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Abstract. Software security is a significant issue in the Internet age.
In order to prevent software from piracy and unauthorized modification,
many techniques have been developed. Software watermarking is such a
technique that can be used to protect software by embedding some secret
information into the software to identify its copyright owner. In this
paper, we discuss algorithms of software watermarking through register
allocation.

The QP Algorithm [1, 2] was proposed by Qu and Potkonjak to wa-
termark a solution to a graph coloring(GC) problem to protect its in-
tellectual property. In a recent paper by Myles and Collberg [3], the
QP algorithm was corrected, and was, for the first time, implemented
to watermark software through register allocation. It is called the QPS
algorithm.

Our paper discusses some difficulties with the published descriptions
of the QP and QPS algorithms, points out the problem in the extractabil-
ity of the watermarks inserted by the QP algorithm through examples,
proves the correctness of a clarified version of the QPS algorithm, and
proposes an improvement for the QP algorithm. Finally, we give some
potential topics for further research.

Keyword: Software Watermarking, Graph, Interference Graph, Graph
Coloring.

1 Introduction

With the rapid development of the software industries, computer security [4, 5]
and the protection of intellectual property of software from piracy becomes more
and more important issues in computer business and academicia. Software wa-
termarking is an approach to embed a message into software to claim the own-
ership of it [6, 7, 8, 9]. It is one of effective mechanisms to protect the intellectual
property of the developers for a software.

Qu, Potkonjak, et al. developed some techniques to watermark the solutions
to constraint problems such as the GC problem [1, 2, 10, 11, 12]. The GC problem
is to color the vertices of a graph with the fewest number of colors such that
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no vertices connected by an edge receive the same color. In compiler, the GC
problem is used to allocate the registers for variables of a program. Potkonjak
and Qu proposed the QP algorithm [1, 2] in 1998, but they have not published
any detailed implementation for QP algorithm; they even have not considered
any attacks in their analysis, however resistance to attack is of vital importance
in digital and software watermarking.

In 2004, Myles and Collberg [3], for the first time, implemented the QP al-
gorithm to watermark software through register allocation, and conducted an
excellent and thorough empirical evaluation of this algorithm. They tried vari-
ous attacks on the QP algorithm to analyze its robustness. Furthermore, they
propose the QPS algorithm to compensate for the flaws they discovered in the
QP algorithm. However, for the reasons shown in this paper, there are still some
confusing points in the QPS algorithm.

Le and Desmedt also pointed out some other flaws in the QP algorithm [13].
They claimed that watermarked solution resulted from the QP algorithm could
be modified in such a way that any message could be verified, and thus the
watermark inserted could not be used to show ownership of the solution.

This paper is organized as follows. Section 2 discusses some basic concepts
in software watermarking systems. Section 3 introduces the QP algorithm and
points out some flaws in the QP algorithm as a method of watermarking. Sec-
tion 4 discusses the QPS software watermarking algorithm, a variant of the QP
algorithm for software watermarking. It is pointed out that there are not clear
points in the if statement in the QPS algorithm. A potential clarified version of
the QPS algorithms is explored and we proved the soundness of this version of
the QPS algorithm. Section 5 details our improved QP algorithm, which we call
the QPI algorithm. Section 6 summarizes our conclusions about the QP algo-
rithm, the QPS algorithm, and our QPI algorithm. Section 7 points out several
topics for further research.

2 Software Watermarking Systems

A software watermarking system can be divided into two subsystems: embedding
subsystem and extracting subsystem. Embedding subsystem tries to insert wa-
termarks in programs, while extracting subsystem aims to take watermarks from
watermarked programs. There are several software watermarking algorothms
currently avaiable, among them is the graph-based algorithm, in which a water-
mark is encoded as a graph with some special properties. Venkatesan, Vazirani
and Sinha [14] proposed the first graph-based Software watermarking algorithm
called the VVS algorithm. It is a static software watermarking algorithm. Coll-
berg and Thomborson [7] proposed the first dynamic graph algorithm, the CT
algorithm which inserts a watermark encoded as a data structure graph and
only running a watermarked program with a special input, called a key, does the
watermark in the watermarked program appear.

