An approach to the obfuscation of control-flow
of sequential computer programs

Stanley Chow!, Yuan Gu!, Harold Johnson!, and
Vladimir A. Zakharov??3

! Cloakware Corporation, Kanata, Ontario, Canada K2L 3H1
(stanley.chow,yuan.gu,harold. johnson)@cloakware.com
? Faculty of Computational Mathematics and Cybernetics,
Moscow State University, Moscow, RU-119899, Russia
zakh@cs.msu.su
3 Institute for System Programming, Russian Academy of Sciences,
B. Kommunisticheskaya, 25, 109004 Moscow, Russia

Abstract. In this paper we present a straightforward approach to the
obfuscation of sequential program control-flow in order to design tamper-
resistant software. The principal idea of our technique is as follows: Let
I be an instance of a hard combinatorial problem C, whose solution K is
known. Then, given a source program =, we implant I into m by applying
semantics-preserving transformations and using K as a key. This yields
as its result an obfuscated program = i, such that a detection of some
property P of 77 x, which is essential for comprehending the program,
gives a solution to I. Varying instances I, we obtain a family IT¢ of
obfuscated programs such that the problem of checking P for IT¢ is at
least as hard as C. We show how this technique works by taking for C
the acceptance problem for linear bounded Turing machines, which is
known to be PSPACE-complete.

1 Introduction

One of the most significant achievements in cryptographic research in
recent years has been to establish complexity-theoretic foundations
for most classical cryptographic problems. This makes it possible to
develop new methods for encryption, authentication, and design of
cryptographic protocols using a solid framework for estimating their
resistance to attack. However, there remain some important prob-
lems in cryptography whose theoretical foundations are still rather
weak.

One such problem is: how can we create tamper-resistant soft-
ware (TRS). A program converted to TRS form has the property that
understanding and and making purposeful modifications to it, are
rendered difficult, while its original functionality is preserved. Such

TRS is very important when it is necessary to ensure the intended op-
eration of a program and to protect its secret data and algorithms in
a potentially hostile environment. The difficulty is that any program
presents the same information (namely, an executable embodiment)
to an authorized user of the program, and to an adversary seeking
to extract its secrets or modify its behavior. The difference between
licit and illicit use is the way in which the program is employed. An
authorized user is interested only in correct executions of the pro-
gram. To achieve this the program should supply a processing device
only with ‘local’ information: at every state of a run it has to de-
termine which instruction to be performed currently, what data it is
applied to, and at what state a control to be passed next. An adver-
sary, on the other hand, seeks to extract ‘global’ knowledge from the
program, such as relationships between variables, intended meaning
of data structures, parameters, routines and algorithms used in a
program, etc. The only way to obtain the ‘global’ information is to
study behavior of the program by means of static and statistical
analysis tools. Thus, to hamper this activity, the program should be
presented in a form which hinders its global comprehension as much
as possible.

Tentative research on constructing TRS has been initiated in [3,
4,17,21]. The key idea offered in these papers is that of developing
a program obfuscation technique. Informally, program obfuscation is
any semantics-preserving transformation of a source computer pro-
gram which performs deep and sophisticated changes in its control-
flow and data-flow in order to make a target program ‘unreadable’
while preserving its functionality. This can be achieved by applying
some equivalent transformations to a program, such as replacing and
shuffling operational codes, inserting dead and irrelevant codes, data
encoding, etc. A wide variety of obfuscating transformations of this
kind is presented in [3]. Some of them have been successfully im-
plemented in a number of projects aimed at strengthening security
of Java software (see [9,19,20]). While these transformations look
quite useful and natural, all share the same principal shortcoming: a
lack of any theoretical foundations which guarantee their obfuscating
effectiveness.

In [21], an attempt is made to estimate a resistance of an aliasing
technique. The introduction of aliasing into a program by means of
arrays or pointers is intended to restrict the precision of static data-

flow analysis. In [8,16,21] it was shown that many static analysis
problems involving alias detection are NP-hard. This is shown by re-
ducing the 3-SAT problem to that of determining indirect targets in
the presence of aliasing. But when studying the proofs of these as-
sertions one can readily see that the reduction methods may work in
more general cases. This is due to the very nature of many computa-
tion models which enables us to embody many kinds of combinatorial
problems in program control-flow and data-flow structures.

