
R. Safavi-Naini and M. Yung (Eds.): DRMTICS 2005, LNCS 3919, pp. 164 – 179, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Call Tree Transformation for Program Obfuscation and
Copy Protection

Valery Pryamikov

Harper Security Consulting AS, Vestre Rosten 81, 7075, Tiller, Norway
valery@harper.no

http://www.harper.no/valery

Abstract. In this paper we propose a new scheme for software obfuscation and
license protection that is based on an original transformation of the program’s
call tree. The idea is based on the observation of similarities between a
program’s call tree and Context Free Grammars. First, this paper proposes a
practical technique for applying well studied LALR methodologies to transfor-
ming a program’s call tree. Second, we suggest methods of effective binding of
the transformed program to the program’s installation site. Finally, we note that
the given scheme provides us with a series of difficult to remove unique
identifications integrally embedded into the transformed programs that could be
used for software watermarking purposes.

Keywords: Software Obfuscation, Software Copy Protection, Software
Watermarking.

1 Introduction

Intellectual Property Protection (IPP) related to software distribution and production
is a longstanding problem. Early works in that area were mainly focused on copy
protection. For examples of early work, see [9] where the author proposes some
technical means of software copy protection. IPP problems related to reverse
engineering and de-compilation were not considered to be as important at the time of
Gosler’s writing due to perceived complexity of reverse engineering of large binary-
compiled programs. However, the problems of program protection against reverse
engineering and de-compilation became increasingly more important and anticipated
since the invention of Architecture Neutral Distribution Format (ANDF) and Virtual
Execution Environment (VEE) such as Xerox-PARC’s Smalltalk, Sun’s Java and
Microsoft’s .Net. One of the major reasons for that change is that VEE/Virtual
Machine (VM) Architecture Independency usually requires inclusion of rich metadata
for the VEE/VM. Presence of rich metadata allows much easier de-compilation with
higher than ever readability of reverse-engineered code.

In this paper we propose a new software obfuscation and copy protection scheme
that is based on an original idea of program call tree transformation. We believe that
the presented scheme opens a new venue for solving problems related to Software IPP.

A series of excellent theoretical and practical work in area of general Software IPP
was published during the last decade. The most relevant preceding works are listed in

 Call Tree Transformation for Program Obfuscation and Copy Protection 165

the references section. In the remaining part of our introduction we want to emphasize
the most important publications. Among these are: [5] with the first systematic
classification of known obfuscating transformations, [7], [6], [16] and [18] which
describes techniques that either are used or could be effectively used for augmenting
the software protection framework presented in this paper.

An elegant mathematical framework studying security aspects of obfuscating
transformation was introduced by [1], where authors prove the existence of classes of
unobfuscatable functions. Also note a couple of later mathematical works with
positive results of obfuscation [14] and [19] using the mathematical framework
introduced by [1].

Context Free Grammars, LR and LALR Parsers, Call Graphs

The concept of Context Free Grammars (CFG) was first introduced by Noam
Chomsky in his study of natural languages and syntactic structures. The earliest
publications concerning CFG are dated to 1957-1959 with the introduction of CFG
and their application to computer programming languages and formal systems. The
most significant contribution to the study of CFG and parsers was done by A.V. Aho,
F.L. DeRemer, J.C. Earley, D.E. Knuth and J.D. Ullman. LALR parsers were
introduced by F.L. DeRemer. For further references and treatments on GFG we would
refer to the reference [8].

For an account of the study of Call Graph analysis applicable to software profiling
refer to works of S.L. Graham, P.B. Kessler, D. Grove and J.R. Larus. Also note [13]
which suggests the use of Context Free Grammars for purposes of program profiling
and introduces the notion of Whole Program Path. Other related works in the area of
Program Path profiling includes publications by Melski, Ammonds, Larus, Andler
and others.

Scope of Writing and Remarks

In this paper we only present an application of the algorithm to the simplest form of a
call tree. Even so, the presented algorithm works well with any other type of Call
Graph.

We will not discuss any details of the generation of LR(k)/LALR(1) automaton,
state tables, lookup/lookahead tables but refer to related work listed in the references
section.

We refer to [5] for a definition of obfuscation transformation.
For software copy protection we limit our scheme to the following:

− illegal program execution shall result in undefined random behavior;
− correct program execution shall only be guaranteed when the protected program is

running in a designated environment.

