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Abstract. Program obfuscation is a semantic-preserving transforma-
tion aimed at bringing a program into such a form, which impedes the
understanding of its algorithm and data structures or prevents extracting
of some valuable information from the text of a program. Since obfus-
cation could find wide use in computer security, information hiding and
cryptography, security requirements to program obfuscators became a
major focus of interests for pioneers of theory of software obfuscation.
In this paper we also address the issue of defining security of program
obfuscation. We argue that requirements to obfuscation may be different
and dependent on potential applications. Therefore, it makes sense to
deal with a broad spectrum of security definitions for program obfusca-
tion. In this paper we analyze five models for studying various aspects of
obfuscation: “black box” model of total obfuscation, “grey box” model
of total obfuscation, obfuscation for software protection, constant hid-
ing, and predicate obfuscation. For each of these models we consider the
applications where the model may be valid, positive and negative results
on the existence of secure obfuscation in the framework of the model,
and relationships with other models of program obfuscation.
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1 Introduction

To obfuscate a program means to bring it into such a form which hampers as
much as possible the extraction of some valuable information concerning algo-
rithms, data structures, secrete keys, etc. from the text of a program. Obfusca-
tion can be viewed as a special case of encryption. One minor difference is that
plaintext (original program) needs not be efficiently extractable from cryptogram
(obfuscated program). The main difference seems to be decisive: a cryptogram
itself must be an executable code equivalent to the original program. The latter
is the reason why obfuscation attracts considerable interest of many researchers
in cryptography and computer security.

Obfuscation is a relatively new topic in computer science. It was first men-
tioned (without using the term “obfuscation”) in the seminal paper by Diffie and
� This work is supported by RFBR grant 06-01-00584.

J. Garay et al. (Eds.): ISC 2007, LNCS 4779, pp. 281–298, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



282 N. Kuzurin et al.

Hellman [15]. When introducing the concept of public-key cryptosystem, they
noticed that, given any means for obscuring data structures in a private-key en-
cryption scheme, one could convert this algorithm into a public-key encryption
scheme. Software engineering community became acquainted with obfuscation
through the paper by Collberg et al. [10] where it was presented as an effective
means for protecting software intellectual property against reverse engineering.
These papers marked the beginning of two lines of research in program obfusca-
tion, namely, obfuscation for the purposes of cryptography and obfuscation for
software engineering and computer security.

Program obfuscators could enjoy wide application in cryptography; a secure
program obfuscation would allow one to convert private-key encryption schemes
into public-key ones, to design homomorphic public-key cryptosystems, to re-
move random oracles from cryptographic protocols, etc. But in all these cases
program obfuscation should comply with some security requirements used in
cryptography. Barak et al. initiated in [3] a theoretical investigation of obfusca-
tion. They introduced the concept of “virtual black box” security: an obfuscation
O is secure iff anything one can efficiently compute given an obfuscated program
O(M) one could also efficiently compute given only oracle access to the original
program M . They also proved that some families of functions F are inherently
unobfuscatable in the following sense: there is a property P such that the value
P (f) can be efficiently computed, given any program that computes a function
f ∈ F , but no efficient algorithm can compute P (f) when it is given only or-
acle access to f . This negative result was strengthened in [18,22,32] for some
other variants of “virtual black box” security. Positive results were obtained
also: a secure obfuscation is possible (under some rather strong cryptographic
assumptions) for programs that compute point functions evaluating to zero al-
most everywhere (see [22,24,29,32]).

There are also a lot of problems in software engineering and computer se-
curity where program obfuscation would be very much helpful. Over the years
it was found that obfuscation as a low cost means may be used for preventing
reverse engineering [10,11], defending against computer viruses [9], protecting
software watermarks and fingerprints [2,12], providing security of mobile agents
[14,21], maintaining private searching on streaming data [26]. Unfortunately,
obfuscation is also well-suited for some malevolent purposes, e.g. for obscuring
malwares [7,27] and some types artificial vulnerabilities in protection systems
[4]. These and some other applications have given impetus to the development
of numerous obfuscation techniques (see, e.g. [1,8,11,13,23,25,31]). For the most
part these approaches are no more than heuristics (sometime rather sophisti-
cated) intended for distracting program analysis algorithms and impeding thus
the understanding and reverse engineering of obfuscated programs. The princi-
ple drawback of all known obfuscation techniques is that they do not refer to
any formal definition of obfuscation security and do not have a firm ground for
estimating to what extent such methods serve the purpose.

This brief overview of the current state of art in software obfuscation allows
some conclusions.
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– The applications of program obfuscation are notably diversified, and the
objectives to be pursued in these applications are also different. When ob-
fuscation is intended to turn a private-key cryptosystem into a public-key
one it is expected that such transformation hides a secret key but not neces-
sarily an implementation of the encryption algorithm. On the contrary, when
obfuscation is designed for software protection against reverse engineering
it is often bound to hide only the implementation of the most valuable al-
gorithms but not a processed data. This means that the term “obfuscation
problem” is but a generic name for the set of particular problems, each being
determined by the specific security requirement.