Relying on such considerations we offer the following strategy
aimed at impeding static analysis of computer programs. Suppose
I is an instance of a hard combinatorial problem C, whose solution
K is known. Then, given a source program m, we implant I into m
by applying semantics-preserving transformations and using K as a
key. This yields as the result an obfuscated program =k, such that
detection of some essential property P of m; x which is necessary for
comprehending the program gives a solution to /. Varying instances
1, we get a family I1- of obfuscated programs, such that the problem
of checking P for Il is at least as hard as C'. At the same time
everyone who knows a key K can easy reveal P for mrg. Thus,
K may be considered as a watermark of mr g whose resistance is
guaranteed by the hardness of C'.

In this paper we demonstrate how to apply this approach to
the obfuscation of control-flow for sequential computer programs.
In section 2 we describe preliminary transformations of sequential
programs that flatten their control-flow structure. These transfor-
mations were developed at Cloakware (see [2, 20] for more details) in
order to convert computer programs to a form highly amenable to
further obfuscation techniques. Therefore when referring to this flat-
tening machinery we will call it cloaking technology. A control-flow of
a source program is grouped on a switch statement called a dispatch-
er, so that the targets of goto jumps are determined dynamically. A
dispatcher may be viewed as a deterministic finite-state automaton
realizing the overall control over a flattened program. Hence, to ob-
fuscate the program control-flow per se, it suffices to focus on the
dispatcher only. In section 3 we recall the concept of a linear bounded
Turing machine (LBTM)[15] and show thereafter that the acceptance
problem for LBTMs is LOGSPACE reducible to the reachability prob-
lem for cloaked program dispatchers: the problem of checking if there
exists a run that transfers a dispatcher from the initial state ¢y to

some specific state ¢;. Since the acceptance problem for LBTMs is
known to be PSPACE-complete[6], this implies that the reachabili-
ty problem for flattened program dispatchers is PSPACE-hard. After
considering in section 5 some basic properties of sequential programs
that are essential for their comprehension and further global manip-
ulations, we demonstrate how to implant the acceptance problem for
an arbitrary LBTM M into any dispatcher D in order to hamper the
detection of these properties. As a result we obtain obfuscated pro-
grams whose control-flow is protected from those tampering attacks
which are based on static analysis. The resistance of the obfuscation
technique is guaranteed by the PSPACE-hardness of combinatorial
problems to be solved in attempting to detect some essential prop-
erties of program control-flow. We are sure that the same implanta-
tion technique is applicable to the obfuscation of many control-flow
and data-flow properties of sequential programs. In practice it is
advisable to strengthen this approach by implanting into programs
a number of combinatorial problems of different types, to obviate
security breaches using special-purpose static analyzers.

2 Flattening program control-flow

For the sake of simplicity, and in order to emphasize the versatility
of our approach, we restrict our consideration to sequential programs
whose syntax includes only simple variables and operations, and la-
belled statements of the following form:

— assignment instructions x < t, where x is a variable (integer or
boolean) and t is an arithmetic expression or a predicate;

input instructions READ (x);

output instructions WRITE (x);

control transfer instructions COND b, 1y, 1, and GOTO 1y,
where b is a boolean variable and 1;, 1, are labels of statements;
— exit instructions STOP.

These statement forms have their conventional semantics. A program
is a sequence of labelled statements. A basic block is a sequence
of input, output and assignment instructions which ends in COND
1;, 1o, GOTO 1;, or STOP instructions and is executed strictly from
the first to the last statement. Basic blocks cannot contain control
transfer instructions except as the last statement. We denote by

Cond the set of boolean variables by, bs, ..., by occurring in COND
instructions, and by X' the set of all possible tuples of binary values
of these variables.

A cloaking transformation of a program consists of several steps.
Briefly, they are as follows (considerably simplified; see [2] for more
details):

1. Splitting basic blocks into pieces. Each basic block is split
into several pieces. A piece is a sequence of instructions executed
strictly from the first to the last instruction; i.e., each piece is
part of a basic block. The same block may be split into pieces
many different ways. Several copies of the same piece are also
possible.

2. Introducing dummy pieces. In this step some faked pieces
meant for obscuring useful operations are added. We denote by
Py, P,, ..., P, all pieces (genuine and dummy) introduced so far.
Each piece is tagged individually. The set of all tags is denoted
by T'ag. Every piece P;, except ones that end in STOP instruc-
tion, may has several successors. Its successors are determined
by values of boolean conditions by, bs, ..., by: genuine conditions
are used for branching, whereas faked conditions are used for the
simulation of nondeterministic choice between similar pieces. A
control function @ : Tag x X — Tag is defined for selection of
SUCCesSors.

