difficult to 
remove one-way transformations of the input alphabet, which could be useful for 
software watermarking purposes. The overall algorithm is: 

2.1) create CFG lexer by  
a) merging all non-terminal methods of the original call tree together 

i) by merging their argument arrays;  
ii) flattening the Control Flow Graph by techniques similar to [18]; and 
iii) merging their Control Flow Graphs together; 

b) replacing the call-method instructions with return of the call-site index2;  
2.2) apply one-way transformation/(permutation) to the input alphabet from step 

2.1.b) for watermarking purposes; 

                                                           
1 Esp. see [5], [6], [7], [16], [17] and [18]. 
2 Call-site indexes are used as an input alphabet for the CFG representation of the Call Tree. 
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2.3) generate an LALR driver routine that embeds terminal methods of the original 
call tree as CFG reduce actions; 

2.4) scramble the LALR state, transition and lookahead tables by 
a) unstructuring and merging them together, and 
b) applying a set of transformations that  

i) use identification of program installation site as key material/seed; and 
ii) could be compensated/descrambled at runtime. 

As a result of the application of the algorithm for transforming a source program, 
the original call tree becomes encoded and emulated by the LALR parse stack, which 
is controlled by the LALR state, transition and lookahead tables. Even minor 
problems during a runtime descrambling of these tables would lead to unpredictable 
results during a program execution. If a runtime descrambling affects a substantial 
part of LALR tables then it should provide a very strong copy protection because the 
emulated call-tree will be unusable without access to the designated installation site id3.  

Another major advantage of this algorithm is its strong obfuscation property that 
combines several well known obfuscation techniques due to C. Collberg, C. 
Thomborson and C. Wang with the original strong obfuscation of an inter-procedural 
control flow by flattening and reversing the actual call tree while relying on an LALR 
parsing for an interpretation of the logical call tree.  

In cases when copy protection is considered to be a major goal, and because an 
LALR interpretation of the original call tree induces some performance hit to each 
interpreted method call; we suggest that often called, but trivial methods4 should be 
excluded from a call tree CFG construction (as we will demonstrate in the following 
introductory example). 

A strong software watermarking property comes as a convenient side-effect due to 
the fact that generation of an LALR parser is independent from numeric values 
assigned to an input alphabet as long as they stay in synch with a source CFG. We 
believe that the task of removing these watermarks5 should be at least as difficult as 
the task of recovering the CFG (and recovering the original program call tree).  

One of our design goals for the protection scheme presented in this paper was an 
attempt to ensure that recovering CFG/(the original call tree) from a generated LALR 
presentation of the call tree is indeed a difficult task; however, all questions 
concerning complexity of this problem is left for further study. 

3   Introductory Example and Preprocessing Steps 

Here we want to outline an idea of a practical implementation of the suggested 
scheme. For explanatory reasons we will present it on a minimal sample program. 
However, we believe this scheme is applicable to most real-life programs with just 
some adjustments/improvements. We will discuss security, performance and related 
considerations later in this paper. 

                                                           
3 which we use as a keying material for scrambling/descrambling of LALR tables; 
4 such as property setters and getters; 
5 or switching from one permutation of an input alphabet to another permutation; 
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Sample Pseudo-code 

During the first step we will prepare an input alphabet for our call tree CFG Parser by 
enumerating call sites and segments of a Control Flow Graph flattened with Wang’s 
technique.  

See Figure 1 for the pseudo-code of our sample program. 
 

void Main() { 
 A(); 
 B(message1);  
} 
int A()  { 
 int i = C(); 
 while (i < D()) { 
  A(); i++;  

} 
 E(message2); 
 return i;  
} 
void B(string message)  { 
 F();//F will be excluded from Call-Tree CFG 
 E(message);  
} 
int C() { //do some calculations here. 
 return calculationResults;  
} 
int D() { //D will be excluded from Call-Tree CFG 
 return --RemainingLoops;  
} 
void E(string message) { 
 G();//G will be excluded from Call-Tree CFG 
 print(message);  
}  

Fig. 1. Source Code 

Preprocessing of Call Tree  

Let’s start with building the program call tree and preparing a set of indexes that will 
be used as an input alphabet for our call tree CFG parser.  