– There is considerable gap between negative and positive results. Actually, the
authors of [3] proved the impossibility of a universal obfuscating program by
presenting a family of functions such that every program which computes any
of these functions readily betrays a secret when being applied to itself (cf.
self-applicability problem for Turing machines). The positive results were
obtained in [5,24,32] only for a very small class of functions under strong
cryptographic assumptions. Although these results were extended in [16] to
the more interesting case of proximity queries, nothing is known about the
(im)possibility of effective obfuscation for common cryptographic algorithms,
or any meaningful class of programs (say, finite automata) under standard
cryptographic assumptions against reasonably weak security requirements.

– There is considerable gap between theory and practice of program obfusca-
tion. There are many papers which suggest various approaches to designing
obfuscating transformations of programs; some of them are implemented in
academic or commercial toolkits for program obfuscation. But the influence
of fundamental results from [3,18,24,32] on this branch of software engineer-
ing is minor: security requirements studied in the context of cryptographic
applications are either too strong or inadequate to many software protection
problems emerged in practice.

We believe that further progress in the study of program obfuscation may
ensue primarily from the development of a solid framework which makes it pos-
sible to set up security definitions for program obfuscation in the context of
various applications. This would help us to reveal the most important com-
mon properties required of any type of program obfuscation. Having access to
a variety of security definitions one may also understand better what security
requirements one or other obfuscating transformation complies with and thus
estimate both the potency and the drawbacks of a particular program obfusca-
tion technique. Intuition suggests that some weakly secure program obfuscation
is possible: everybody dealing with program understanding knows that in many
cases even small programs require considerable efforts to reveal their meaning. A
variety of new formal security requirements for program obfuscation would offer
a clearer view of this observation. Finally, when new formalizations of security
requirements for software obfuscation are brought into service, this opens new
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channels for adopting formal methods from computer science and cryptography
to the problems of software protection.

In this paper we address the issue of defining security of program obfusca-
tion. We argue that requirements to obfuscated programs may be different and
are dependent on potential applications. To this end we consider five models
for studying various aspects of obfuscation. We take a simulation paradigm and
“black box” model of total obfuscation defined in [3] as a basis. Strong im-
possibility results obtained in [3] leave open the following question: whether
there exist some weaker meaningful forms of security requirements that admits
the existence of provably secure obfuscator. In attempt to find an answer to
this question we try to adopt this model to various applications where pro-
gram obfuscation may be used. This bring us to four new formal models of pro-
gram obfuscation, namely, “grey box” model of total obfuscation, obfuscation
for software protection, constant hiding, and predicate obfuscation. We study
the basic properties of these models, positive and negative results on the exis-
tence of secure obfuscation in the framework of the models, and relationships
with other models of program obfuscation. The key notions of program ob-
fuscation studied in this paper have been introduced in preliminary form in
Technical Report [30]. We believe that these new models of program obfusca-
tion would provide a good framework for analyzing the potency of obfuscating
transformations developed in software engineering for the purpose of program
protection.

2 Notation

In complexity theory there is a number of definitions of a program. Two of
them can be regarded as commonly accepted ones. The first says that program
is a Turing machine, whereas the second defines program as a Boolean circuit.
Accordingly, a secure obfuscation can be defined either in terms of Turing ma-
chines, or in terms of circuits (see [3]). For the sake of uniformity we restrict our
consideration to Turing machines only.

We use TM as a shorthand for Turing machine. PPT denotes probabilistic
polynomial-time Turing machine. For PPT A and any input x the output A(x) is
a random variable. When we write “for any A(x)” we mean a universal quantifier
over the support of A(x).

For a TM we will write |A| to denote the size of A. For a pair of TMs A and
B, A ≈ B denotes their equivalence, i.e. A(x) = B(x) holds for any input x.

Function ν : N → [0, 1] is negligible if it decreases faster than any inverse
polynomial, i.e. for any k ∈ N there exists n0 such that ν(n) < 1/nk holds for
all n ≥ n0. We will sometimes write neg(·) and poly(·) to denote unspecified
negligible function and positive polynomial, respectively.

We write x ∈R D to indicate that x is chosen uniformly at random in the
set D.
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3 Total Obfuscation

3.1 “Black Box” Model

This concept of obfuscation was introduced and investigated by Barak et al. in
the paper [3]. Ideally, a totally obfuscated program should be a “virtual black
box”, in the sense that anything one can deduce from its text could be also com-
puted from its input-output behavior. This notion admits various formalizations
according to what an adversary party regards as a success. The weakest form is
that when an adversary tries to compute any predicate. Below we recall briefly
basic definitions of “virtual black box” obfuscation security.

Definition 1 ([3]). A probabilistic algorithm O is a “virtual black box” obfus-
cator if it complies with the following requirements:

1. (functionality) For every TM M any output O(M) of O on input M describes
a TM that computes the same function as M , i.e. M ≈ O(M).