3. Variable renaming. For each piece in the set of pieces, all vari-
ables used in the piece are renamed to names which are unique.
As a consequence each piece will operate over its own set of vari-
ables. In this step an internal renaming table T'ab is produced
which associates the old names of variables with new ones.

4. Connective lump forming. For every pair of pieces F;, P; that
result from modification at the previous step a connective lump is
generated. A connective lump is a sequence of move instruction
of the form x < y. It is destined to conform variables used in P,
with ones occurred in P;. Move instructions are generated by the
table T'ab. Connective lumps LCY, LCs, . .., LC}) are marked with
individual labels lcq,lcs, . .., lcg. This set of labels is denoted by
LabC'.

5. Emulative lump forming. In this step a set of emulative lumps
is formed from the set of pieces. An emulative lump is composed
of several pieces merged together. Each piece may appear only

in a single lump, and all pieces must be employed in the lumps.
Actually, an emulative lump looks like a basic block. The only
difference is that every time when an emulative lump is executed
only a single piece influences upon the computation; intermedi-
ate results computed by other pieces are discarded. A piece whose
intermediate results are retained for further computations is de-
termined dynamically. Emulative lumps LE;, LC,, ..., LE, are

marked with individual labels leq, les, ..., le,. This set of labels
is denoted by LabFE. The product T'ag x LabFE x LabC' is denoted
by A

6. Dispatcher lump forming. In the previous steps the basic
blocks for cloaked program are formed. However, they are still
connected with control transfer instructions. To obscure explicit
control transference a dispatcher lump D is added in the begin-
ning of a flattened program. A dispatcher evaluates control func-
tion @ and jumps either to the emulative lump whose piece to
be executed next, or to the connective lump to join successive
pieces. A dispatcher may be thought of as a deterministic finite
automaton (DFA) whose operation is specified by its output func-
tion

U: Tagx X — A,

which for every piece P; and a tuple ¢ of values of boolean con-
ditions yields the triple ¥(tag;, o) = (tag;,le,lc), such that the
piece P; tagged with tag; = @(tag;, o) is the successor of P;, le is
the label of an emulative lump LE containing P;, and lc is the la-
bel of a connective lump LC which joins P; and P;. Dispatcher is
implemented as a switch statement composed of control transfer
instructions.

As seen from the above, a cloaked program is composed of three
main parts: emulative lumps, connective lumps, and a dispatcher.
Computing operations are grouped on emulative lumps. To obscure
this part it is useful to apply algebraic and combinatorial identities
and/or secret sharing techniques [1]. Cloaked program data-flow is
assigned on connective lumps. It can be obfuscated by applying data
encoding techniques [5]. We focus on the obfuscation of flattened
program control-flow which is managed by a dispatcher.

Clearly, a dispatcher is the key component of a cloaked program:
without means for analyzing a dispatcher, one can not get any rea-
sonable knowledge about program behavior. A dispatcher, viewed

as a finite automaton, is easy to comprehend when its state space is
rather small. Therefore, to hamper the analysis of a cloaked program
control-flow, we to expand enormously the state-spaces of dispatch-
ers. But even with such expansion, there still exists a possible threat
of de-obfuscation by means of some minimization technique for fi-
nite automata. In the next sections we demonstrate how to reduce
the effectiveness of minimization attacks by implanting instances of
hard combinatorial problems into dispatchers.

3 The acceptance problem for LBTMs

Linear bounded Turing machines (LBTMs) were introduced in [15].
An LBTM is exactly like a one-tape Turing machine, except that the
input string «x is enclosed in left and right end-markers - and 4 which
may not be overwritten. An LBTM is constrained never to move left
of - or right of -, but it may read and write arbitrarily between
the end-markers in the way which is usual for a conventional Turing
machine.
Formally, an LBTM is an octuple (A, B,F, -, S, so, s4, T, where

— A and B are the input and the alphabets, respectively;

— -, are the endmarkers;

— S is the set of states, sq is the start state, and s, is the accepting
state;

— T is the program which is a set of pentuples

TC(BU{FA}) xSx{L,R} xBxS

such that no pentuples of the form (s,+, L,b,q'), (s,4, R,b,s'),
(s, R,d,q"), (s,,L,e,q"), where d,e # -, are admissible in 7.