3.1. Build a call tree by enumerating call sites and ignoring all methods external to 
the analyzed assembly (Figure 2);  

3.2. Filter out trivial but often called methods6:   
3.3. Mark all leafs (nodes without children):   
3.4. Mark all joints (nodes that have at least one child):  
3.5. Mark all recursive functions:     
3.6. Enumerate call sites7 (Figure 3). 

                                                           
6 These methods will be treated the same way as methods external to the analyzed program. 
7 i.e. associate sequential numbers {1,2,3…} with points of calling functions on leafs (3.3) , 

joints (3.4) and recursive (3.5). 
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 Entry point

int A() 

B(string) 

int C() 

E(string) 

G()

F() 

E(string) 

G()

int D() 

A() //recursive 

 

Fig. 2. Initial Call Tree      Fig. 3. Enumerated Call Sites 

Application of our algorithm requires a separation of program segments surround-
ding the enumerated call sites. We will proceed by flattening the control flow graphs 
in a couple of following steps.  
 
3.7. All loops containing at least one enumerated call site8 should be dismantled with 

an algorithm such as [16]/[18] – see Figure 4. 

 
Fig. 4. Dismantling Cycles [18] 

3.8. Enumerate fragments of dismantled cycles (switch labels from step 3.7); 
3.9. Store the first index unused by an enumeration during steps 3.6 and 3.8  

in a variable R. The stored value will be used for generating unique indexes 
required for the implementation of the CFG lexer function several steps later.  

                                                           
8 Note that the source code from Figure 1 contains one cycle inside function A that requires 

dismantling. 
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4   Processing Call Tree Joints  

During this stage of processing we will prepare a lexer function that will be used by 
our call tree CFG parser. We will only focus on call tree joints here (see step 3.4), i.e. 
functions Main, A and B of our sample code (Figure 1). The main idea is to merge 
their argument arrays; merge their Control Flow Graphs and replace call statements 
inside of enumerated call sites with return of corresponding indexes. For retaining 
the control flow we would need twice as many switch labels as we enumerated in the 
previous section for addressing Control Flow Graphs which follow the call sites. For 
that purpose we will use the indexes that were not used in the previous stage of 
processing (conveniently stored in the constant R during step 3.9). 

Figure 5 shows an annotated version of the source code of non-terminal functions. 
 

void Main() { //• entrypoin entrypoint {1} 
  A(); //• call site {2} call site {2} 
  B(message1); //• call site {6}; argB_1 call site {6}; argB_1 
} 
int A() { //• return value A_ret return value A_ret  
  int i = //• A_I_loc; A_I_loc; 
    C();//• call site {3}; C_ret; call site {3}; C_ret; 
  while (i < D()) //• loop criteria {8} loop criteria {8} 
  { //• loop body {9} loop body {9} 
    A(); //• call site {4} call site {4} 
    i++; 
  } //• loop {10} loop {10} 
  E(message2); //• call site {5}; argE_1 call site {5}; argE_1 
  return i; 
} 
void B(string msg)//• argument argB_1 argument argB_1 
{ //• local storage argB_1_loc local storage argB_1_loc 
  F(); //F will be excluded from Call-Tree CFG 
  E(msg); //• call site {7}; argE_1 call site {7}; argE_1 
}  

Fig. 5. Annotated Source Code 

Preparing Lexer Function 

4.1. Create a new function int yylex containing a single switch statement; 
4.2. Arguments and return values of leafs and joints should be placed in a container 

(for example an array) which is accessible by callers of yylex;  
4.3. Local variables that are used across any of enumerated points should be placed in 

the same container as in 4.2; 
4.4. A reference to the container variable from the step 4.2 could be passed as a 

function parameter to yylex; 
4.5. Split the source (Figure 5) on Control Flow Graph fragments (code between 

enumerated points); 
4.6. Place all fragments from the step 4.5 into the switch statement inside yylex. Use 

the fragment indexes as case labels; 
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4.7. If a function inside an enumerated call-site is expecting any arguments  
– update correspondent arguments in the container from step 4.2 just above the 
call-site;  