A public cryptographic key could be used as a watermark value W [7, 8]. Only
the owner of the public key should know the corresponding private key. If the
key is sufficiently long, and if the watermark graph-extracting algorithm and
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the decoding algorithm are sufficiently well-publicised, then an attacker would
be unable to mount a convincing counterclaim of ownership. The attacker might
produce a fraudulent decoder d′() and/or a fraudulent graph-extractor g′(), such
that d′(g′(P )) = W ′, where g′(P ) is a graph found in a watermarked program
P by extractor g′() and W ′ is a public key whose corresponding private key is
known to the attacker. However one or both of d′() or g′() would bear little
resemblance to the well-publicised d() and g(). Furthermore it would seem ex-
tremely difficult (and may someday be proved to be computationally infeasible)
for the attacker to produce a watermark embedding process e′ : X × W → X
such that their watermarking system will operate ideally, or near-ideally, over a
wide range of programs X and watermarks W . In an ideal watermarking system,
the extractor always finds an embedded watermark

∀x ∈ X, ∀w ∈ W : d′(g′(e′(x, w)) = w

and it never finds a spurious watermark

∀y ∈ X, ∀w ∈ W, ∃x ∈ X : (d′(g′(y) = w) =⇒ (y = e′(x, w))

Note that it is trivial for an attacker to produce a spurious watermarking
system (d′, g′, e′) that will operate ideally over a very small range of programs
and watermarks, for the extractor could do a table lookup on its inputs and then
report a watermark that is arbitrarily chosen by the attacker.

3 The QP Watermarking Algorithm

Qu and Potkonjak proposed a watermarking algorithm for watermarking solu-
tions to Graph Colouring (GC) problems [1, 2], which is called the QP algorithm
in [3, 15]. It requires the vertices of the graph to be indexed, that is, each ver-
tex must be labeled with a unique integer in the range 1 to |V (G)|. The QP
algorithm relies heavily on the ordering of node indices. The followings are some
concepts used in the QP algorithm.

Definition 1. Cyclic mod n ordering [1, 2]: We use “<i” to denote the cyclic
mod n ordering relation for a fixed i, such that i <i (i + 1) <i . . . <i n <i

1 <i . . . <i i − 1. Where there is no confusion over the value of i, we omit the
subscript in <i.

Definition 2. Two nearest vertices that are not connected to a vertex vi [1, 2]:
For a vertex vi of a graph G with |V | = n, we say vi1 ∈ V and vi2 ∈ V are
the two nearest vertices that are not connected to a vertex vi if i <i i1 <i i2;
(vi, vi1) /∈ E; (vi, vi2) /∈ E; ∀j : i <i j <i i1, (vi, vj) ∈ E; and ∀j : i1 <i j <i i2,
(vi, vj) ∈ E.

In this paper, if the above two vertices exist for a vertice vi, we also say vertice
vi has two candidate vertices vi1 and vi2 .

The essence of the QP algorithm is to add an extra edge between every vertex
vi and one of its two candidate vertices. The choice between these two nearest
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unconnected vertices is determined by the watermark bits to be embedded. It is
important to notice that this concept is a dynamic one, since the two candidate
vertices of vi may change whenever an edge is added to the neighborhood of vi.

After a watermark is inserted in a cover message using an embedding algo-
rithm, an important question we may ask is if this watermark can be extracted
by some algorithm.

3.1 The QP Embedding Algorithm

The original QP algorithm in Fig. 1 was proposed by Qu and Potkonjak [1, 2].
It inserts a watermark into a solution to a GC problem.

Input: an unwatermarked graph G and
a message bits: W = w1w2 . . . wm

Output: a watermarked graph G′.
Algorithm:
n = |V |
G′ = G
for each i from 1 to n

if vi has two candidate vertices vi1 and vi2
if wi = 0 connect vi to vi1 in G′(V, E′)
else connect vi to vi2 in G′(V, E′)

return G′

Fig. 1. The original QP algorithm [1, 2]

We note a subtle problem in the algorithm of Fig. 1. We cannot expect to
insert one bit for every vertex in an arbitrary graph G. In Fig. 2, we show an
“obvious” adaptation of the QP embedding algorithm, to handle arbitrary G.