Every pentuple in 7' is called a command. LBTM M is called deter-
manistic if for every pair b € B,s € S, no two different commands
begin with the same prefix b, s. In what follows only deterministic
LBTMs are considered.

Let w = bybs...b, be a word over B and M be an LBTM. Then a
configuration of M on w is any word of the form

F b1b2 e bz',lsbibi+1 NN bn =

This configuration will be denoted by (w, s, i) assuming that (w, s, 0)
and (w, s, n + 1) correspond to s = bybs...b, < and - byby...b,s

respectively. The application of a command to a configuration is
defined as usual (see [12]). Given a configuration o we denote by
T'(«) the set of configurations that are the results of applications of
all possible commands in 7" to «. A run of an LBTM on an input
word w € A* is a sequence (finite or infinite) of configurations

A, A1y v ooy By B 15«0y

such that oy = (w, sp, 1) and for every n, n > 1, a1 is in T(ay,).
A run is called accepting iff o, = (W', s,,7) for some n (recall that
s, is the accepting state). We say that a LBTM M accepts an input
word w € A* iff the run of M on w is accepting. The set of all
inputs accepted by M is denoted by L(M). The acceptance problem
for LBTMs is to check given LBTM M and an input word w whether
w is in L(M).

It is known that the acceptance problem for LBTMs, namely a lan-
guage ACCEPT = {(w, M) : w € L(M)}, is PSPACE-complete[6]. In
the next sections we prove that the acceptance problem for LBTMs
is reducible to the reachability problem for flattened program dis-
patchers.

4 The reachability problem for dispatchers

Formally, a deterministic finite automaton associated with a dis-
patcher D of a flattened program is a sextuple

D= <E;A7Q7QO7907¢>7

where

— Y and A are the input and output alphabets of D, respectively;
— () is the set of internal states, and ¢y is the initial state;

—p: @ xX — (@ is the transition function;

—: Q — Ais the output function.

We assume that both of the alphabets X' and A are encoded in bina-
ry. Then the transition and output functions are boolean operators
that can be implemented by means of boolean expressions (formu-
lae) over some conventional set of boolean connectives (operations),
say V, 7, etc. The total size of all boolean formulae involved in the
specification of D is denoted by |D|.

Given a dispatcher D, we extend its transition function ¢ on the
set of all finite words L™ over the input alphabet X by assuming
©*(q,e) = q for the empty word ¢, and p*(q,wo) = p(¢*(q, w),)
for every word w in X* and tuple o in X. We say that a state
q' is reachable from a state ¢ iff ¢ = ¢*(¢, w) holds for some input
sequence (word) w from X*. The reachability problem for dispatchers
is to check for a given dispatcher D, its internal state ¢, and a set of
internal states (', whether some state ¢/, ¢' € @' is reachable from
qin D.

To prove PSPACE-completeness of the reachability problem we
show at first that it is decidable in polynomial space and then demon-
strate that ACCEPT is LOGSPACE-reducible to the reachability prob-
lem.

Theorem 1. The reachability problem for dispatchers is in PSPACE.

Proof. The reachability of a state ¢’ from a state ¢ in some dispatch-
er D specified in terms of boolean formulae can be recognized by
means of a well-known dichotomic search (see [18]): to check that
¢' is reachable from ¢ in less than 2™ steps it is suffice to cast some
intermediate state ¢” and then check by applying the same proce-
dure recursively that both ¢” and ¢’ are reachable from ¢ and ¢,
respectively, in less than 27! steps. QED

To show that the reachability problem is PSPACE-complete, we
will restrict our consideration to the dispatchers of some specific
type. A dispatcher D is called autonomous if its transition function
¢ does not depend on inputs, i.e. ¢(q,01) = ¢(q, 02) holds for each
state ¢ and every pair g1, 05 of inputs.

Theorem 2. For every input word w and LBTM M there exist an
autonomous dispatcher D, a state qg, and a set of states @', such
that M accepts w iff some q1, q1 € Q' is reachable from qq in D.