4.8. Replace the function-call inside the enumerated call-sites with return of the call 
site index;  

4.9. Add R cases with the code that follows the call-sites that we replaced with return 
during step 4.8; 

The resulting yylex function with the explanatory annotations is shown in  
Figure 6. 

 
int yylex(object[] args) { 
  switch (currentPosition) { 
    case 1: return 2; //Main entry point; calls function A() 
    case 2: return 3; //A entry point; calls function C() 
    case R+2:args[argB_1]=message1; // argument to B(); 
      return 6; //call function B(); 
    case R+3:args[A_I_loc]=args[C_ret]; 

// i ← return from C(); 
      goto case 8; //go to loop criteria; 
    case 4: goto case 2; //A - recursive call; goto A's entry point 
    case R+4:goto case R+9; //A returns; continue loop. 
    case R+5:args[A_ret]=args[A_I_loc]; 

//return from E(); update A's retval 
      break; //exit A;  
    case 6:args[argB_1_loc]=args[argB_1]; 

//B's entry point; argument → local storage 
      F(); args[argE_1]=args[argB_1_loc]; //arg. to E(); 
      return 7; //calls E(); 
    case R+6:break;//return from B(); exit Main 
    case R+7:break;//return from E(); exit B(); 
    case 8: //loop condition 
      if (args[A_I_loc] < D()) 
        goto case 9; //go to loop body; 
      else  
        goto case R+10;//exit loop 
    case 9: return 4; //calls A() - recursive; 
    case R+9:args[A_I_loc]++;//increment loop variable 
      goto case 10; //go to loop; 
    case 10: goto case 8; // go to loop criteria; 
    case R+10:args[argE_1]=message2; //argument to E(); 
      return 5; //calls E() 
  } 
  return 0; //(end-of-branch/reduce); 
}  

Fig. 6. The annotated pseudo-code of the yylex function 
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5   CFG and LALR Transformation of Call Tree 

In this section we will construct a Context Free Grammar over a set of terminal 
symbols VT ⊆ T, where T is a set of lexical tokens/values returned by the yylex 
function which we built in the previous section. Our CFG will be representing the 
original call tree. After that we will build an LALR parser function that will be 
emulating the original call tree by means of an internal parse stack. Finally, we will 
build first the version of the obfuscated program consisting of our LALR parser and 
the yylex from the previous section.  

We will not elaborate on algorithms used by LALR parser generators or LALR 
parser driver routines, but instead we will refer to work of F. L. DeRemer, S. C. 
Johnson, R. Corbett and the related literature listed in the reference section (see [8]), 
as well as source codes of open source implementations of LALR parsers9. 

The LALR parser driver routine used in our scheme should ensure that updates of 
the internal parse stack position will be correctly reflected in the currentPosition 
variable that we used in the yylex function as a switch control variable (see Figure 6).  
    Additionally, the leaf functions C and E (Figure 1) will be inlined in the reduce 
actions of our CFG.  

In Figure 7 is a raw sketch of a grammar definition of our call tree. 
 

Main: BranchA BranchB ⊥; 
A_1: A C     {inline C;}; 
A_2: A_1 A   {/*recursive A()*/;} 
| A_2 A      {/*recursive A()*/;} 

| A_2 ⊥; 
A_3: A_2 E   {inline E;}; 

BranchA: A_3 ⊥; 
B_1: B E     {inline E;}; 

BranchB: B_1 ⊥; 

Fig. 7. Call Tree Grammar Definition 

5.1. Use a grammar definition to generate an LALR parser driver routine that is also 
updating the currentPosition variable of the yylex function;  

5.2. The leaf functions (C and E) should be inlined as reduce-actions of the LALR 
Parse function by using any standard inlining method. They also require the use 
of the container from the step 4.2 for retrieving parameters and storing return 
values.  

 

Figure 8 shows the relevant fragments of the yyparse function that illustrates the 
call of yylex and the inlining of reduce-actions. The rest of logic of the LALR parser 
driver routine is omitted from Figure 8.  

