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Abstract. We present a probabilistic program-transformation algorithm
to render a given program tamper-resistant. In addition, we suggest a
model to estimate the required effort for an attack. We make some engi-
neering assumptions about local indistinguishability on the transformed
program and model an attacker’s steps as making a walk on the program
flow graph. The goal of the attacker is to learn what has been inserted
by the transformation, in which case he wins. Our heuristic estimate
counts the number of steps of his walk on the graph. Our model is some-
what simplified, but we believe both the constructions and models can
be made more realistic in the future.

1 Introduction

In this paper, we consider the problem of protecting a complex program against
tampering. The results of [3, 11] mean that we cannot hope to solve this in
general, namely in a model involving worst-case programs and polynomial-time
adversaries. Hence it is natural to ask for practical solutions in some natural
model with limited attacks. Here the hard problem is in building an appropriate
model. A careful look at well known attacks (see overview in Section 3) and
effects of program-transformation tools on local program properties (e.g., how
homogeneous the code looks over 50 lines of assembly code) allows us to propose
a security model of various protection schemes, based on some assumptions.

Our overall approach is as follows. First, we take a given program P and
convert this into another program P ′, where we inject new code that modifies
the control and data flow graphs by adding nodes and edges. The goal of the
attacker is to find the new additions, and we would grant the attacker victory
if he does this reliably. Thus, we specify a formal model by defining a game
where the attacker’s moves correspond to various attempts to break the protec-
tion, and the attacker’s victory corresponds to a break. In the present state of
software protection, models based on complexity theory offer mainly negative
results [3, 11], with a handful of positive results that essentially formalize hash-
based comparisons [12, 18]. Motivated by an assortment of heuristic techniques
for tamper protection, we give a simplified model, which captures realistic sce-
narios and allows quantitative analysis of tamper-resistance. Our model makes
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engineering assumptions about local indistinguishability of small code fragments
and provides a lower bound on the attack effort required.

An adversary who tries to reverse-engineer and eventually “crack” the pro-
gram is typically equipped with some software tools that allow him to analyze
the static structure of the program, and execute it in some controlled way. It
seems very difficult to design a scheme that transforms any program into a
semantically equivalent one, but which is protected against malicious changes.

2 Our Approach

The rest of this article is structured as follows, with a main goal of motivating
the model and an algorithm for protection.

1. An overview of known tamper-protection techniques and attacks.
2. A randomized algorithm for tamper-proofing complex programs.
3. A graph-game-based model of an attacker’s interaction with programs.
4. Lower bounds on an attacker’s resources to break the protected program.

Our approach involves inserting k local tamper-detection checks in the pro-
gram. Each check is responsible for detecting tampering in a small portion of the
program, consisting of s program fragments. At least f checks are required to fail
before a tamper response is triggered, thus we have a threshold tamper response.
Next we make use of homogenizing transformations. They a given program into
a semantically equivalent one, but such that local observations (those confined
to instruction sequences of length at most b) can be assumed to reveal no useful
patterns.

Neither of the above methods offers sufficient security if used alone. The task
of our algorithm is to inject the local checks in a randomized way, create the
threshold tamper response and perform program homogenization.

We then show a model which we believe captures most of practical attacks
against our method. This model does not necessarily cover tamper-protection
schemes based on different ideas. Finally, relying on certain conjectures, we show
some lower bounds on attacks. Some aspects and components of our algorithm
have been implemented and studied in practice for the viability of our models
and assumptions. This article presents a first effort in formalizing them. We
believe that our methods can be further refined, and heuristic estimates on attack
complexity can be made more realistic.

3 Some Typical Protection Schemes and Attacks

Our model is aimed at capturing most practical attacks. Its viewpoint involves
forcing an attacker into learning and playing a graph game, whose winning strat-
egy has a lower bound in the number of game steps under suitable assumptions.



These come down to some engineering assumptions about certain code trans-
formations, which we believe can be made to hold with further research. To
justify this model and provide context, we survey prevalent tamper-protection
techniques and attacks. We start from the easiest, which offer least security, and
proceed to more sophisticated ones. We denote the program to be protected by
P and the attacker by A.