Proof. Without loss of generality, both alphabets A and B for M are
assumed to be binary. Suppose that |w| = n and M has |S| = 2™
states. We encode each state s in S by binary tuple v = (ds, ..., dy,)
and introduce three sets of boolean variables

X ={x1,22,..., 2.},

Y = {y07 Y, 92, - - -, Yn, yn-l-l}a
Z={z1,22,- -y 2m}

for encoding contents of linear bounded tape of M, positions of the
tape, and the states of M. Namely, every configuration (w', s,) is en-
coded by the tuple (Z1,...,Zn, 21, -, 2k, Yo, U1, - - - » Unt1), such that
. By = (5, .., Am> is the code of s, and (o, J1, - - - » Uns Yns1)
contams exactly one 1 at the position 1. Smce M is deterministic,
for every command beginning with a pair a, s we denote by b, s the
tape symbol to be written instead of a, by 7, s the code of the state
M has to pass to by the command, and by w, s the indication of the
direction M has to move its head by the command (i.e. wg is 0 if
the head has to be move to the left, and 1 if it has to be move to
the right).

Now we specify an autonomous dispatcher D, s which simulates
the run of M on w. Consider the following boolean formulae

n

f(z,y) = _\/1($i A Yi),

i=

9u(2) = /k\ zi1, for every w = (a1, as,...,a;)
Fi(z,y,2) = 517z (WiAV V (9.(2) A(f(Z,9) = a) Abay)),
s€S ae{0,1}
1 <2< n,
Gi(Z,7,2) =V V (90.(2) A (f(Z,7) = a) AN Yasli]),
s€S ac{0,1}
1<j<m,
He(Z,9,2) =yira AV V (95.(2) A (f(Z,9) = a) A —was)V
s€S acq{0,1}
Yist AV V(97 (2) A (f(2,9) = a) A weys),
s€S ac{0,1}
1<k<mn,
Hi(2,9,2) =2 AV V (94.(2) Af(Z,9) = a) A —was) V o,
s€S ac{0,1}
Hn(ja g 2) Yn+1 vyn—l/\ V V (g’ys (2) A (f(j', Q)EGJ) A wa,s)a
s€S ac{0,1}
Ho(7,9,2) = y1 A \e/s eV }(g%(i) A (f(7,9) = a) A —w,s),

Hy1(2,9,2) =yn AV V(94 (2) Af(2,9) = a) ANway),
s€S ac{0,1}
where notation xz® stands for x when ¢ = 1, and for -z when
a = 0. It is easy to notice that the size of every formula above is
O(Jw||S|log|S]) and all these formulae may be constructed effec-
tively by some Turing machine which operates in space logarithmic
in |S| + |w|.

The formulae F;, G;, and Hy specify the rewriting actions, the
transition actions, and the moving of the LBTM’s head. It is a matter
of direct verification to prove that whenever (Z, ¢, 2) encodes some
configuration o of LBT™M M then (F(%,79, 2),G(%,9, 2), H(%, 7, 2))
stands for the configuration T'(«), where T is the program of M.

A required autonomous dispatcher Dy, = (X, A, Q, qo, ¢, 1) is
one whose state space @ is the set {0, 1}2"5+2 of all possible binary
tuples of the length 2n+k+2, the initial state is the tuple (Zo, 9o, Zo),
such that o = w, y = 010...0, 2 = 7,,, and transition function is
specified by the boolean operator (F', G, H). Then, by the construc-
tion of these formulae, LBTM M accepts w iff some state (z,y, z,),
such that Z, = +,,, is reachable from the initial state.

Thus, the acceptance problem for LBTM M is reduced to the
reachability problem for cloaked program dispatcher D, »;. QED

5 Redundancy-checking for cloaked programs

Most methods of static data-flow and control-flow analysis[7,11, 13|
compute their solutions over paths in a program. As applied to
cloaked programs paths are defined as follows. Let m be a cloaked
program composed of a dispatcher D = (X A, Q, qo, ¢, 1), a set of
emulative lumps, and a set of connective lumps. Given a sequence
of w = 01,09,...,0, of tuples from X we say that the sequence
instructions formed out lumps

LE,, LCy,LE,, LC,, ..., LE,, LC, (1)
is a path iff this sequence meets the following requirements:

L. Y(e*(qo, 0102 . ..0;)) = (tag;, le;, le;) for every 4, 1 < i < m;

2. emulative lumps LE,, LF,, ..., LE, 1 do not terminate program
runs, i.e. they have no STOP statements;

3. an emulative lump LF, terminates the program.