                                                           
9 Such as YACC/BYACC and BISON. 
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int yyparse() { 
  object[] yyargs; 
  //...intialize yyargs here 
  ...  
  //...LALR logic here 
  pcyytoken=yylex(yyargs); 
  //...LALR logic here 
  ... 
   switch (m) { /*actions associated with grammar rules*/ 
      case 3: { //do some calculations here. 
 yyargs[C_ret] = calculationResults;  

//return calculations result 
      } break; 
      case 5: //falls through 
      case 7: { 
 G(); //G is often called method which we excluded from CFG 
 print(yyargs[argE_1]); //prints message sent in parameter 
     } break; 
      ...    } 
   goto enstack; }  

Fig. 8. Fragments of LALR Parse pseudo-code 

Now we are ready to create the first obfuscated version of our program that uses 
the LALR call tree obfuscation technique.  
5.3. Our LALR obfuscated program will be created by putting together: 

a. yylex (generated during steps 4.1—4.9); 
b. yyparse (generated during steps 5.1—5.2), which calls yylex (see a. above); 
c. the entry point function which sets the currentPosition to 1 and calls 

yyparse (see b. above).  

If we take another look at our transformation, it essentially means that we have 
reversed and flattened the call tree, so that:  

− all leaf functions from the lowest level of the call tree are now moved into a single 
yyparse function at the top of the modified call tree; 

− all other functions, that were directly or indirectly calling the former leaf functions 
(see above), are now moved to a single leaf function yylex (regardless of their 
original call tree position). 

The functionality of the original program is preserved by moving the original call 
tree into the parse stack of an LALR parser.  

The LALR Parse stack is controlled by the interpretation of the state, lookup  
and lookahead tables. Figure 9 shows a sample of the LALR tables generated by 
YACC. 
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const int yyact[] = { 
       5,       0,       0,       4,       8,       3,      17,       8, 
       7,       9,       6,       0,       9,       8,       7,       1, 
       6,       0,       9,      10,      11,      12,      13,      14, 
      15,      16,       0,       0,       0,       0,       0,       0, 
... 
}; 
const int yypact[] = { 
     -40,     -29,   -4096,     -40,     -40,     -40,     -40,     -40, 
     -40,     -40,   -4096,   -4096,     -35,     -38,     -38,   -4096, 
   -4096,   -4096, 
}; 
const int yypgo[] = { 
       0,      15, 
}; 
const int yyr1[] = { 
       0,       1,       1,       1,       1,       1,       1,       1, 
       1, 
}; 
const int yyr2[] = { 
       0,       1,       2,       2,       3,       3,       3,       3, 
       3, 
}; 
const int yychk[] = { 
   -4096,      -1,     257,      45,      43,      40,      45,      43, 
      42,      47,      -1,      -1,      -1,      -1,      -1,      -1, 
      -1,      41, 
}; 

Fig. 9. The state, lookup and lookahead LALR tables generated by YACC 

6   Protecting LALR Tables and Adding Copy Protection 

The main problem with the LALR tables shown in Figure 9 is that their well defined 
structure could be used for recovering the source CFG with the help of the specially 
designed programs. Fortunately, we believe that there are ways of protecting LALR 
tables from such a threat. In fact, there are known techniques of arrays obfuscations 
that could be used for such purpose, as for example Array manipulations and String 
Encoding transformations by C. Collberg and C. Thomborson [7].  

Additionally, if we derive a transformation key10 from some unique installation site 
ID, then it will also provide us with a very efficient copy protection, because if the 
LALR tables only could be recovered in the presence of an unique installation site ID, 
then any attempt to run such a program on a different installation site would lead to 
distorted LALR tables, a corrupt call tree and completely unpredictable results. 
Unfortunately, a simple derivation of a symmetric encryption key from an installation 
side ID; encrypting LALR tables during obfuscation time and decrypting them during 
runtime could only provide a marginal protection (if any at all). The latter is due to 
the simple fact that when a complete LALR table structure is decrypted in a process 
memory it immediately becomes a subject to various attacks including simple 
dumping of decrypted LALR tables and running analysis of the memory dump.  