3.1 Single-point license check
P is protected by adding a subroutine L which verifies some condition, such as a
correct digital signature validating its authenticity or a license. L is called from
other parts of P , and normal operation is resumed only if L returns ”true”.

Attack. Using simple control flow analysis, A can identify L. A then patches
L to return only ”true”.

3.2 Distributed license check
To thwart the previous attack, L is broken into pieces or copied with some
variations, additionally obfuscated, which are spread throughout P .

Attack. A can make a preliminary guess for the location of one copy of L.
A’s goal now is to find the locations where variations of L or its components
may be scattered. Robust binary matching tools such as [17] can be used to
identify other copies of L. Other attacks use flow graph analysis. That is, A
computes the flow graph of G. The guessed copy of L induces a subgraph H. A
copy of L elsewhere in the program induces a subgraph similar to H, and it can
be found via subgraph embedding. Another flow graph based attack uses the
fact that typically, the code corresponding to L is a component which is weakly
connected to the rest of G. After identification, A can patch the calls to L. These
attacks are considerably advanced in comparison in terms of the tools needed to
implement them in practice.

3.3 Code checksums and integrity-verification kernels
Tampering can be detected during runtime by loading code segments, and com-
puting checksums. P runs only if they agree with precomputed values [2].

Attack. The task of loading a code segment for reading is an unusual occur-
rence in typical programs, and can be trapped. Using some hardware support,
more generic attacks on code-checksum schemes are described in [15]. Unusual
execution patterns (read accesses to code segment, paging faults) can be ex-
ploited.

3.4 Oblivious hashing
Consider a program fragment F that uses some set of variables X. For an as-
signment x to variables X, execution trace e(x) is the sequence of all values of X
during execution of F (x). Oblivious hashing [4] is a method whereby for a subset
of variables Z ⊆ X, F (x) produces a hash hZ(e(x)). For suitably chosen random
inputs r, tampering with values of Z during execution of F (r) will produce e′

for which hZ(e′) 6= hZ(e(r)) with high probability. OH can be used to detect
code tampering. It is resistant to the attacks of [15] because the code segment
is never read or used as data, and calls used to compute OH cannot be easily
separated from regular calls.



Attack. If correct values of h(e) are precomputed and stored for test inputs,
then A may discover these values, since they may look special or random (see
Subsections 3.8, 3.9). If one uses h(t) indirectly (to encrypt some important
variables) or computes h(t) during runtime using a duplicate code segment,
then without sufficient precaution, A can attack via program analysis. Methods
for addressing these attacks are discussed in this paper.
3.5 Anti-disassembly and diversity
Here an attacker converts a released executable into assembly so that it can be
understood, using a disassembler which itself may have built-in graph-analysis
tools [7]. A defense would be to cause incorrect disassembly by exploiting dif-
ferent instruction lengths to cause ambiguity involving data and code. At best
one can cause a handful of attempts to disassemble, but it is unlikely using only
these that one can force a significant number of runs of the disassembler. More
flexibility is offered by virtualization and individualization [1], where the idea is
to force A into learning a new virtual machine (VM) for attacking each copy.
An instance I of the program P is implemented as a (VI , PI), where VI is a
virtual machine and PI is code which implements P under VM VI . To execute
the instance I, one has to run VI(PI). Disassembling is difficult because A does
not have the specification of VI . Furthermore, even if A disassembles (VI , PI),
this is of little help in disassembling (VJ , PJ) for I 6= J , because of instance
randomization.

Attack. The scheme is open to attacks which do not rely on detailed un-
derstanding of PI . In a copy attack, A tampers with PI and then learns which
code is responsible for the resulting crash: It saves program state s before some
suspect branch, and tries multiple execution paths from s. If most of these paths
end up crashing in the same place, then it must be some previous branch that
is causing the crash. A can now make a new guess and repeat the attack.
3.6 Defense against copy attacks
A defense against the above attack involves distributed tamper-detection checks
and threshold tamper-protection scheme. Distributed tamper-detection check is
embedded in s program fragments F1, . . . , Fs, and it has a chance p of failing if
each of F1, . . . , Fs is tampered with. To disable a check, the attacker must identify
all s code fragments F1, . . . , Fs. Threshold tamper-protection scheme embeds k
checks in the program, and it causes the program to crash (or initiates some
other security response, such as performance degradation or disabling features)
only after at least f checks fail.