We denote a sequence (1) by path(m, w). By the result [path(m, w)] of
(1) we mean the sequence of tuples of terms that stand for the argu-
ments in the predicates and the output statements that are checked
and executed along the path. It is easy to see that every feasible run
of m can be associated with its path for some appropriate sequence
w, whereas the opposite is not true in general. Two programs m
and o having the same set of predicates are called path-equivalent

iff [path(m,w)] = [path(ms, w)] for every sequence of w of tuples
from X. It should be noticed (see [14,22]) that path-equivalent pro-
grams compute the same function (input-output relation), i.e., path-
equivalence approximates functional equivalence for sequential pro-
grams.

We say that

— an emulative lump LF is dead in a program 7 iff no paths in 7
contain LFE.

— an instruction s is faked in a program 7 iff by removing s from 7
we get a program 7’ which is path-equivalent to 7.

— a variable z is superfluous in a program 7 if by replacing every
occurrence of x in = with some constant and removing all assign-
ments whose left-hand side is x we obtain a program 7’ which is
path-equivalent to .

Intuitively, dead lumps and faked instructions are those which do
not influence the program input-output behavior and, hence, can
be removed without loss of program correctness. In what follows,
by redundancy problems we mean the problems of checking for dead
lumps, faked instructions, and superfluous variables in programs.

The redundancy of program components is the basic property to
be checked to comprehend (or to optimize) a program. Therefore, it is
highly reasonable to measure a resistance of obfuscated programs in
terms of the complexity of redundancy-checking for these programs.
When the dispatcher of a cloaked program is implemented explicitly
(say, by tableaux), the redundancy problem (w.r.t. path-equivalence)
is decidable in polynomial time[13,14]. In the next section we prove
that the redundancy-checking for cloaked programs is PSPACE-hard
when dispatchers of cloaked programs are implemented implicitly by
means of boolean formulae.

6 PSPACE-hardness of cloaked program analysis

We show that the above redundancy problems for cloaked programs
are PSPACE-complete. This is achieved through the implantation of
instances of the acceptance problem for LBTMs into an arbitrary
dispatcher. The implantation technique makes it possible to reduce
the acceptance problem for LBTMs to many important static analysis
problems for cloaked programs. A similar method was used in [10]

for proving PSPACE-hardness of some analysis problems for simple
programs.

Theorem 3. Let m be an arbitrary cloaked program, D be a dis-
patcher of w, and w be some input word for LBTM M. Then m can
be transformed to a cloaked program m, y which meets the following
requirements:

1.

2.
3.

the description length and running time of m, pr are at most lin-
early larger than that of w, w, and M ;

Tw,M 8 path-equivalent to m iff M does not accept w.

Tw,m contains a distinguished emulative lump LEy which consists
of a single instruction y < 0, such that LEy is dead and y is
superfluous iff M does not accept w.

Proof. For simplicity we will assume that 7 contains a single output
instruction WRITE(x). Let y be a variable which does not occur in
m. The desired program m, ps results from 7 through the following
transformations:

1.

2.

An assignment y < 0 is added to the entry lump whose execu-
tion begins every run of 7;

An assignment x < x + y is inserted immediately before the
output instruction;

. An emulative lump LE, which consists of a single piece

Py: y < 1, and an empty connective lump LC); are introduced;
these lumps are labelled with ley and lcy, respectively;

. The dispatcher D’ is as follows. Let D = (X, A, Q™ qf, ™, ™)

be a dispatcher of m, and D, »r = (X, A, QM, ¢}", o™, ™) be an
autonomous dispatcher corresponding to the acceptance prob-
lem for w and M as it was shown in Theorem 2. Denote by
QM the set of those states in D, pr that indicate the acceptance
of configurations by M. Then D' = (¥, A, Q', g}, ¢',¢'), where
Q = Q" x QM x {0,1}, ¢) = (q¢%,q}",0), and for each state
q=(q",¢",&) in @

(,0,((] 0') — {(@W(q:/fa 0)7 Q‘OM(qMao-)aé.% if qM ¢ Q(]J,V[or f =1,

’ (¢", 4™, 1), if ¢ € Q3" and £ =0,

’l,bl((7) — d)w(qw,a), if qM ¢ Qﬁ/f or 6 =1,
¢ (Po,leg, lcg), if ¢ € QY and £ =0,

It immediately follows from the construction of m, 5 that the emu-
lative lump LE, appears in some path of m, »s iff M accepts w. It
follows therefrom that m, as satisfies the requirements above. QED

Corollary 1. Redundancy problems for cloaked programs are
PSPACE-hard.