Therefore, we would require a complex set of counter-measures that includes the 
obfuscation of the tables structure; use of various table access obfuscation techniques, 

                                                           
10 We will use it for scrambling of the LALR tables. 
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such as added indirection layers, alias-tables and alias rotations; ensuring that only 
small, immediately required parts of LALR tables be descrambled at any given 
moment in time, while the rest of this structure should be kept protected. Another 
important factor to ensure is that it should be difficult to distinguish scrambled parts 
of the tables from the descrambled parts. Reasonable candidates of our protection 
framework could be based on the ideas from [14] where authors show how to 
obfuscate a complex access control functionality, and demonstrate strong access 
obfuscation properties of regular expressions and related functions. Another 
protection measure could be modeled on unstructured LALR tables and/or alias-tables 
like expander graphs and using bytes of a cryptographic hash of an installation site id 
for choosing walk edges. The expanding property of the graph implies (via a non-
trivial proof) that the vertices along random walks on an expander have surprisingly 
strong random properties [2]. We can also XOR bytes along the walking path with 
another result of cryptographic hash as a part of a scrambling and descrambling 
processes.  

In other words our goals are: 

− to scramble LALR tables at obfuscation-time by using some function dependent on 
an installation site id;  

− a periodic descramble of required parts of these tables at runtime; 
− ensure that descrambling of these tables without having access to a corresponding 

installation site id is a difficult task, while the runtime descrambling of these tables 
only has an insignificant impact on performance. 

Draft Description  

6.1. We need to start with expanding and unstructuring tables, e.g. merging them into 
a single array and applying an initial permutation that could be matched by one 
or more layers of an added indirection with a help of alias tables (or similar) [7]. 

6.2. A similar set of transformations could be applied to both LALR tables and alias 
tables. 

6.3. Addressing subsets of these tables should expose strong access obfuscation 
properties and pseudo-random properties. We can: 

− model unstructured tables as an expander graph and use bits from PRF(id || 
hour)11  for choosing the walk edges;  

− use a regular expression over random variables that are mappings of (possibly 
unadjusted) bytes of PRF(id || hour), where id should be some unique 
identification of a program installation site and PRF could be a cryptographic 
hash function (let say SHA-1). 

6.4. Addressed subsets could be used with different transformations that are 
efficiently computed at runtime, such as: 

− removing/inserting addressed subsets; 
− XOR-ing two (or more) addressed subsets together; 

                                                           
11 Implementation of the algorithm will use a cryptographic hash function as a practical 

substitution of PRF. 
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− Using a modular arithmetic with bytes of addressed subsets at runtime and an 
inverse modular arithmetic at obfuscation-time; 

− other suitable transformations. 

6.5. Transformations listed in the previous step could be executed by a function 
running on a separate execution thread and also executed at the startup of a 
protected program. 

Processing Results 

− If descrambling of relevant parts of LALR tables was incorrect, it will severely 
affect the ability of the generated LALR parser to depict a correct shape of the 
original call tree. This will lead to unpredictable results of the program execution.  

− Correct descrambling of the relevant parts of the LALR tables and the alias-
rotation tables will only be guaranteed in the presence of the correct installation 
site id. 

− We believe that LALR tables obfuscated and scrambled this way will provide an 
efficient protection against attempts of recovering the source CFG. 

7   Adding Watermarks 

If we look back at our choice of the input alphabet (steps 3.6—4.9) it’s clear that we 
only require unique indexes and our choice of sequential numbers is arbitrary, 
supported only by convenience and explanatory reasons. A generation of the LALR 
parser is independent from the numeric indexes assigned to the input alphabet as long 
as indexes stay in synch with the source CFG. We can add an extra step with a 
permutation of the input alphabet before we generate the yylex and the yyparse.  
    Here is a draft description of the algorithm: 

7.1. put all indexes (call sites, dismantled cycles fragments and all previous 
indexes incremented by R)  into an array or a table; 

7.2. the table from the previous step (7.1) could be augmented with aliases (e.g. 23 
aliases for each index so that we can cycle indexes once per hour); 

7.3. generate a random encryption key and use it to encrypt the table; 
7.4. in cases when a permuted input alphabet is intended for watermarking 

purposes – store the encryption key generated in the previous step together 
with the original tables from step 7.1. Otherwise, if a post-identification of the 
watermark is not required, the encryption key generated in step 7.3 simply 
could be destroyed; 