These two techniques make it difficult for the attacker to locate the protec-
tion scheme without detailed examination of the code and careful debugging.
Additional ideas can be used to increase the security, for example delaying the
crash even after f checks have failed.

Attack. A can reduce size of the search space by using control- and data-flow
analysis.
3.7 Program-analysis tools
Against static control-flow analysis, the idea is to make the control-flow graph
look like a complete graph. Computed jumps and opaque predicates can be used



for this. A computed jump explicitly calculates the jump-target address, and
this calculation can be obfuscated. Similarly, an opaque predicate [6] calculates
the value of a predicate in an obfuscated way. Sufficiently strong obfuscation can
reduce the usefulness of control-flow analysis.

Against data-flow analysis, the idea is to make the dependency graph of k
variables look like a complete graph on k nodes. A should gain no useful infor-
mation about dependencies of those variables. Lightweight encryption (LWE)
can be used for this.

3.8 Unusual-code-detection attacks
Certain transformations used in program protection can introduce unusual code
patterns. For example xor and other arithmetic instructions are less often
used, but a protection mechanism or (light-weight) encryption may use them
often, where they can be spotted by localized frequency counts of such opcodes.
Semantics-preserving peephole transformations or adding chaff code can be used
to make code appear more uniform. Iteration and randomization can be used to
diffuse well.

3.9 Randomness detection attacks
Some protection mechanisms may embed encrypted code segments, which may
make them vulnerable to attacks of [13]. This attack was designed to find high-
entropy sections, such as cryptographic keys that may contain 1024 bits. To
prevent code attacks, near-clear encryption of code may be used (by transforming
a code fragment into another one that still looks like valid code). Protection of
data segments against such attacks involves keeping all data in an encrypted-
randomized form.

3.10 Secure-hardware oblivious execution of arbitrary programs
In the scheme of [10], P is converted into P ′ whose data access pattern is com-
pletely random. In each step, a fresh random address is accessed, and a random
value is written to it. The scheme offers very good security guarantees, but is
impractical. For a program of size n, it suffers a log2(n) overhead in running
time, and because of random data access, locality of reference is lost.

By relaxing the notion of obliviousness [16] to an attacker’s inability to nar-
row down the location of a variable observed in memory location at time t = 0
after t = T , one may restore locality of reference for some data-structure opera-
tions. This oblivious data structure also requires hardware, but may be simulated
by software in practice. While this opens new attacks, defenses may use all the
methods discussed in this paper, enabling a modular approach to designing pro-
tection systems.

4 The Protection Algorithm

At a high level, our protection scheme works as follows. Let P be the program
which we wish to protect. Suppose that there is some programmer-specified
critical code L. L returns a boolean output, indicating some condition required
for proper program execution (such as validity of a license). However, L need not



implement any otherwise useful functionality of P . Our goal is to link L and P
so that P executes properly only if L returns “true” despite tampering attacks.
The protection algorithm proceeds in phases:

Critical code replication and embedding. L is replicated into l copies
L1, . . . , Ll. Each copy Li is embedded into P , so that if Li returns “false”,
then P is corrupted or terminated. This phase could require significant man-
ual intervention: Specifying suitable points where Li can be embedded could
require programmers’ insight into code.

Graph transformation. P is transformed suitably, so that we can assume that
its flow graph can be adequately modeled as a random regular graph, and
program executions look like random walks.

Check insertion. k checks C1, . . . , Ck are randomly inserted into P . Each Ci

locally checks for untampered execution.
Creating dependencies. P is transformed so that it crashes when a subset of

f checks fails.

4.1 Primitives

We base our scheme on the existence of certain primitives. No single primitive
suffices to achieve security against tampering. They must be used in conjunc-
tion to ensure adequate protection, and a meaningful model in which a security
analysis is possible. Ideas that demonstrate plausibility of those primitives will
be briefly mentioned, but a detailed discourse is beyond the scope of this paper.
We believe that it is possible, with sufficient research effort, to implement them
with satisfactory security.