The methods of identification of the program installation site, protection of the
delivery path of the identification data or methods of processing of identification data
are out of scope for this paper.

In this paper we will not provide any details of the application of the algorithm to
exception handling; virtual methods, events and delegates; multithreading; and other

166 V. Pryamikov

advanced elements of the program control flow graphs. However we strongly believe
that all mentioned programming constructs could be properly handled by an enhanced
version of the presented algorithm.

2 Idea

A Context Free Grammar (CFG) is a formal grammar in which every production rule

is of the form A → w where A is a non-terminal symbol and w is a string consisting
of terminals and/or non-terminals.
 CFG parsers could be implemented in several different ways, but the most usual
ways are:

− a recursive descent parser – which could be thought of as a traditional procedural
parser with the shape of the call tree quite closely reflecting the shape of the CFG;

− an LALR parser driver routine relying on a set of state, transition and lookahead
tables with shallow and flat-shaped call tree structure;

Both are implementation of the same algorithm - «Parser», but the former
implementation tends to be easier to understanding and reverse engineering than the
latter.

From the other side, it’s quite intuitive that CFG could be effectively used for
representing a call tree; there are known works in the area of program profiling that
relies on a CFG representation of a program call tree – see for example [13].
 This makes us believe that we should be able to apply techniques found in LALR
parsers for automatic generation of alternative representations of a program’s call
tree, which should provide us with an alternative representation of a program’s
algorithm and strong obfuscation of the source program.

In this paper we propose an obfuscation algorithm that combines several earlier
ideas from C. Collberg, C. Thomborson and C. Wang1 with original transformations
of the program call tree that uses the LALR interpretation of the control flow. The
algorithm also relies on obfuscation-time scrambling and runtime descrambling of
LALR tables for achieving resilience against automatic de-obfuscation tools and
strong copy protection. As an extra benefit, it also allows us to apply difficult to
remove one-way transformations of the input alphabet, which could be useful for
software watermarking purposes. The overall algorithm is:

2.1) create CFG lexer by
a) merging all non-terminal methods of the original call tree together

i) by merging their argument arrays;
ii) flattening the Control Flow Graph by techniques similar to [18]; and
iii) merging their Control Flow Graphs together;

b) replacing the call-method instructions with return of the call-site index2;
2.2) apply one-way transformation/(permutation) to the input alphabet from step

2.1.b) for watermarking purposes;

1 Esp. see [5], [6], [7], [16], [17] and [18].
2 Call-site indexes are used as an input alphabet for the CFG representation of the Call Tree.

 Call Tree Transformation for Program Obfuscation and Copy Protection 167

2.3) generate an LALR driver routine that embeds terminal methods of the original
call tree as CFG reduce actions;

2.4) scramble the LALR state, transition and lookahead tables by
a) unstructuring and merging them together, and
b) applying a set of transformations that

i) use identification of program installation site as key material/seed; and
ii) could be compensated/descrambled at runtime.

As a result of the application of the algorithm for transforming a source program,
the original call tree becomes encoded and emulated by the LALR parse stack, which
is controlled by the LALR state, transition and lookahead tables. Even minor
problems during a runtime descrambling of these tables would lead to unpredictable
results during a program execution. If a runtime descrambling affects a substantial
part of LALR tables then it should provide a very strong copy protection because the
emulated call-tree will be unusable without access to the designated installation site id3.

Another major advantage of this algorithm is its strong obfuscation property that
combines several well known obfuscation techniques due to C. Collberg, C.
Thomborson and C. Wang with the original strong obfuscation of an inter-procedural
control flow by flattening and reversing the actual call tree while relying on an LALR
parsing for an interpretation of the logical call tree.

In cases when copy protection is considered to be a major goal, and because an
LALR interpretation of the original call tree induces some performance hit to each
interpreted method call; we suggest that often called, but trivial methods4 should be
excluded from a call tree CFG construction (as we will demonstrate in the following
introductory example).

A strong software watermarking property comes as a convenient side-effect due to
the fact that generation of an LALR parser is independent from numeric values
assigned to an input alphabet as long as they stay in synch with a source CFG. We
believe that the task of removing these watermarks5 should be at least as difficult as
the task of recovering the CFG (and recovering the original program call tree).