Input: an unwatermarked graph G(V, E) and
a message bits: W = w1w2 . . . wm

Output: a watermarked graph G′.
Algorithm:
n = |V |
G′ = G
j = 0
for each i from 1 to n

if vi has two candidate vertices vi1 and vi2
j++

if wj = 0 connect vi to vi1 in G′(V, E′)
else connect vi to vi2 in G′(V, E′)

return G′

Fig. 2. A clarified version of the QP algorithm [1, 2]

3.2 The QP Extraction Algorithm

The QP extraction algorithm in [2] is as follows. Given the graph G′, for each
vertex vi we consider all vertices vj such that vi and vj have different colors
and (vi, vj) /∈ E(G). One bit of information can be decoded for each such pair
of vertices, by counting the number n(i, j) of nodes k with indices i <i k <i j
which are not connected to vi. The value of the message bit is defined by the
following case analysis on n(i, j):
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1. If n(i, j) = 0, the watermark bit is 0;
2. If n(i, j) = 1, the watermark bit is 1;
3. If n(i, j) > 1, then the watermark bit is 0 if n(j, i) is 0; the watermark bit is

1 if n(j, i) is 1; and the watermark bit is undefined otherwise.

The unwatermarked graph G plus its coloring is not enough to recognize
the watermark embedded in the watermarked graph. Even the unwatermarked
graph plus its coloring and plus the coloring of the watermarked graph is still
not enough to recognize the watermark embedded in the watermarked graph.
This can be seen from the following example.

Example 1. Let G(V, E) have 3 vertices v1, v2, v3 and no edges. We can color
its all 3 vertices with color RED. After inserting a message W = 0, G(V, E)
becomes a new graph G′

1(V, E′
1) with 3 vertices v1, v2, v3, v4 and 1 edge {v1, v2}.

We can color it so that v1 with color RED, v2 and v3 with color BLUE.
For the above graph G(V, E), we can also color its all 3 vertices with color

RED. After inserting a message W = 1, it becomes another new graph G′
2(V, E′

2)
with 3 vertices v1, v2, v3 and 1 edge {v1, v3}. We can also color it so that v1 with
color RED, v2 and v3 with color BLUE.

The same original graph G(V, E) has the same coloring for the watermarked
graphs but different messages inserted.

Myles and Collberg has also pointed out that the above QP extraction algorithm
is incorrect, but their example [3] for the extraction failure of the QP algorithm
is itself not clear.

3.3 The QP Algorithm Is Not Extractable

The QP algorithm is not extractable, since, as shown in the following example,
inserting two different messages into an original graph respectively, we get the
same watermarked graph.

Example 2 (Extraction failure of the QP algorithm). Let G(V, E) have 4 vertices
v1, v2, v3, v4 and two edges (v1, v3), (v2, v4).

The first message to embed is W1 = 010.
E′ = E
For i = 1, vi has the two nearest vertices that are not connected to vi with

i1 = 2, i2 = 4. For wj = 0, we connect v1 and v2. Now E′ = E′ ∪ (v1, v2)=
{(v1, v3),(v2, v4),(v1, v2)}.

For i = 2, vi has no the two nearest vertices that are not connected to vi, so
we cannot embed a bit for this vertex.

For i = 3, vi has the two nearest vertices that are not connected to vi with
i1 = 4, i2 = 2. For wj = 1, we connect v3 and v2. Now E′ = E′ ∪ (v2, v3)=
{(v1, v3),(v2, v4), (v1, v2), (v2, v3)}.

For i = 4, vi has the two nearest vertices that are not connected to vi with
i1 = 1, i2 = 3. For wj = 0, we connect v1 and v4. Now E′ = E′ ∪ (v1, v4)=
{(v1, v3),(v2, v4),(v1, v2), (v2, v3),(v1, v4)}. The following figure shows this em-
bedding process.
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i = 1, i1 = 2 and i2 = 4, wj = 0, so connect v1 and v2.

For i = 2, we cannot add any edge.
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i = 3, i1 = 4 and i2 = 2, wj = 1,,
so connect v2 and v3.
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i = 4, i1 = 1 and i2 = 3, wj = 0, so connect v1 and v4.