Flow graph transformation. Our protection algorithm requires some way to
change P into a functionally equivalent Q whose flow graph G has the following
property. An execution of P cannot avoid any substantial (i.e., constant) fraction
of nodes of G for too long (except with small probability). The precise formal-
ization and quantification of these statements depend on the system parameters
and desired security level, and some analysis will be given later in the text.

Roughly, we will assume that G can be modeled by an expander graph,
and that P ’s execution resembles a random walk on G as much as possible
(even when tampered by the attacker). We assume that there is a function
(V,E) = GraphTransform(P, n) that returns a program Q whose flow graph is a
good expander graph of n nodes with the above properties.

This transformation can be approximately achieved by combining various
obfuscating transformations, such as code replication, diversification and over-
lapping [1]; opaque constructs [6]; and data and control-flow randomization [5].

We will assume that the program is partitionied, where the partion is given
by sets of flow graph nodes F1, . . . , Fn. By picking n properly and assuming the
sizes of Fi’s are approximately the same, we will assume that the flow graph
induced by this partition is an expander graph.



Checks. A check C is specified by s code fragments F1, . . . , Fs. If some Fi is
tampered, then with probability pdetect it will be triggered. If all of F1, . . . , Fs are
triggered, then the check C fails. We assume that the attacker cannot prevent the
check failing, unless he identifies all C1, . . . , Cs. Let C = InsertCheck(F1, . . . , Fs)
denote the function that produces a check C given code fragments F1, . . . , Fs. A
brief outline of a possible check implementation follows.

Tampered code can be triggered using integrity verification kernels (IVK).
If IVKs are implemented using oblivious hashing, then runtime tampering is
detected and registered as an incorrectly computed hash value. For example, to
insert a triggering mechanism in Fi, one embeds oblivious-hash computation in
Fi, resulting in a hash value hi. Some correct values h∗i can be precomputed (or
hi can be compared against the hash of a copy of Fi elsewhere in the program).
Suppose correct h∗i are precomputed. To ensure that C fails only after all of
F1, . . . , Fs are triggered, some other code could compute the product (h1− h∗1) ·
· · ··(hs−h∗s). This product can be nonzero only if all the hash values are incorrect.
Product computation should, of course, be obfuscated. Appropriate action can
be taken, depending on whether the product is zero. [4, 2]

Check detection-response. We assume that check failures can be detected, and a
response can be effected after some programmer-specified subset of checks has
failed. More precisely, suppose k checks C1, . . . , Ck are installed. The program-
mer will specify the response structure – a set R whose elements are subsets of
checks (so R contains elements x, where each x ⊆ {C1, . . . , Ck}). The response
will be triggered only upon failure of a subset of checks y ⊆ {C1, . . . , Ck}, such
that x ⊆ y for some x ∈ R.

For a detailed account on a possible check response implementation refer to
[14]. We note here that their implementation provides for tampering response
after a specified number f of checks fail. Let us denote the corresponding re-
sponse structure by Rf (C1, . . . , Ck). Then x ∈ Rf (C1, . . . , Ck) ⇐⇒ x ⊆
{C1, . . . , Ck} ∧ |x| = f). A practical advantage of their approach is is that the
response is well separated both temporally and spatially from the checks that
cause it.

We will denote with InsertResponse(P, (C1, . . . , Ck), f) the function which
transforms the program P into P ′ with the response structure Rf (C1, . . . , Ck).

Critical code embedding. We assume that, given some program fragment F , it
is possible to embed the critical code L into F as follows. The resulting code F ′

will execute L. If L returns “true”, then F ′ behaves functionally identically to F .
Otherwise F ′ executes some other programmer-specified action. This embedding
could be as simple as: if L = true then run F else quit. In practice, however, it is
desirable to use obfuscation and individualized instances of L, to make it more
difficult to circumvent L. We will denote with CodeEntangle(L,F ) the function
which returns F ′ as described above.