7.5. map each number in the original table to the corresponding position in the 
encrypted table and use the numbers from the encrypted table in the body of 
the protected program; 

7.6. cases of the switch statement could be sorted in an ascending or descending 
order or randomized; 

7.7. a return of indexes from the yyparse function could be replaced with a return of 
elements of an indexed (rotated) collection of input alphabet aliases (step 7.2); 

7.8. excessive cases with a slightly modified/buggy code could be randomly 
placed in the switch body of the yylex and yyparse functions; 
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7.9. excessive cases could be combined with aliases to behave as a buggy code 
before they are selected by the alias scheduler; 

7.10.  the alias scheduler could be implemented by the same routine that descram-
bles parts of the LALR tables (step 6.5). 

Processing Results 

− The permuted input alphabet becomes an integral part of the yylex and yyparse 
functions as well as the state, lookup and lookahead tables generated by our 
obfuscating transformation. 

− We believe that replacing a whole permuted input alphabet with another 
permutation is as a difficult task as a task of recovering a source CFG. 

− Partial replacements of just a few symbols from an input alphabet could be easily 
matched by using “tree proximity” measurements for a detection of watermarks. 

8   Performance Impact and Final Remarks  

It is clear that the call tree emulated by the parse stack of the yyparse routine would 
not provide as a good performance as a direct function call. However, we believe that 
by adjusting how many often-called-but-trivial methods shall be excluded from the 
transformation, it is possible to achieve a strong-enough protection without affecting 
an overall performance of the protected program. The latter is especially true when 
concerning interactive applications, where a performance impact could be made 
completely unnoticeable. Very preliminary results of our tests show that occasional 
fluctuations of an execution environment (such as window scroll, thread context 
switch, processor speed steps, auxiliary inputs, such as mouse movement and others) 
could have a greater effect on the performance than the emulation of a call tree by the 
parse stack of the yyparse function. We have run our tests on three different computer 
configurations – Intel  Centrino with Pentium M 1.6 MHz/1 GB; Dual Pentium 4 3.2 
MHz / 2 GB and Intel Pentium 4 Celeron 2.2  MHz/512MB; all running Windows 
XP. All three computers used for tests didn’t show a performance difference between 
the original and the transformed programs. Figure 10 shows results of several runs of 
the test program on the Pentium M computer. The test program source code could be 
found on the author’s web page [20].  

 
Source.exe /noninteractive Transformed.exe /noninteractive 
completed in  547.90 ms. completed in  558.25 ms. 
completed in  557.24 ms. completed in  555.48 ms. 
completed in  550.65 ms. completed in  554.38 ms. 
completed in  554.61 ms. completed in  549.05 ms. 

Fig. 10. Sample results of performance test on the Pentium M 1.6/1GB computer 

Even so the results of our test may appear surprising, there is a simple explanation 
of the results. The percentage of a processing time that a normal program spends on 
transforming a control flow between different functions is usually very small when 
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compared to the processing time used for actual calculations and/or calling external 
functions. For purposes of a closer emulation of a normal processing behavior of 
interactive programs, we avoided adding calls to an LALR emulated functions from 
tight loops. Therefore an LALR emulation of the call tree has only affected a very 
small (by percentage of execution time) part of the program and the absolute 
performance impact happened to be lesser than effects of occasional fluctuations of 
the execution environment. We want to note that the results of our performance test 
are very preliminary for drawing conclusions about a performance impact on real life 
programs. A bigger size of a call tree and a bigger size of LALR tables are the two 
most obvious factors that could affect a performance. We are very optimistic in our 
expectations, however an additional study is required for presenting more accurate 
estimates of a performance impact and providing recommendations for minimizing it 
for different classes of real life applications.  

Finally, we want to note that even a simple examination of the source code of our 
sample test application appears to be quite reassuring about obfuscation properties of 
the suggested transformation. Additionally, other known methods of a program and 
data obfuscation could be effectively used in a combination with our scheme for 
augmenting resilience and potency of the obfuscation transformation proposed in this 
paper.  
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