2. (polynomial slow-down) The description length (size) and running time of
any TM O(M) are at most polynomially larger than that of M , i.e. there
exists a polynomial p such that for every TM M and any O(M), |O(M)| ≤
p(|M |) and if M halts in t steps on some input x then O(M) halts within
p(t) steps on x.

3. (security) For any PPT A (adversary) there is a PPT S (simulator) and a
negligible function ν such that

|Pr{A(O(M)) = 1} − Pr{SM (1|M|) = 1}| = ν(|M |). (1)

holds for all TMs M .

The main result of Barak et al. [3] is negative: secure obfuscation is impossible.

Theorem 1 ([3]). Turing machine obfuscators (in the sense of Definition 1)
do not exist.

The key idea of the proof is as follows. For strings α, β ∈ {0, 1}n define the TMs
Cα,β , Dα,β, Zn. On every input x a TM Cα,β always terminates within 10|x|
steps; it outputs β if x = α and 0n otherwise. A TM Dα,β considers an input x
as the code of some TM M , executes M(α) for poly(n) steps, and outputs 1 if
M(α) = β and 0 otherwise. A TM Zn always outputs 0n. Let M0#M1 denotes
a TM which takes the pairs (δ, x), δ ∈ {0, 1} as inputs and operates on x as
M0 if δ = 0 and as M1 if δ = 1. Clearly, it is possible to distinguish efficiently
O(Cα,β#Dα,β) from O(Zn#Dα,β) with probability 1. To this end, given a TM
M on input, an adversary A first decomposes M into M0#M1 and then outputs
M1(M0). On the other hand, for every PPT S the outputs SCα,β#Dα,β (x) and
SZn#Dα,β (x) will be the same with a high enough probability.

Remark 1. Programs that are obfuscatable in the sense of Definition 1 always
exist. Clearly, if on every input x a TM M attaches its program to the out-
put, i.e. M(x) = (y, “M”), then (1) holds trivially for any semantic-preserving
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transformation O. Note, that in this case we deal with a learnable program (in
the sense of [28]). The question is whether there exists a class of unlearnable
programs which admits a total obfuscation.

Even before “virtual black box” concept of obfuscation emerged in [3], Canetti
[5] and Canetti et al. [6] essentially obfuscated point functions under various
computational assumptions. A point funtion Iα(x) is evaluted to 1 if x = α and
to 0 otherwise. In [24] it was shown that a total obfuscation is possible in the
random oracle model for programs computing point and multi-point functions.
The problem of total obfuscation of point functions was also studied by Wee
in [32]. In this paper it was shown that an efficient obfuscation for the family
of point functions with multi-bit output is possible in the standard model of
computation provided that some very strong one-way permutations exist. Using
the construction from [6] Dodis and Smith demonstrated in [16] how to obfuscate
proximity queries where points are selected at random from a distribution with
min-entropy.

For the most applications of program obfuscation in cryptography (including
the converting of private-key encryption algorithms into public-key cryptosys-
tems, the designing of homomorphic public-key cryptosystems, etc.) the “virtual
black box” security paradigm is crucial. Another particularly challenging poten-
tial application is the removing of random oracles from cryptographic schemes.
Note, however, that in this case obfuscation is not completely total. Adversary
knows a priori that random oracle has to compute some function from, say,
{0, 1}2n to {0, 1}n which looks random. Therefore, the method of constructing
counterexamples to secure obfuscation suggested by Barak et al. [3] does not
work in the case being considered. This method is based on asking the adver-
sary to guess whether the function computed by obfuscated program is constant.
For random oracles the answer is always “no”. This means that at least when
application in removing random oracles is concerned, security requirements to
obfuscation are weaker and impossibility results of [3] do not rule out such an
application. However, the most obvious approach to this problem, namely one
based on obfuscating pseudorandom function families does not work yet (see [3]).

3.2 “Grey Box” Model

Since an adversary having access to an obfuscated program can always obtain
not only input-output pairs but also the corresponding traces one could first pose
a problem of whether it is possible to transform a program in such a way that
these traces are essentially the only useful information available to an adversary.
If this were possible then the next problem is how one can guarantee that the
traces themselves give away no useful information.

To this end we modify the “virtual black box” obfuscation model. Definition of
this new brand of obfuscation which from now on we will call “virtual grey box”
obfuscation differs from Definition 1 in two aspects. The first is the specification
of the oracle (“black-box”) used by simulating machine S. When the machine
S issues query x to the oracle it gets as a response not only the output word
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y but also the trace of execution of M on input x. Note that in our setting it
makes difference which particular program equivalent to M is used by the oracle.
We insist that this is just the original program M . This means that we do not
require obfuscator to hide any property that is learnable efficiently from traces
of execution of TM M . Notice also that any obfuscator can be deemed secure
only if it does not reveal any properties that remain hidden given access to the
traces of original program.