4.2 Protection Algorithm

Harden(P, L, l, n, k, s, f):
Flow graph transformation:

let G = (V, E)← GraphTransform(P, n)
Critical code embedding and replication:

select at random a subset U ⊆ V with |U | = l
for each v ∈ U do

v ← CodeEntangle(L, v)
Check embedding:

for i = 1 to k do
select at random v1, . . . , vs ∈ V
Ci = InsertCheck(v1, . . . , vs)

Creating tampering response:
InsertResponse(G, (C1, . . . , Ck), f)

4.3 Design Goals of Tamper Protection

Before elaborating our model and analysis, we identify desirable properties of a
tamper-protection scheme. We believe that our scheme, when instantiated with
secure primitives, satisfies those properties. Our model and analysis serve to
validate these intuitions.

Tampering response. An obvious goal is to cause improper program opera-
tion if tampering is detected. For brevity we will call this a crash, but we note
that it need not be an actual program crash – it could be slow or unreliable
operation, disabling some features, or generally any graceful degradation of
program operation.

Thwarting local attacks. The attacker A should gain no information based
only on local modifications and observations. For example, changing a single
register could result in a crash soon after the change, and A could easily
understand how the crash is caused. If tamper-protection is causing it, this
provides vital clues to bypassing the protection.

Require multiple failed checks. A secure protection scheme triggers a re-
sponse only after some minimal number f of checks fails. This makes the
task of locating individual checks more difficult.

Hard global analysis. The protection scheme should be embedded as a ran-
dom structure R in the flow graph G, and discovering R should be necessary
for bypassing the protection. A should be able to obtain information about R
only through observing walks on G and crashes. Observing the exact memory
contents should give no significant advantage to A.

4.4 On Different Security Models

We wish to obtain lower bounds on the complexity of successful attacker A,
and quantify them in terms of running time, memory or some other complexity
measure. Broadly speaking, there are three approaches:



– Information-theory-based approach does not bound the resources of an ad-
versary, but limits the number of probes or input-output queries to a function
that is presumed to be a random function.
Our model is akin to this. If our assumptions hold in practice, then what we
derive is a probability bound that an adversary who makes so many probes
running the program can learn all the edges he needs to break the system.

– Complexity-theory approach considers resource-bounded adversaries, and bases
the security of a system on a problem that is intractable. As in cryptography,
the instances are picked under some probability distribution.
The fundamental difficulty in using this approach here is that the program P
given to us may be developed by a vast community of programmers, and can
only be altered minimally before running into objectionable performance. In
particular, the instances do not admit a probabilistic generation model; if
we are to base it on graph-theoretic models, no graph problem is known that
can be attractive for cryptography, either.

– Customized constructions for secure hash and stream ciphers base their se-
curity on the best attacks known to the community (DES/AES/SHA-1).

5 Our Model

The model is motivated by practical considerations, namely the available im-
plementations of primitives and currently known attacks and some foreseeable
extensions. Denote the protected version of the program by Q, its flow graph by
G, the critical code by L, and the attacker by A.

On the one hand, we have A equipped with various tools, including debug-
gers, data- and control-flow analyzers, graph tools, etc. A is capable of inspecting
the code statically and observing its behaviour dynamically. A is also capable of
static tampering (i.e., changing the code) or dynamic tampering (i.e., changing
the state of a running program). All of these can be done manually or automated
– e.g., using sophisticated programmable debuggers and program-analysis algo-
rithms. A’s goal is to ensure that Q runs correctly, even if the critical code L
fails.

On the other hand we have the program Q, with critical code L replicated
at many locations in Q, and various code-obfuscation transformations applied.
If these transformations are secure, then local observations of Q should yield
little useful information. Code-obfuscation techniques can make understanding
small windows of code difficult. Data-flow obfuscation makes understanding the
state of the running program difficult. Flow graph transformations ensure that
the flow graph mimics a random graph, with good connectivity between nodes.
Fake calls and random calls to replicated code make the execution appear like a
random walk on the flow graph. Checks detect tampering, but based on local ob-
servations, it is difficult to tell apart checking code from regular code, and check
variables from normal ones. Check response is triggered only after sufficiently
many checks fail, making the task of pinpointing any check more difficult.



Above we stated some observations and desiderata regarding the protected
program and the attacks. We distill them into the following idealized assump-
tions:

1. Execution of the program induces a random walk on the flow graph at the
appropriate level of granularity of clustering the flow graph.