This is the watermarked graph.

The second message to embed is W2 = 111.
E′ = E
For i = 1, vi has the two nearest vertices that are not connected to vi with

i1 = 2, i2 = 4. For wj = 1, we connect v1 and v4. Now E′ = E′ ∪ (v1, v4) =
{(v1, v3), (v2, v4), (v1, v4)}.

For i = 2, vi has the two nearest vertices that are not connected to vi with
i1 = 3, i2 = 1. For wj = 1, we connect v1 and v2. Now E′ = E′ ∪ (v1, v2) =
{(v1, v3),(v2, v4),(v1, v4), (v1, v2)}.

For i = 3, vi has the two nearest vertices that are not connected to vi with
i1 = 4, i2 = 2. For wj = 1, we connect v3 and v2. Now E′ = E′ ∪ (v2, v3) =
{(v1, v3),(v2, v4),(v1, v2), (v3, v2), (v3, v2)}.

For i = 4, vi has no the two nearest vertices that are not connected to
vi, so we cannot embed a bit for this vertex. Now we also have the same
E′ = {(v1, v3),(v2, v4), (v1, v2),(v2, v3),(v1, v4)}. The following figure shows this
embedding process.
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When i = 1, i1 = 2 and i2 = 4, wj = 1,
so connect v1 and v4.
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When i = 2, i1 = 3 and i2 = 1, wj = 1,
so connect v1 and v2.
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When i = 3, i1 = 4 and i2 = 2, wj = 1, so connect v2 and v3.
For i = 4, we cannot add any edge.
This is the watermarked graph.

The problem is in that all bits of a message are embedded in an edge of E′

which is not in E. For an edge (vk, vl), k < l, of E′ but not in E, it may be
connected in the following four possible cases:

1. when i = k and i1 = l

2. when i = k and i2 = l

3. when i = l and i1 = k

4. when i = l and i2 = k

In the first and third cases, the edge (vk, vl) means a bit 0 inserted, while
in the second and fourth cases, it means a bit 1 inserted according to the QP
embedding algorithm.

4 The QPS Software Watermarking Algorithm

After pointing out that a watermark inserted into a graph by the QP extraction
algorithm cannot be extacted reliably, Myles and Collberg proposed the QPS
software watermarking algorithm [3], a variant of the QP algorithm. In the QPS
algorithm, two core concepts are used. They are “triple” and “colored triple” as
follows.

Definition 3 (triple [3]). For a graph G = (V, E), if 3 vertices v, v′, v′′ of G
satisfy the following two conditions:

1. v, v′, v′′ ∈ V

2. (v, v′), (v, v′), (v′, v′′) /∈ E

they are called a triple.

Definition 4 (colored triple [3]). For a graph G = (V, E), if a triple v, v′,
v′′ ∈ V are all colored the same color, then they are called a colored triple.

Triples and colored triples change dynamically during the watermark embedding
process, as did the cyclic mod-n ordering of our Definition 2. From the definition
of GC, if three vertices are all colored the same, then condition 2 of Definition 3 is
satisfied. If a triple is not a colored triple, then we call it a “multicolored triple”.
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4.1 The Original QPS Algorithm

Myles and Collberg applied the QP algorithm to software watermarking. The
original QPS embedding algorithm [3] is in Fig. 3 and the QPS extraction al-
gorithm [3] is in Fig. 4. In the QPS embedding algorithm, the input graph G
of Fig. 3 would be the interference graph of a program P . The output graph
G′ would be the interference graph of a compiled program P ′, and the nodes
of G and G′ are the variables in P . Interference graph is a concept for register
allocation in compilers [16]. If two variables interfere in P, then they cannot be
assigned to the same register when P is compiled. This constraint on register
allocation is modelled by introducing an edge between these two variables in P’s
interference graph G. A legal coloring of G is thus an acceptable register assign-
ment for the compilation of P, if we consider each register to have a distinct
color.

In the QPS embedding and extraction algorithm, the statement “vi1 and vi2

are not already in a triple G” is not clear.

4.2 A Clarified Version of the QPS Algorithm

From the example in [3], page 281, 4.2 Preliminary Example, a possible clarified
version of the QPS embedding algorithm is given in Fig. 5. The corresponding
extraction algorithm is as in Fig. 6.