The second aspect concerns the programs to be obfuscated. We consider so
called reactive programs. Unlike ordinary programs intended for computing some
input-output relation, reactive programs are intended to interact with the envi-
ronment. This interaction displays itself in the responses a reactive program com-
putes on the requests from the environment. Thus, a reactive program computes a
function which maps the infinite sequences of inputs x1, x2, . . . , xn, . . . (sequences
of requests) into the infinite sequences of outputs y1, y2, . . . , yn, . . . (sequences of
replies) so that every output yn depends on the inputs x1, x2, . . . , xn only. Ex-
amples of reactive programs may be found in network protocols (including cryp-
tographic ones), embedded systems, operating systems, etc. A reactive program
may be formalized as a conventional TM which operates on read-only input tape
and write-only output tape (and using some auxiliary tapes) in such a way that
it does not proceed to read next input word xn+1 until it completes writing the
output yn. We will denote these machines as RTM to distinguish them from the
ordinary TM. It should be noticed that every TM may be viewed as an RTM
which resets its control into some predefined initial state s0 and erases its auxil-
iary tapes every time before reading the next input xn.

To distinguish the oracle used in Definition 1 from the oracle provided to
simulating machine S in this new setting we denote the latter by Tr(M). On
input x this oracle outputs a pair (y, trM (x)), where y is the output of RTM M
on input x (note that y depends not only on x but also on all previous inputs that
have been used as requests to the oracle) and trM (x) is the trace of execution
of M on this input. The string trM is defined as concatenation of all successive
instructions executed by M when running on input x.

Definition 2. A probabilistic algorithm O is a “virtual grey box” RTM obfus-
cator if it complies with the following requirements:

1. For every RTM M any output O(M) of O on input M describes a RTM
that is equivalent to M in the following sense: for any sequence of inputs
x1, . . . , xn, . . . the corresponding sequences of outputs of RTMs O(M) and
M coincide.

2. The description length and running time (on every finite sequence of inputs
x1, x2, . . . , xn) of any RTM O(M) are at most polynomially larger than that
of M .

3. For any PPT A (adversary) there is a PPT S (simulator) and a negligible
function ν such that

|Pr{A(O(M)) = 1} − Pr{STr(M)(1|M|) = 1}| = ν(|M |). (2)

holds for all RTMs M .
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Theorem 2. If one-way functions exist then “virtual grey box” RTM obfusca-
tors do not exist.

The intuition behind proof is quite simple. Barak et al. [3] proved Theorem 1 by
constructing an infinite family of TMs such that certain predicate π(M) defined
on this family is unlearnable with oracle access to the function computed by M
but can be decided easily given a text of any program equivalent to M . It suffices
to modify this construction in such a way that the following two requirements
hold simultaneously. First, learnability of predicate π(M) given a text of any
program equivalent to M should be preserved. Second, traces of execution of
M must provide a simulator with no additional useful information as compared
to the output-only oracle treated by Definition 1. A simulator S having access
to traces of execution of M is apparently more powerful then one bounded to
see input-output pairs only. To defeat this powerful simulator we make use of
cryptographic tools. Namely, instead of comparing input x to the fixed string α
as in Barak et al [3] we test first whether f(x) = f(α), where f is a one-way
function. Only if this test passes we check whether x = α.

A typical trace trM (x) consists of instructions used to compute f(x) and to
check whether f(x) = f(α). Most of the time this check fails. Moreover, if the
equality f(x) = f(α) holds with nonnegligible probability then this contradicts
the fact that f is a one-way function.

Note that one cannot replace one-way function f in this construction by e.g.
encryption function of private-key cryptosystem since encryption algorithm uses
private key and traces of its execution become available to adversary.

We stress that the above discussion has to be considered as motivating. The
actual construction is somewhat more complicated. Now we turn to the formal
proof.

Proof. The counterexample of Barak et al. from [3] involves two families of TMs.
For any pair of strings α, β ∈ {0, 1}n Turing machine C′

α,β(x) outputs β if x = α
and 0n otherwise. For the same parameters α, β Turing machine D′

α,β(C) outputs
1 if C(α) = β and 0 otherwise.

Let {f : {0, 1}n → {0, 1}n}n be a one-way function. Our construction depends
also on integer parameter t ≥ 2 which can be e.g. a constant or a value of
arbitrary but fixed polynomial (in n).

First we choose 2t strings α1, . . . , αt, β1, . . . , βt ∈ {0, 1}n uniformly at random.
Denote this 2t-tuple by γ. Now define RTM Cγ(x) as follows. On input x this
RTM computes f(x) and tests the result against precomputed values f(αi),
i = 1, . . . , t. If f(x) �= f(αi) for all i = 1, . . . , t then Cγ outputs 0n and halts.
In the case when f(x) = f(αi) for some i, Cγ checks whether x = αi and if so
outputs βi, otherwise it outputs 0n and in either case halts.

Next we define RTM Dγ . It stores two arrays of strings α1, . . . , αt and
β1, . . . , βt. Let i be a pointer to both this arrays which is initially set to 0.

On input a RTM C, Dγ runs as follows.

1. Check whether i = t − 1. If so, output 0 and halt.
2. Advance the pointer i = i + 1 and then feed C with input αi.
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3. If C(αi) = βi then check the current value of the pointer. If i = t then output
1 and halt, else goto 2.