One of our design goals for the protection scheme presented in this paper was an
attempt to ensure that recovering CFG/(the original call tree) from a generated LALR
presentation of the call tree is indeed a difficult task; however, all questions
concerning complexity of this problem is left for further study.

3 Introductory Example and Preprocessing Steps

Here we want to outline an idea of a practical implementation of the suggested
scheme. For explanatory reasons we will present it on a minimal sample program.
However, we believe this scheme is applicable to most real-life programs with just
some adjustments/improvements. We will discuss security, performance and related
considerations later in this paper.

3 which we use as a keying material for scrambling/descrambling of LALR tables;
4 such as property setters and getters;
5 or switching from one permutation of an input alphabet to another permutation;

168 V. Pryamikov

Sample Pseudo-code

During the first step we will prepare an input alphabet for our call tree CFG Parser by
enumerating call sites and segments of a Control Flow Graph flattened with Wang’s
technique.

See Figure 1 for the pseudo-code of our sample program.

void Main() {
 A();
 B(message1);
}
int A() {
 int i = C();
 while (i < D()) {
 A(); i++;

}
 E(message2);
 return i;
}
void B(string message) {
 F();//F will be excluded from Call-Tree CFG
 E(message);
}
int C() { //do some calculations here.
 return calculationResults;
}
int D() { //D will be excluded from Call-Tree CFG
 return --RemainingLoops;
}
void E(string message) {
 G();//G will be excluded from Call-Tree CFG
 print(message);
}

Fig. 1. Source Code

Preprocessing of Call Tree

Let’s start with building the program call tree and preparing a set of indexes that will
be used as an input alphabet for our call tree CFG parser.

3.1. Build a call tree by enumerating call sites and ignoring all methods external to
the analyzed assembly (Figure 2);

3.2. Filter out trivial but often called methods6:
3.3. Mark all leafs (nodes without children):
3.4. Mark all joints (nodes that have at least one child):
3.5. Mark all recursive functions:
3.6. Enumerate call sites7 (Figure 3).

6 These methods will be treated the same way as methods external to the analyzed program.
7 i.e. associate sequential numbers {1,2,3…} with points of calling functions on leafs (3.3) ,

joints (3.4) and recursive (3.5).

 Call Tree Transformation for Program Obfuscation and Copy Protection 169

 Entry point

int A()

B(string)

int C()

E(string)

G()

F()

E(string)

G()

int D()

A() //recursive

Fig. 2. Initial Call Tree Fig. 3. Enumerated Call Sites

Application of our algorithm requires a separation of program segments surround-
ding the enumerated call sites. We will proceed by flattening the control flow graphs
in a couple of following steps.

3.7. All loops containing at least one enumerated call site8 should be dismantled with

an algorithm such as [16]/[18] – see Figure 4.

Fig. 4. Dismantling Cycles [18]

3.8. Enumerate fragments of dismantled cycles (switch labels from step 3.7);
3.9. Store the first index unused by an enumeration during steps 3.6 and 3.8

in a variable R. The stored value will be used for generating unique indexes
required for the implementation of the CFG lexer function several steps later.

8 Note that the source code from Figure 1 contains one cycle inside function A that requires

dismantling.

170 V. Pryamikov

4 Processing Call Tree Joints

During this stage of processing we will prepare a lexer function that will be used by
our call tree CFG parser. We will only focus on call tree joints here (see step 3.4), i.e.
functions Main, A and B of our sample code (Figure 1). The main idea is to merge
their argument arrays; merge their Control Flow Graphs and replace call statements
inside of enumerated call sites with return of corresponding indexes. For retaining
the control flow we would need twice as many switch labels as we enumerated in the
previous section for addressing Control Flow Graphs which follow the call sites. For
that purpose we will use the indexes that were not used in the previous stage of
processing (conveniently stored in the constant R during step 3.9).