2. Observations restricted to small areas make local variables and code appear
to have random values.

3. Tampering local variables or code causes corresponding inserted checks to
fail.

4. A sufficient number of failed checks causes the program to crash.

5. In order to prevent the execution of a check, all the locations of variables
and code from which the check is initiated need to be identified (e.g., a jump
occurs from these locations into the checking code, possibly via computed
jumps).

These are indeed simplified idealizations, but we believe that as the implemen-
tations of primitives become more secure, or suitable secure hardware is used,
the assumptions become closer to reality. Under these assumptions, an attack
on a program can be modeled as a game played on the flow graph G of Q.

Informally the game looks as follows. It is played on the flow graph G = (V,E)
of Q. A subset U of nodes contains instances of critical code. There are checks
C1, . . . , Ck ⊆ V in it, each of them consisting of s nodes. Certain subsets of checks
are designated as dangerous (the activation structure R contains those dangerous
subsets of checks). The attacker A runs Q, and the execution corresponds to a
walk on G consisting of independent random steps. In each step A can either
tamper with the current node, or leave it alone. A wins the game if he can
run the program for at least N steps (N is the parameter), with the following
restrictions: (1) Every node that contains the critical code must be tampered;
and (2) the program must not crash.

Checks prevent A from winning this game trivially in the following way.
Tampering is detected with probability pdetect. A check fails if all its nodes detect
tampering. The program crashes when the set of failed checks contains some
dangerous set of checks; A should then restart the program; else he cannot
win. Finally, the attacker can also try to remove a check: He makes a guess
C = {v1, . . . , vs}, and if C = Ci for some i, then the check Ci becomes effectively
disabled – it will no longer fail even if its nodes detect tampering.



Game 1.
BreakingGame(G = (V, E), v0, U , (C1, . . . , Ck), R, p, N):

Definitions and terminology. v0 ∈ V is called the entry point. U ⊆
V is called the critical code. Ci ⊆ V (|Ci| = s) are called checks.
R is called the response structure and it is a set whose elements
are subsets of V (i.e., x ∈ R =⇒ x ⊆ V ). p ∈ [0, 1] and N ∈ N
are called the tamper detection probability, and the required running
time, respectively.

Game state. The game state is of the form
(Act, T, curr, time, steps, crash), and its components are called
activated check set, tampered node set, current node, running time,
step counter and crash flag, respectively.

Game description.
Initial game state. Initial game state is set as follows: Act =
{C1, . . . , Ck}, T = ∅, curr = v0, time = 0 and steps = 0.

Game moves. The game proceeds in steps, until the player wins
or quits. In each step, the player chooses one of the following
moves:
RUN. If curr ∈ U and curr /∈ T then crash← 1. time← time+1.

curr is replaced by its random neighbour in G.
TAMPER. With probability p, curr is added to the set of tam-

pered nodes T . time ← time + 1. curr is replaced by its
random neighbour in G.

GUESS(v1, . . . , vs). If {v1, . . . , vs} = Ci for some i, then Ci is
removed from the activated check set Act.

RESET. The game state is reset as follows: T = ∅, curr = v0,
time = 0 and crash = 0.

QUIT. The game ends. The attacker loses.
Before the next step, the game state is updated as follows.
steps ← steps + 1. If there is a set of checks Ci1 , . . . , Cim such
that Ci1 , . . . , Cim ⊆ T and {Ci1 , . . . , Cim} ∩ Act ∈ R, then
crash ← 1. If time > N and crash = 0 then the attacker wins
the game. Otherwise he gets to play the next step.

Note that the sequence of nodes visited between two consecutive RESET
moves is a walk on G. Thus, we call the walk that occurs between (i− 1)-st and
i-th reset moves i-th walk of the game.

6 Security Analysis

We now consider some statistical attacks on this scheme. To get a more trans-
parent analysis, we will use specific settings of scheme parameters. The analyses
indicate that, for these settings, attacks take time exponential in check size s.

Throughout this section we use the following notation. If W = (v1, . . . , vt) is
a walk on some graph, we write W s to denote {v1, . . . , vt}s. When no confusion
is possible, we write W to denote {v1, . . . , vt}.