4. If C(αi) �= βi then output 0 and halt.

Note that simulating machine having access to Cγ and Dγ as oracles may
query Dγ with arbitrary RTM C and extract α1 from the trace, then query Cγ

with α1 and obtain β1 (even if we have a modified RTM Dγ that hides the values
βi) and so on. Therefore simulating machine is granted only t − 1 queries to Dγ

(in fact further queries are allowed but result invariably in zero responses and
thus can be ignored). The unobfuscatable property is the existence of t distinct
strings α1, . . . , αt ∈ {0, 1}n such that output of a given RTM on each of them is
nonzero.

Pair of RTMs (Cγ , Dγ) replaces TMs (C′
α,β , D′

α,β) used in the proof of Theo-
rem 1 presented in [3]. Analysis of this proof shows that to adopt it to our case
one needs only to prove the next claim.

Claim: Suppose that RTM Zγ differs from Cγ only in that on input αt it outputs
0n. Then for any PPT S the amount

|Pr{SCγ ,Dγ (1n) = 1} − Pr{SZγ ,Dγ (1n) = 1}|

is negligible. The probabilities are taken over uniform choice of α1, . . . , αt,
β1, . . . , βt in {0, 1}n and coin tosses of S.

Proof. (Sketch) It suffices to show that any PPT has only negligible probability
to get nonzero response to any of its oracle queries, no matter which RTM, Cγ

or Zγ , is used as the first oracle.
For the sake of simplicity we assume t = 2 for the rest of proof. In this case

machine S can issue unique query to the second oracle. Let a1, . . . , as ∈ {0, 1}n

be all the queries of S to the first oracle prior to issuing its only query to the
second one (in fact s is a random variable). Suppose that nonzero string appears
with nonnegligible probability among responses to these s queries. We construct
a PPT T inverting the function f .

Let z ∈R {0, 1}n and y = f(z) be input to T . Machine T flips a coin and
decides which of values, f(α1) or f(α2) will be set to y. Without loss of generality
let it be α1. Then T chooses α2, β1, β2 ∈ {0, 1}n uniformly at random and calls S
as a subroutine. All queries to the first oracle are intercepted by T . For a query
x ∈ {0, 1}n, T computes f(x) and checks whether f(x) = y or f(x) = f(α2). If
neither of these equalities holds, T outputs 0n. In the case f(x) = y, T outputs
β1, and in the case f(x) = f(α2) it proceeds in the same way as RTM Cγ does.

The crucial observation is that the probability of seeing a nonzero response
from this simulated oracle T is at least as high as in the case of real oracle.
Therefore for some j ∈ 1, . . . s the response of T is nonzero with nonnegligible
probability. For this j, αj is in the preimage of y with probability 1/2. Thus,
T inverts f with nonnegligible probability which contradicts the fact that f is
one-way function.
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If nonzero string appears among responses to the first s queries with negligible
probability then the probability of nonzero response to a unique query of S to
the second oracle is negligible as well.

For the remaining oracle queries (after the query to the second oracle) the
same argument as above shows that nonnegligible probability of success would
imply existence of efficient algorithm for inverting the function f . This contra-
diction proves the claim. �	
As it may be seen from the proof, we lean to a large measure upon the ability of
an RTM to keep in memory a “history” of its computation on previous inputs.
This makes such programs non-resettable. It is unclear yet, whether this theorem
can be extended to ordinary TMs. This remains as an open question.

4 Obfuscation for Software Protection

As the most apparent application of obfuscation for software protection consider
the following scenario. Suppose one party invents a fast algorithm for factoring
integers and wishes to sell to another party a program for breaking the RSA cryp-
tosystem. The goal is to have this program transformed in such a way that it will
be hard to derive factorization algorithm from the text of transformed program.
However, the “black box” obfuscation model underlying Definition 1 does not
seem to be well-suited for this application. Indeed, it is hardly possible to find
a client who will buy a black-box as a piece of software. Instead, any program
product on the market must have a user guide specifying its functionality. In this
setting an adversary knows the function computed by the program in question.
The aim of obfuscation in this case is not to hide any property of the program
which refers to its functionality (we may assume that such properties are known
to an adversary party in advance from, say, users manual of the program), but
to make unintelligible the implementation of these functional properties in a
particular program. We think that this view of obfuscation is more adequate for
the needs of software engineering community than total obfuscation. The most
straightforward way to formalize this concept is to fix some program M0 equiv-
alent to the original program M and give M0 to the adversary as an additional
input. For example, if M is a program totally breaking the RSA cryptosystem,
i.e. finding its private key given a public one, then M0 might be an easy-to-
understand program which accomplishes the same task by exhaustive search.

The simulating machine S guaranteed by Definition 1 also has access to the
text of the program M0. The modified Definition 3 is as follows.