Figure 5 shows an annotated version of the source code of non-terminal functions.

void Main() { //• entrypoin entrypoint {1}
 A(); //• call site {2} call site {2}
 B(message1); //• call site {6}; argB_1 call site {6}; argB_1
}
int A() { //• return value A_ret return value A_ret
 int i = //• A_I_loc; A_I_loc;
 C();//• call site {3}; C_ret; call site {3}; C_ret;
 while (i < D()) //• loop criteria {8} loop criteria {8}
 { //• loop body {9} loop body {9}
 A(); //• call site {4} call site {4}
 i++;
 } //• loop {10} loop {10}
 E(message2); //• call site {5}; argE_1 call site {5}; argE_1
 return i;
}
void B(string msg)//• argument argB_1 argument argB_1
{ //• local storage argB_1_loc local storage argB_1_loc
 F(); //F will be excluded from Call-Tree CFG
 E(msg); //• call site {7}; argE_1 call site {7}; argE_1
}

Fig. 5. Annotated Source Code

Preparing Lexer Function

4.1. Create a new function int yylex containing a single switch statement;
4.2. Arguments and return values of leafs and joints should be placed in a container

(for example an array) which is accessible by callers of yylex;
4.3. Local variables that are used across any of enumerated points should be placed in

the same container as in 4.2;
4.4. A reference to the container variable from the step 4.2 could be passed as a

function parameter to yylex;
4.5. Split the source (Figure 5) on Control Flow Graph fragments (code between

enumerated points);
4.6. Place all fragments from the step 4.5 into the switch statement inside yylex. Use

the fragment indexes as case labels;

 Call Tree Transformation for Program Obfuscation and Copy Protection 171

4.7. If a function inside an enumerated call-site is expecting any arguments
– update correspondent arguments in the container from step 4.2 just above the
call-site;

4.8. Replace the function-call inside the enumerated call-sites with return of the call
site index;

4.9. Add R cases with the code that follows the call-sites that we replaced with return
during step 4.8;

The resulting yylex function with the explanatory annotations is shown in
Figure 6.

int yylex(object[] args) {
 switch (currentPosition) {
 case 1: return 2; //Main entry point; calls function A()
 case 2: return 3; //A entry point; calls function C()
 case R+2:args[argB_1]=message1; // argument to B();
 return 6; //call function B();
 case R+3:args[A_I_loc]=args[C_ret];

// i ← return from C();
 goto case 8; //go to loop criteria;
 case 4: goto case 2; //A - recursive call; goto A's entry point
 case R+4:goto case R+9; //A returns; continue loop.
 case R+5:args[A_ret]=args[A_I_loc];

//return from E(); update A's retval
 break; //exit A;
 case 6:args[argB_1_loc]=args[argB_1];

//B's entry point; argument → local storage
 F(); args[argE_1]=args[argB_1_loc]; //arg. to E();
 return 7; //calls E();
 case R+6:break;//return from B(); exit Main
 case R+7:break;//return from E(); exit B();
 case 8: //loop condition
 if (args[A_I_loc] < D())
 goto case 9; //go to loop body;
 else
 goto case R+10;//exit loop
 case 9: return 4; //calls A() - recursive;
 case R+9:args[A_I_loc]++;//increment loop variable
 goto case 10; //go to loop;
 case 10: goto case 8; // go to loop criteria;
 case R+10:args[argE_1]=message2; //argument to E();
 return 5; //calls E()
 }
 return 0; //(end-of-branch/reduce);
}

Fig. 6. The annotated pseudo-code of the yylex function

172 V. Pryamikov

5 CFG and LALR Transformation of Call Tree

In this section we will construct a Context Free Grammar over a set of terminal
symbols VT ⊆ T, where T is a set of lexical tokens/values returned by the yylex
function which we built in the previous section. Our CFG will be representing the
original call tree. After that we will build an LALR parser function that will be
emulating the original call tree by means of an internal parse stack. Finally, we will
build first the version of the obfuscated program consisting of our LALR parser and
the yylex from the previous section.

We will not elaborate on algorithms used by LALR parser generators or LALR
parser driver routines, but instead we will refer to work of F. L. DeRemer, S. C.
Johnson, R. Corbett and the related literature listed in the reference section (see [8]),
as well as source codes of open source implementations of LALR parsers9.

The LALR parser driver routine used in our scheme should ensure that updates of
the internal parse stack position will be correctly reflected in the currentPosition
variable that we used in the yylex function as a switch control variable (see Figure 6).
 Additionally, the leaf functions C and E (Figure 1) will be inlined in the reduce
actions of our CFG.