This version of the QPS embedding algorithm works well in that a message
embedded by itself can be recognized correctly by its corresponding extraction
algorithm, however, the conditions in its “if” statement in it is so restricted
that it can only embed much fewer bits of message into a graph than the QP
algorithm can.

Proof of the correctness of the above QPS algorithm.
As said before, every bit of a message is embedded in an edge of E′ which is

not in E. For an edge (vk, vl), k < l, of E′ but not in E, generally, there are two
possible to connect it; when i = k or when i = l. Now we prove that if we can get
this edge when i = k, then we cannot get it when i = l and vice verse. In fact, if

Input: an unwatermarked graph G(V, E)
a message W = w1w2 . . . to be embedded into the G(V, E)

Output: a watermarked graph G′ with message W embedded in it
Algorithm:
n = |V |
G′ = G
j=0
for each i from 1 to n

if vi is not in a triple G′ AND possible find the nearest two vertices vi1 and vi2
for vi such that vi1 and vi2 are the same color as vi in G′

AND vi1 and vi2 are not already in a triple in G′.
j++
if wj = 0

connect vi and vi1 in G′

if wj = 1
connect vi and vi2 in G′

return G′(V, E′) and the inserted message W ′ = w1w2 . . . wj

Fig. 3. The QPS embedding elgorithm
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Input: an unwatermarked graph G(V, E)
a watermarked graph G′

Output: a message W embedded in G′

Algorithm:
n = |V |
j=0
for each i from 1 to n

if vi is not in a triple G′ AND possible find the nearest two vertices vi1 and vi2
for vi such that vi1 and vi2 are the same color as vi in G
AND vi1 and vi2 are not already in a triple in G.

j++

if vi and vi1 have the different colors in G′

wj = 0
connect vi and vi1 in G

else
wj = 1
connect vi and vi2 in G

return W = w1w2 . . . wj

Fig. 4. The QPS extraction algorithm

we can get this edge in the case of i = k, then i1 = l or i2 = l. First we consider
the case of i1 = l. According to the clarified QPS embedding algorithm, there is
a number h, such that k < l < h and vl, vh are the two candidate vertices of vk.
Since we can connect the edge (vk, vl) only when i = k or i = l, if we does not
connect it when i = k, we would connect the edge (vk, vh) when i = k. When
i = l, the vertices vk and vl are still not connected, so are the vertices vl and
vh. Therefore, i1 ≤ h or i2 ≤ k. If i2 < k, it is impossible to connect the edge
(vk, vl). The only possibility to connect the edge (vk, vl) is the two candidate
vertices of vl are vh and vk, i.e., i1 = h and i2 = k. In this case, vi, vi1 and vi2

are not a triple, for the edge (vi1 , vi2 ) has been connected, so we cannot connect
the edge (vk, vl).

In case of i2 = l, in the same way, we can prove that when i = l, we cannot
connect the edge (vk, vl).

We can also prove that if we can get this edge when i = l, then we cannot get
it when i = k in the same way as above. Therefore, if an edge of E′ which is not in
E can be used to embed one bit of message 0, it cannot be used to embed a bit 1.

Input: an original graph G(V, E)
a message W = w1w2 . . . to be embedded into the G(V, E)

Output: a watermarked graph G′ with message W embedded in it
Algorithm:
n = |V |
G′ = G
WV = V
j=0
for each i from 1 to n

if possible find the nearest two vertices vi1 and vi2 in G′

such that vi, vi1 , vi2 have the same color and are a triple in G′ and vi1 , vi2 ∈ WV
WV = WV − {vi1 , vi2}
j++
if wj = 0

connect vi and vi1 in G′

if wj = 1
connect vi and vi2 in G′

return G′(V, E′) and the inserted message W ′ = w1w2 . . . wj

Fig. 5. A clarified version of the QPS embedding algorithm
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Input: an unwatermarked graph G(V, E)
a watermarked graph G′(V, E′)