Definition 3. A probabilistic algorithm O is a software protecting obfuscator
if it complies with functionality and polynomial slow-down requirements from
Definition 1, and with the following security requirement:

3) For any PPT A there is a PPT S such that

|Pr{A(O(M), ˜M) = 1} − Pr{SM (1|M|, ˜M) = 1}| = neg(|M |). (3)

holds for every pair of TMs (M, ˜M), where M ≈ ˜M , and |˜M | = poly(|M |).
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The machines A and S are polynomial in the lengths of their first inputs, O(M)
and 1|M| respectively. Note that in the case when algorithm ˜M is efficient sim-
ulating machine S needs no access to the oracle M .

Remark 2. Some program properties (predicates) P are invariant under equiv-
alent program transformations, i.e. P (M) = P (M ′) holds for any program M ′

functionally equivalent to M . Clearly, such properties are only trivially obfus-
catable. Note, however, that in the context of software protection it is useless to
obfuscate invariant properties as soon as functionality of a program is known.

Security requirement in Definition 3 is much different from that in total obfus-
cation. The negative results of [3] do not rule out the possibility of “black box”
secure obfuscation for many important general classes of machines. Consider
as an example the obfuscation problem for deterministic finite state automata
(DFA). Secure total obfuscation of DFAs still remains one of the most chal-
lenging problem in the theory of program obfuscation. But if one manages to
estimate the obfuscation security following Definition 3 then a surprisingly sim-
ple obfuscation of DFAs can be obtained.

Theorem 3. There exists a secure software protecting obfuscator for the family
of DFAs.

Proof. A DFA is but a one-way TM. We may regard any efficient DFA minimiz-
ing algorithm O as a TM obfuscator. Indeed, it is well known that for every DFA
M there exists the unique minimal DFA M0 such that M ≈ M0. Therefore, a
simulator S, given a TM ˜M only, can readily compute O(M) by applying any
efficient minimizing algorithm to ˜M and then mimic an adversary A on the pair
(M, ˜M) to satisfy (3). �	

The possibility of such effect has been noted in [3] and also studied in more
details in [19]. It appears in software engineering as well: if a program compilation
includes an advanced optimization (minimization) then executables become far
less intelligible by means of reverse engineering. As it can be seen from Definition
3, software protecting obfuscators are intended to remove all individual specific
features from a program to be protected. Hence, to obfuscate a program it is
sufficient to reduce it to some normal form. If a family of programs H admits
strong and effective normalization, i. e. there exists an algorithm which reduces
any two equivalent programs to the same normal form, then Theorem 3 can
be extended to this family: any efficient normalization algorithm becomes an
obfuscator O for programs from H. It is worth noting that the authors of [31]
implemented a sort of normalization, namely, flattening of program control flow,
as the basic obfuscating transformation in their software protection toolkit.

Unfortunately, efficient normalization is possible only for a few natural classes
of programs. Therefore, we qualify TM obfuscation through normalization as
trivial and pose the following question:

Open problem. Is there any class of programs which admits non-trivial secure
obfuscation in the sense of Definition 3?
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Another distinctive feature of TM obfuscation is that impossibility results
of Barak et al. [3] do not apply in this setting. Moreover, if one attempts to
extend the proof technique of the paper [3] to show that secure obfuscation in
the sense of Definition 3 is impossible, then this will immediately imply that
some weak form of obfuscation does exist! Indeed, counterexample of Barak et
al. is based on a specific invariant property of a particular family of programs.
Suppose there exists an infinite sequence of pairs (M, ˜M) of TMs such that some
invariant property π is learnable efficiently given the text of the program O(M)
but is unlearnable when we have the text of the program ˜M and black-box access
to M . But this means that ˜M is a (provably) secure obfuscation of O(M) with
respect to the property π.

It makes sense to juxtapose the notion of TM obfuscation (Definition 3) with
the notion of obfuscation w.r.t. auxiliary inputs introduced in the paper [18].
Goldwasser and Kalai modified the “virtual black box” property by admitting
both an adversary A and a simulator S an access to an auxiliary input z which
may be dependent as well as independent from a program to be obfuscated.
When being adapted to TM notation it is as follows.

Definition 4 ([18]). A probabilistic algorithm O is an obfuscator w.r.t. depen-
dent auxiliary input for the family of TM F if it complies with functionality
and polynomial slow-down requirements from Definition 1, and with the follow-
ing security requirement:

3) For any PPT A there is a PPT S such that

|Pr{A[O(M), z] = 1} − Pr{SM [1|M|, z] = 1} = neg(|M |)
holds for every TM M ∈ F , and every auxiliary input z of size poly(|M |) (z
may depend on M).

In [18] it was shown that many natural classes of functions (so called filter
functions based on circuits with super-polynomial pseudo entropy on inputs
from NP-complete language) cannot be obfuscated. The security requirement in
the sense of Definition 3 is much weaker than that from [18] since in the case of
TM obfuscation we are bound to check (3) only for those auxiliary inputs that
are TMs ˜M equivalent to an obfuscated TM M . Therefore, negative results and
examples of [18] cannot testify the impossibility of universal software protecting
obfuscation, and we may pose the following question.

Open problem. Does there exist a class of programs that are unobfuscatable
in the sense of Definition 3?