In Figure 7 is a raw sketch of a grammar definition of our call tree.

Main: BranchA BranchB ⊥;
A_1: A C {inline C;};
A_2: A_1 A {/*recursive A()*/;}
| A_2 A {/*recursive A()*/;}

| A_2 ⊥;
A_3: A_2 E {inline E;};

BranchA: A_3 ⊥;
B_1: B E {inline E;};

BranchB: B_1 ⊥;

Fig. 7. Call Tree Grammar Definition

5.1. Use a grammar definition to generate an LALR parser driver routine that is also
updating the currentPosition variable of the yylex function;

5.2. The leaf functions (C and E) should be inlined as reduce-actions of the LALR
Parse function by using any standard inlining method. They also require the use
of the container from the step 4.2 for retrieving parameters and storing return
values.

Figure 8 shows the relevant fragments of the yyparse function that illustrates the
call of yylex and the inlining of reduce-actions. The rest of logic of the LALR parser
driver routine is omitted from Figure 8.

9 Such as YACC/BYACC and BISON.

 Call Tree Transformation for Program Obfuscation and Copy Protection 173

int yyparse() {
 object[] yyargs;
 //...intialize yyargs here
 ...
 //...LALR logic here
 pcyytoken=yylex(yyargs);
 //...LALR logic here
 ...
 switch (m) { /*actions associated with grammar rules*/
 case 3: { //do some calculations here.
 yyargs[C_ret] = calculationResults;

//return calculations result
 } break;
 case 5: //falls through
 case 7: {
 G(); //G is often called method which we excluded from CFG
 print(yyargs[argE_1]); //prints message sent in parameter
 } break;
 ... }
 goto enstack; }

Fig. 8. Fragments of LALR Parse pseudo-code

Now we are ready to create the first obfuscated version of our program that uses
the LALR call tree obfuscation technique.
5.3. Our LALR obfuscated program will be created by putting together:

a. yylex (generated during steps 4.1—4.9);
b. yyparse (generated during steps 5.1—5.2), which calls yylex (see a. above);
c. the entry point function which sets the currentPosition to 1 and calls

yyparse (see b. above).

If we take another look at our transformation, it essentially means that we have
reversed and flattened the call tree, so that:

− all leaf functions from the lowest level of the call tree are now moved into a single
yyparse function at the top of the modified call tree;

− all other functions, that were directly or indirectly calling the former leaf functions
(see above), are now moved to a single leaf function yylex (regardless of their
original call tree position).

The functionality of the original program is preserved by moving the original call
tree into the parse stack of an LALR parser.

The LALR Parse stack is controlled by the interpretation of the state, lookup
and lookahead tables. Figure 9 shows a sample of the LALR tables generated by
YACC.

174 V. Pryamikov

const int yyact[] = {
 5, 0, 0, 4, 8, 3, 17, 8,
 7, 9, 6, 0, 9, 8, 7, 1,
 6, 0, 9, 10, 11, 12, 13, 14,
 15, 16, 0, 0, 0, 0, 0, 0,
...
};
const int yypact[] = {
 -40, -29, -4096, -40, -40, -40, -40, -40,
 -40, -40, -4096, -4096, -35, -38, -38, -4096,
 -4096, -4096,
};
const int yypgo[] = {
 0, 15,
};
const int yyr1[] = {
 0, 1, 1, 1, 1, 1, 1, 1,
 1,
};
const int yyr2[] = {
 0, 1, 2, 2, 3, 3, 3, 3,
 3,
};
const int yychk[] = {
 -4096, -1, 257, 45, 43, 40, 45, 43,
 42, 47, -1, -1, -1, -1, -1, -1,
 -1, 41,
};

Fig. 9. The state, lookup and lookahead LALR tables generated by YACC

6 Protecting LALR Tables and Adding Copy Protection

The main problem with the LALR tables shown in Figure 9 is that their well defined
structure could be used for recovering the source CFG with the help of the specially
designed programs. Fortunately, we believe that there are ways of protecting LALR
tables from such a threat. In fact, there are known techniques of arrays obfuscations
that could be used for such purpose, as for example Array manipulations and String
Encoding transformations by C. Collberg and C. Thomborson [7].