Output: a message W embedded in G′(V, E′)
Algorithm:
n = |V |
WV = V
j=0
for each i from 1 to n

if possible find the nearest two vertices vi1 and vi2 from G
for vi such that vi, vi1 , vi2 have the same color in G and are a triple in G′

and vi1 , vi2 ∈ WV
WV = WV − {vi1 , vi2}
j++

if vi and vi1 have the different colors in G′

wj = 0
connect vi and vi1 in G

else
wj = 1
connect vi and vi2 in G

return W = w1w2 . . . wj

Fig. 6. A clarified version of the QPS extraction algorithm

5 The QPI Algorithm

We give an improved QP embedding algorithm, the QPI embedding algorithm,
in Fig. 7. It is an informed software watermarking algorithm. We change the
definition of the two candidate vertices vi1 ∈ V and vi2 ∈ V for a vertice vi ∈
V . The original definition in [1, 2] used the cyclic mod n order for numbers
1, 2, . . . , n, while we use the order 1 < 2 < . . . < n in our new definition.

Input: an original graph G(V, E)
a message W = w1w2 . . . to be embedded into the G(V, E)

Output: a watermarked graph G′ with message W embedded in it
Algorithm:
n = |V |
G′ = G
j = 0
for each i from 1 to n

if vi has two candidate vertices vi1 and vi2
j++
if wj = 0

connect vi to vi1 in G′

change the color of vi1 to different one from the current colors used in G′

else

connect vi to vi2 in G′

change the color of vi2 to different one from the current colors used in G′

return G′

Fig. 7. The QPI embedding algorithm

Definition 5. Two candidate vertices: for a vertex vi of a graph G with |V | = n
and a coloring of G, we say vi has two candidate vertices vi1 ∈ V and vi2 ∈ V if
i < i1 < i2 ≤ n and vertices vi, vi1 , and vi2 have a same color and (vi, vi2) /∈ E;
furthermore, ∀j : i < j < i1 and ∀j : i1 < j < i2 ≤ n, vertices vi and vj have
different color.
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Input: an unwatermarked graph G(V, E) with n = |V |
a watermarked graph G(V, E′)

Output: the message W embedded in the watermarked graph G(V, E′)
Algorithm:
j = 0
for each i from 1 to n

if vi has two candidate vertices vi1 and vi2
j++

if vi and vi1 have different colors in G′

wj = 0
connect vi and vi1 in G
change the color of vi1 to different one from the current colors used in G

else
wj = 1
connect vi and vi2 in G
change the color of vi2 to different one from the current colors used in G

return W = w1w2 . . . wj

Fig. 8. The QPI extraction algorithm

The QPI embedding algorithm is an extractable algorithm. The proof of it is
similar to that of QPS algorithm in Subsection 4.2 of this paper; we also give an
extraction algorithm corresponding to the QPI embedding algorithm in Fig. 8.

For our QPI embedding algorithm, every edge (vk, vl), k < l in G′ while not
in G is only connected when i = k, so there is only one possibility for an edge
in G′ while not in G to embed a bit of message. Furthermore, this improved QP
embedding algorithm works for all cases.

6 Conclusions

Now we reach our following conclusions about the QP algorithm through the
above discussions.

1. The message embedded into a graph by the QP embedding algorithm is not
extractable in general.

2. The QP extraction algorithm is not correct. It tries to recognize a message
just by the unwatermarked graph; it does not use the watermarked graph.

3. The QPS algorithm proposed by Myles and Collberg is the first one that
implemented the QP algorithm for software watermarking, though it includs
some not clear descriptions.

4. The QPS algorithm is the first one algorithm that watermark software
through register allocation.

5. The QPI algorithm proposed by us can correctly realize Qu and Potkonjak’s
idea and can be used to software watermarking through register allocation.

7 Potential Research Directions

From the paper [1, 2], we think it is important to distinquish an extraction
algorithm and a recognition algorithm in software watermarking. An extraction
algorithm tries to extract all bits of the message inserted in a software, while a



Algorithms to Watermark Software Through Register Allocation 191

recognition algorithm decides whether a watermark exists in a software. A good
work to define these concepts is not as easy as it seems. We will explore this
problem in our further works.

Another potential topic for future research is to design algorithms to embed
a watermark into a graph such that it can still be recognized when the vertices
of the graph have been reordered.
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