Software protecting obfuscation has much in common with best possible ob-
fuscation advanced by Goldwasser and Rothblum in [19]. An obfuscator O is
judged as best possible if it transforms any program so that anything that can
be computed given an access to the obfuscated program O(M) should also be
computable from any other equivalent program (of some related size).

Definition 5 ([19]). A probabilistic algorithm O is a best possible obfuscator
if it complies with functionality and polynomial slow-down requirements from
Definition 1, and with the following security requirement:
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3) For any PPT A (learner) there is a PPT S (simulator) such that for every
pair of equivalent TMs (M, ˜M) of the same large enough size the distributions
A(O(M)) and S(˜M) are indistinguishable.

The aim of software protection is to hide all specific properties of any partic-
ular implementation M of some function known to all (the latter is formalized
by giving an adversery a description of this function as an arbitrary program
˜M equivalent to M). Intuitively, this may be achieved iff for every pair of im-
plementations M1 and M2 of the same function the distributions O(M1) and
O(M2) are indistinguishable. But, as it was proved in [19], this is equivalent (in
the case of efficient O) to the claim that O is a best possible obfuscator. Thus,
it may be conjectured that software protection obfuscation is equivalent to best
possible obfuscation. But to prove this conjecture formally one has to elaborate
Definitions 3 and 5 to circumvent the discrepancy in the admissible size of an
auxiliary program ˜M .

5 Constant Hiding

In this setting everything to be hidden from an adversary is a certain constant
c0 used by a program M . This constant is assumed to be chosen randomly in
sufficiently large set C. One can safely assume that the original program M is
completely known to the adversary except for the constant c0.

It is easy to see that constant hiding is closely related with obfuscation for
software protection. Therefore we adopt Definition 3 to the present case by
setting ˜M to be the same TM as M except for the constant c0 replaced by a
constant c chosen randomly and independently in C. Let M be a program which
uses a constant c. For simplicity we assume that c ∈R {0, 1}n for every integer
n. For any given constant value c ∈ {0, 1}n we denote by Mc the corresponding
instantiation of the program M . Thus, we deal with a parameterized family of
programs F = {Mc : c ∈ {0, 1}n, n ≥ 1}. The obfuscation of F is intended to
prevent the extraction of information about a constant c from the program Mc.

Definition 6. Let F be a parameterized family of TMs Mc. A probabilistic al-
gorithm O is a constant hiding obfuscator for the family F if it complies with
functionality and polynomial slow-down requirements from Definition 1, and
with the following security requirement:

3) For any PPT A there is a PPT S such that

|Pr{A[O(Mc0), Mc] = 1} − Pr{SMc0 [1|Mc0 |, Mc] = 1} = neg(n) (4)

holds for any constant value c0 ∈ {0, 1}n and c ∈R {0, 1}n.

One can define a weak form of constant hiding in which an adversary A and
a simulating machine S instead of outputting a single bit have to guess the
constant c0.
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Remark 3. Suppose that U is a universal TM. Then a constant c may be inter-
preted as an encoded description of some other TM M simulated by the instan-
tiation Uc. In this case a constant hiding obfuscator for a universal TM is some
specific variant of obfuscation w.r.t. dependent auxiliary input introduced in [18]
(see Definition 4). At the same time, if all TMs Mc from the family F do not
refer to a constant c along any execution then every semantic-preserving trans-
formation O is a trivial constant hiding obfuscator for F . Nontrivial constant
hiding does exist (at least in the weak form) under cryptographic assumptions
for certain restricted classes of programs. In fact, any public-key cryptosystem
gives such an example since its encryption program can be regarded as hiding a
particular constant, namely, a private key. The obfuscations of point functions
from [24,32] can be also viewed as constant hiding obfuscations (see also [18]).

Yet another variant of constant hiding obfuscation is defined in [22]. An obfusca-
tor O for a family of programs F is regarded as a composition of two algorithms:
a key transformation routine T that takes a key c and returns an obfuscated key
c′ = T (c), and a polynomial time machine G which on input an obfuscated key
c′ and x outputs y = Mc(x). The authors of [22] proved that if a secure secrete-
key encryption scheme can be obfuscated according to their definition, then the
result is a secure public-key encryption scheme. On the other hand, they also
showed that there exists a secure probabilistic secret-key cryptosystem that can-
not be obfuscated. Definition 6 specifies a more general model of constant hiding
obfuscation than that of [22], since in our model it is assumed that obfuscating
transformations may be applied not only to a constant c0 to be hidden but also
to the program Mc0 which is instantiated by the constant. Instead of using some
fixed universal machine G we grant an adversary an access to a typical program
Mc, since all TM from the family F are the same except for the constants.