Additionally, if we derive a transformation key10 from some unique installation site
ID, then it will also provide us with a very efficient copy protection, because if the
LALR tables only could be recovered in the presence of an unique installation site ID,
then any attempt to run such a program on a different installation site would lead to
distorted LALR tables, a corrupt call tree and completely unpredictable results.
Unfortunately, a simple derivation of a symmetric encryption key from an installation
side ID; encrypting LALR tables during obfuscation time and decrypting them during
runtime could only provide a marginal protection (if any at all). The latter is due to
the simple fact that when a complete LALR table structure is decrypted in a process
memory it immediately becomes a subject to various attacks including simple
dumping of decrypted LALR tables and running analysis of the memory dump.

Therefore, we would require a complex set of counter-measures that includes the
obfuscation of the tables structure; use of various table access obfuscation techniques,

10 We will use it for scrambling of the LALR tables.

 Call Tree Transformation for Program Obfuscation and Copy Protection 175

such as added indirection layers, alias-tables and alias rotations; ensuring that only
small, immediately required parts of LALR tables be descrambled at any given
moment in time, while the rest of this structure should be kept protected. Another
important factor to ensure is that it should be difficult to distinguish scrambled parts
of the tables from the descrambled parts. Reasonable candidates of our protection
framework could be based on the ideas from [14] where authors show how to
obfuscate a complex access control functionality, and demonstrate strong access
obfuscation properties of regular expressions and related functions. Another
protection measure could be modeled on unstructured LALR tables and/or alias-tables
like expander graphs and using bytes of a cryptographic hash of an installation site id
for choosing walk edges. The expanding property of the graph implies (via a non-
trivial proof) that the vertices along random walks on an expander have surprisingly
strong random properties [2]. We can also XOR bytes along the walking path with
another result of cryptographic hash as a part of a scrambling and descrambling
processes.

In other words our goals are:

− to scramble LALR tables at obfuscation-time by using some function dependent on
an installation site id;

− a periodic descramble of required parts of these tables at runtime;
− ensure that descrambling of these tables without having access to a corresponding

installation site id is a difficult task, while the runtime descrambling of these tables
only has an insignificant impact on performance.

Draft Description

6.1. We need to start with expanding and unstructuring tables, e.g. merging them into
a single array and applying an initial permutation that could be matched by one
or more layers of an added indirection with a help of alias tables (or similar) [7].

6.2. A similar set of transformations could be applied to both LALR tables and alias
tables.

6.3. Addressing subsets of these tables should expose strong access obfuscation
properties and pseudo-random properties. We can:

− model unstructured tables as an expander graph and use bits from PRF(id ||
hour)11 for choosing the walk edges;

− use a regular expression over random variables that are mappings of (possibly
unadjusted) bytes of PRF(id || hour), where id should be some unique
identification of a program installation site and PRF could be a cryptographic
hash function (let say SHA-1).

6.4. Addressed subsets could be used with different transformations that are
efficiently computed at runtime, such as:

− removing/inserting addressed subsets;
− XOR-ing two (or more) addressed subsets together;

11 Implementation of the algorithm will use a cryptographic hash function as a practical

substitution of PRF.

176 V. Pryamikov

− Using a modular arithmetic with bytes of addressed subsets at runtime and an
inverse modular arithmetic at obfuscation-time;

− other suitable transformations.

6.5. Transformations listed in the previous step could be executed by a function
running on a separate execution thread and also executed at the startup of a
protected program.

Processing Results

− If descrambling of relevant parts of LALR tables was incorrect, it will severely
affect the ability of the generated LALR parser to depict a correct shape of the
original call tree. This will lead to unpredictable results of the program execution.

− Correct descrambling of the relevant parts of the LALR tables and the alias-
rotation tables will only be guaranteed in the presence of the correct installation
site id.

− We believe that LALR tables obfuscated and scrambled this way will provide an
efficient protection against attempts of recovering the source CFG.