Corollary 2. Minimization of cloaked program dispatchers is
PSPACE-hard.

7

Conclusions and Acknowledgments

We have presented an approach to designing tamper-resistant soft-
ware where an obfuscation of program control-flow is achieved by
implanting instances of hard combinatorial problems into programs.
The tamper-resistance of our obfuscation technique is guaranteed by
the hardness of problems an adversary would have to solve when at-
tempting to detect the essential properties of obfuscated programs
through their static analysis.

We would like to thank the anonymous referee for pointing out

at some references that were unknown formerly to authors.

References

1.

2.

Brickell E.F., Davenport D.M. On the classification of ideal secret sharing schemes.
J. Cryptology, 4, 1991, p.123-134.

Chow S., Johnson H., and Gu Y., Tamper resistant software — control flow encod-
ing. Filed under the Patent Codperation Treaty on August 18, 2000, under Serial
No. PCT/CA00/00943.

Collberg C., Thomborson C., Low D., A taxonomy of obfuscating transformations,
Tech. Report, N 148, Dept. of Computer Science, Univ. of Auckland, 1997.
Collberg C., Thomborson C., Low D., Manufacturing cheap, resilient and stealthy
opaque constructs, Symp. on Principles of Prog. Lang., 1998, p.184-196.

Collberg C., Thomborson C., Low D. Breaking abstraction and unstructuring data
structures, in IEEFE Int. Conf. on Computer Languages, 1998, p.28-38.

Garey M.R., Johnson D.S., Computers and Intractability, W.H Freeman and Co.,
San Francisco, 1979.

Glenn A., Larus J., Improving Data-Flow Analysis with Path Profilers. In Proc.
of the SIGPLAN ’98 Conf. on Prog. Lang. Design and Implementation, Montreal,
Canada, published as SIGPLAN Notices, 33, N 5, 1998, pp. 72-84.

Horowitz S., Precise flow-insensitive May-Alias analysis is NP-hard, TOPLAS,
1997, 19, N 1, p.1-6.

Jalali M., Hachez G., Vasserot C. FILIGRANE (Flexible IPR for Software AGent
ReliANCE) A security framework for trading of mobile code in Internet, in Au-
tonomous Agents 2000 Workshop: Agents in Industry, 2000.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

Jones N.D., Muchnik S.S. Even simple programs are hard for analysis, J. Assoc.
Comput. Mach., 1977, 24 N 5, p.338-350.

Kennedy K., A Survey of Data Flow Analysis Techniques, in Program Flow Anal-
ysis: Theory and Applications, S.S.Muchnick and N.D.Jones (eds.). Prentice-Hall,
Englewood Cliffs, NJ, 1981, pp. 5-54. "’

Kozen D., Automata and Computability, Springer, 1997.

Knoop J., Ruthing O., Steffen B., Partial Dead Code Elimination, in Proc. of the
SIGPLAN ’94 Conf. on Prog. Lang. Design and Implementation, Orlando, FL,
published as SIGPLAN Notices, 29, N 6, June 1994, pp. 147-158.

Kotov V.E., Sabelfeld V.K., Theory of program schemata, M.:Nauka, 1991, 246 p.
(in Russian)

Kuroda S.Y., Classes of languages and linear bounded automata, Information and
Control, 1964, v.7, p.207-223.

Landi W., Undecidability of static analysis, ACM Lett.on Prog. Lang. and Syst.,
1, 1992, 1, N 4, p.323-337.

Mambo M., Murayama T., Okamoto E., A tentative approach to constructing
tamper-resistant software, Workshop on New Security Paradigms, 1998, p.23-33.
Savitch W.J., Relationship between nondeterministic and deterministic tape com-
plexities, J. of Comput. and Syst. Sci., 4, 1970, p.177-192.

SourceGuard, commercial version of HashJava, http://www.4thpass.coml
Tamper Resistant Software, http://wwuw/cloakware.com/technology.html

Wang C., Hill J., Knight J., Davidson J., Software tamper resistance: obstructing
static analysis of programs, Tech. Report, N 12, Dept. of Comp. Sci., Univ. of
Virginia, 2000

Zakharov V. The equivalence problem for computational models: decidable and
undecidable cases, Lecture Notes in Computer Science, 2055, 2001, p.133-152.