6 Predicate Obfuscation

This is one of the weakest model of obfuscation. It is intended to hide only a par-
ticular distinguished property of a program (predicate). Nevertheless, predicate
obfuscation may appear in numerous applications in computer security. Assume
that some programs are infected with a virus which is triggered off at some exe-
cutions. There are several approaches to a virus detection. A sandbox approach
emulates the operating system, runs executables in this simulation and analyzes
the sandbox for any changes which might indicate a virus. This approach is
resource consuming and normally it takes place only during on-demand scans.
The most effective virus detection technique is based on virus dictionary: an anti-
virus program tries to find virus-patterns inside ordinary programs by scanning
them for so-called virus signatures. To avoid detection some viruses attempt to
hide their signatures by using complex obfuscating transformations and rewrit-
ing their bodies completely each time they are to infect new executables. Also
the viruses tend to “weave” their code into the host program making detection
by traditional heuristics almost impossible since the virus share a great deal of
its instructions with a host program code. A virus-detection problem may be
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specified by a predicate π(M) which evaluates to true whenever the program
M includes some malware piece of code. An obfuscating transformation O used
by a metamorphic malware could be regarded secure if any anti-virus scanner is
no more effective in detecting an obfuscated virus signature (i.e. in evaluating
π(O(M))) than some sandbox virus detector.

To formalize this idea consider some predicate P defined on a family of
TMs F .

Definition 7. A probabilistic algorithm O is an obfuscator of the predicate π
on the family F if it complies with functionality and polynomial slow-down
requirements from Definition 1, and with the following security requirement:

3) For any PPT A there is a PPT S such that

|Pr{A[O(M)] = π(M)} − Pr{SM [1|M|] = π(M)}| = neg(|M |) (5)

holds for every TM M from F and its obfuscation O(M).

Predicate obfuscation is related intrinsically with total obfuscation: a “virtual
black box” obfuscator needs to hide all predicates, whereas Definition 7 allows
to build different obfuscators for different predicates. As it may be seen from the
proof of Theorem 1 given in [3], the impossibility of total obfuscation is certified
by presenting an unobfuscatable predicate as a counterexample. On the other
hand, predicate obfuscation is much weaker than total obfuscation. In [29] it was
shown that if every TM from a family F computes either zero function, or a point
function, then secure obfuscation of the predicate “M(x) �≡ 0” on the family F is
possible under assumption that a one-way permutation exists. This obfuscation
is based on the hard-core predicate construction suggested by Goldreich and
Levin [17]. As it can be seen from theorem below, predicate obfuscation offers
some nice properties: composition of predicate obfuscators increases the potency
of obfuscation.

We say that a predicate π on TMs is a functional property if π(M1) = π(M2)
holds for every pair of equivalent TMs M1, M2.

Theorem 4. Let O1 and O2 be obfuscator of functional properties π1 and π2,
respectively. Suppose also that the range of O2 is contained in the domain of O1.
Then the composition ̂O = O1O2 is an obfuscator of both predicates π1 and π2.

Proof. We may assume that each obfuscator Oi, i = 1, 2, is supplied with a
polynomial qi(·), and for every TM M the size of Oi(M) is exactly qi(|M |). This
may be achieved by padding an obfuscated program with a sufficient amount
of dummy instructions. Clearly, ̂O satisfies the functionality and polynomial
slow-down requirements.

Let M be an arbitrary TM.
1. To show that ̂O obfuscates π1 consider an arbitrary adversary ̂A. Since O1 is
an obfuscator of π1, there exists a PPT S such that

|Pr{ ̂A[O1(O2(M))] = π1(O2(M))}−Pr{SO2(M)[1|O2(M)|] = π1(O2(M))}| = neg(|M |)
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holds for the predicate π1, TM O2(M) and its obfuscation O1(O2(M)). Now
we may consider a simulator ̂S which operates as follows: given an input 1x,
it computes y = q2(x), and applies the simulator S to 1y. Since π1(O2(M)) =
π1(M) and O2(M) ≈ M , we arrive at the equation

|Pr{ ̂A[ ̂O(M)] = π1(M)} − Pr{̂SM [1|M|] = π1(M)}| = neg(|M |),

which is exactly the security requirement for π1, TM M and its obfuscation
̂O(M). Hence, ̂O obfuscates π1.

2. To show that ̂O obfuscates π2 consider an arbitrary adversary ̂A and the
composition A = ̂AO1. Since O2 is an obfuscator of π2, there exists a PPT ̂S
which simulates the adversary A so that

|Pr{A[O2(M)] = π2(M)} − Pr{SM [1|M|] = π2(M)}| = neg(|M |)

holds. Hence, ̂O satisfies security requirement to predicate obfuscation
for π2. �	

7 Conclusion

The models of program obfuscation presented in this paper evolved naturally
from the “black box” simulation principle offered by Barak et al. in [3]. Security
requirements given in Definitions 3, 6, and 7 make it possible to cover those cases
of program obfuscation that do not fall into the “virtual black box” security
paradigm. Although we have made only preliminary study of these new models,
even such simple results as Theorems 3 and 4 show that as security requirements
become weaker program obfuscation displays some new interesting features. On
the other hand, Theorem 2 demonstrates that total program obfuscation remains
impossible even in a framework of a weak “virtual grey box” obfuscation model
under standard cryptographic assumptions.
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