7 Adding Watermarks

If we look back at our choice of the input alphabet (steps 3.6—4.9) it’s clear that we
only require unique indexes and our choice of sequential numbers is arbitrary,
supported only by convenience and explanatory reasons. A generation of the LALR
parser is independent from the numeric indexes assigned to the input alphabet as long
as indexes stay in synch with the source CFG. We can add an extra step with a
permutation of the input alphabet before we generate the yylex and the yyparse.
 Here is a draft description of the algorithm:

7.1. put all indexes (call sites, dismantled cycles fragments and all previous
indexes incremented by R) into an array or a table;

7.2. the table from the previous step (7.1) could be augmented with aliases (e.g. 23
aliases for each index so that we can cycle indexes once per hour);

7.3. generate a random encryption key and use it to encrypt the table;
7.4. in cases when a permuted input alphabet is intended for watermarking

purposes – store the encryption key generated in the previous step together
with the original tables from step 7.1. Otherwise, if a post-identification of the
watermark is not required, the encryption key generated in step 7.3 simply
could be destroyed;

7.5. map each number in the original table to the corresponding position in the
encrypted table and use the numbers from the encrypted table in the body of
the protected program;

7.6. cases of the switch statement could be sorted in an ascending or descending
order or randomized;

7.7. a return of indexes from the yyparse function could be replaced with a return of
elements of an indexed (rotated) collection of input alphabet aliases (step 7.2);

7.8. excessive cases with a slightly modified/buggy code could be randomly
placed in the switch body of the yylex and yyparse functions;

 Call Tree Transformation for Program Obfuscation and Copy Protection 177

7.9. excessive cases could be combined with aliases to behave as a buggy code
before they are selected by the alias scheduler;

7.10. the alias scheduler could be implemented by the same routine that descram-
bles parts of the LALR tables (step 6.5).

Processing Results

− The permuted input alphabet becomes an integral part of the yylex and yyparse
functions as well as the state, lookup and lookahead tables generated by our
obfuscating transformation.

− We believe that replacing a whole permuted input alphabet with another
permutation is as a difficult task as a task of recovering a source CFG.

− Partial replacements of just a few symbols from an input alphabet could be easily
matched by using “tree proximity” measurements for a detection of watermarks.

8 Performance Impact and Final Remarks

It is clear that the call tree emulated by the parse stack of the yyparse routine would
not provide as a good performance as a direct function call. However, we believe that
by adjusting how many often-called-but-trivial methods shall be excluded from the
transformation, it is possible to achieve a strong-enough protection without affecting
an overall performance of the protected program. The latter is especially true when
concerning interactive applications, where a performance impact could be made
completely unnoticeable. Very preliminary results of our tests show that occasional
fluctuations of an execution environment (such as window scroll, thread context
switch, processor speed steps, auxiliary inputs, such as mouse movement and others)
could have a greater effect on the performance than the emulation of a call tree by the
parse stack of the yyparse function. We have run our tests on three different computer
configurations – Intel Centrino with Pentium M 1.6 MHz/1 GB; Dual Pentium 4 3.2
MHz / 2 GB and Intel Pentium 4 Celeron 2.2 MHz/512MB; all running Windows
XP. All three computers used for tests didn’t show a performance difference between
the original and the transformed programs. Figure 10 shows results of several runs of
the test program on the Pentium M computer. The test program source code could be
found on the author’s web page [20].

Source.exe /noninteractive Transformed.exe /noninteractive
completed in 547.90 ms. completed in 558.25 ms.
completed in 557.24 ms. completed in 555.48 ms.
completed in 550.65 ms. completed in 554.38 ms.
completed in 554.61 ms. completed in 549.05 ms.

Fig. 10. Sample results of performance test on the Pentium M 1.6/1GB computer

Even so the results of our test may appear surprising, there is a simple explanation
of the results. The percentage of a processing time that a normal program spends on
transforming a control flow between different functions is usually very small when

178 V. Pryamikov

compared to the processing time used for actual calculations and/or calling external
functions. For purposes of a closer emulation of a normal processing behavior of
interactive programs, we avoided adding calls to an LALR emulated functions from
tight loops. Therefore an LALR emulation of the call tree has only affected a very
small (by percentage of execution time) part of the program and the absolute
performance impact happened to be lesser than effects of occasional fluctuations of
the execution environment. We want to note that the results of our performance test
are very preliminary for drawing conclusions about a performance impact on real life
programs. A bigger size of a call tree and a bigger size of LALR tables are the two
most obvious factors that could affect a performance. We are very optimistic in our
expectations, however an additional study is required for presenting more accurate
estimates of a performance impact and providing recommendations for minimizing it
for different classes of real life applications.

Finally, we want to note that even a simple examination of the source code of our
sample test application appears to be quite reassuring about obfuscation properties of
the suggested transformation. Additionally, other known methods of a program and
data obfuscation could be effectively used in a combination with our scheme for
augmenting resilience and potency of the obfuscation transformation proposed in this
paper.

Acknowledgements. The author would like to thank Dr. Christian Collberg for his
invaluable help on this paper.

References

1. Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Sali
Vadhan, Ke Yang. On the (im)possibility of obfuscating programs. In Proceedings of
CRYPTO 2001.

2. N. Biggs. Algebraic graph theory, 2nd ed., Cambridge University Press, 1994. ISBN 0-
521-45897-8.

3. Christian Collberg, Clark Thomborson. Watermarking, tamper-proofing and obfuscation –
tools for software protection. Technical Report TR00-03, The Department of Computer
Science, University of Arizona, February 2000.

4. Christian Collberg, Clark Thomborson. Watermarking, tamper-proofing and obfuscation –
tools for software protection. IEEE Transactions on software engineering, vol.28, No.8,
August 2002.

5. Christian Collberg, Clark Thomborson, Douglas Low. A Taxonomy of Obfuscating
Transformations. Technical Report 148, Department of Computer Science, University of
Auckland. July 1997.

6. Christian Collberg, Clark Thomborson, Douglas Low. Manufacturing Cheap, Resilient,
and Stealthy Opaque Constructs. Principles of Programming Languages 1998, POPL'98,
January 1988.

7. Christian Collberg, Clark Thomborson, Douglas Low. Breaking Abstractions and
Unstructuring Data Structures. IEEE International Conference on Computer Languages,
May 1998.

8. A.V. Aho, R. Sethi and J.D. Ullman, Compilers: Principles, Techniques and Tools.
Addison Wesley, 1986, ISBN 0201100886.

 Call Tree Transformation for Program Obfuscation and Copy Protection 179

9. James R. Gosler. Software Protection: Myth or Reality? Sandia National Laboratory.
Advances in Cryptology – CRYPTO’85. 1985.

10. D. Grove, G. DeFouw, J. Dean, C. Chambers. Call Graph Construction in Object-Oriented
Languages. Proceedings of OOPSLA ’97. pp. 108-124, 1997

11. Horwitz, S., Precise flow-insensitive may-alias analysis is NP-Hard, ACM Transactions on
Programming Languages and Systems, Vol 19. No.1, pp 1-6. 1997.

12. W. Landi, Undecidability of static analysis. ACM Lett. Program. Lang. Syst. 1, 4, 323-
337. 1992

13. James R. Larus, Whole Program Paths, Proceedings of the SIGPLAN ‘99 Conference on
Programming Languages Design and Implementation (PLDI 99), May 1999, Atlanta
Georgia.

14. Benjamin Lynn, Manoj Prabhakaran, Amit Sahai. Positive Results and Techniques for
Obfuscation. In Proceedings of Eurocrypt 2004.

15. G. Ramalingam, The undecidability of aliasing, ACM Trans. Program. Lang. Syst. 16,
5,1467-1471, 1994

16. Chenxi Wang. A Security Architecture for Survivability Mechanisms. PhD Dissertation,
Department of Computer Science, University of Virginia, October 2000.

17. Chenxi Wang, Jonathan Hill, John Knight, Jack Davidson. Software Tamper Resistance:
Obstructing Static Analysis of Programs. Technical Report CS-2000-12, Department of
Computer Science, University of Virginia. May 2000.

18. Chenxi Wang, Jonathan Hill, John Knight, Jack Davidson. Protection of Software-based
Survivability Mechanisms. International Conference of Dependable Systems and
Networks. July 2001.

19. Hoeteck Wee. On Obfuscating Point Functions. Computer Science Division University of
California, Berkeley. Jan 2005

20. Valery Pryamikov. Call Tree Transformation. Test Program – Source Code http://
www.harper.no/valery/CallTreeTransformation

	Introduction
	Idea
	Introductory Example and Preprocessing Steps
	Processing Call Tree Joints
	CFG and LALR Transformation of Call Tree
	Protecting LALR Tables and Adding Copy Protection
	Adding Watermarks
	Performance Impact and Final Remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