6.1 Case Study: Dense Critical Code, Perfect Checks

1. U = V : all nodes of G contain the critical code L,
2. p = 1: tampering is detected with certainty,
3. k = cn for some c > 0: there are cn checks in the program,
4. threshold f = cn/2: half the checks must fail to trigger the response,
5. N = n1+d: a succesful attack must run for at least n1+d steps.

Let In denote the set of all ((V,E), v0, V, (C1, . . . , Ccn), R, 1, n1+d) where the
following hold. (V,E) is an expander graph with λ2 ≤ 1/2 and |V | = n. Every
Ci ⊂ V contains exactly s nodes. R = {C1, . . . , Ccn}cn/2, i.e., R contains all
cn/2-element subsets of {C1, . . . , Ccn}. v0 is arbitrary.

Then by construction, the uniform distribution on In is exactly the distribu-
tion of BreakingGame instances which correspond to the output of the protection
algorithm Harden. We consider two simple attacker’s strategies and analyze the
expected effort, over random choice of game instance from In, and random walks
that take place in the game.

Voting attack. This attack is based on the following idea. Let X = (v1, . . . , vs) ∈
V s be some choice of s nodes. Suppose A runs the program and tampers it until
it crashes, and let Z = {v1, . . . , vt} be the corresponding set of tampered nodes.
Define p(X) = Pr[X ∈ Zs], the probability that all nodes of X are tampered. We
assume, favouring the attacker, that for most check assignments this probability
will be concentrated in checks, i.e., there is some δ so that for any check Ci and
any non-check X = (v1, . . . , vs), p(Ci)− p(X) > δ > 0. This in particular means
that checks are more likely to show up in Z than any other choice of s nodes. A
could use this margin to isolate the checks, in the following simple attack.

initialize an s-dimensional n× n× · · · × n array B to zeros
(B will store votes for each (v1, . . . , vs) ∈ V s)

for i = 1 to 1/δ2 do
run A and tamper with it arbitrarily; let W be the set of tampered nodes
for each (v1, . . . , vs) ∈W do

set B[v1, . . . , vs]← B[v1, . . . , vs] + 1 (add one vote for (v1, . . . , vs))
find the n entries of B with most votes and output their addresses

The complexity of this attack is at least Ω(ns). Indeed, barring exponentially
unlikely events, each round produces a walk of length at least n− 2n/s (else by
Theorem 1 below, too few checks fail for the program to crash). A must now
update (n−2n/s)s ≈ ns/e2 entries in the array, so this is the least time he needs
to spend. Note that this does not even depend on the margin δ. It could be quite
big and the above attack would still be too expensive.

Intersection attack. The goal of this attack is to find any single check. A plays
m rounds and obtains the walks W1, . . . ,Wm. A hopes that there is at least one
check C that fails in each walk W1, . . . ,Wm, and tries to find that check. C



obviously shows up in every Wi; i.e., C ∈ B := (W1 ∩ · · · ∩Wm)s. A’s search
space is thus reduced to B, and he can inspect every candidate from B until he
finds C. This strategy, however, takes nΩ(s) work on average, as indicated below.

By Theorem 1, 1 − 1/(2s) > |Wi|/n > 1 − 2/s (with prob. 1 − e−O(n)). For
this simplified analysis, assume that Wi consist of independently drawn samples
from V . The expected size of ∩m

i=1Wi is lower bounded by (1−2/s)m. Therefore
EB > ns(1 − 2/s)ms ≈ nse−2m. Furhtermore Pr[C ∈ Wi] by (|Wi|/n)s, so
Pr[C ∈ ∩m

i=1Wi] ≤ (|Wi|/n)sm ≤ (1 − 1/(2s))sm ≈ e−m/2. Therefore, to get
success probability ε, the attacker must set m < 2 log ε. But then his work (i.e.,
the size of B) is at least nse−2m > nsε4.

6.2 Other Parameter Settings and Models

A more practical setting is the one where U ⊂ V and 0 < p < 1; i.e., critical code
is distributed only through a fraction of the program code, and checks have a
chance to miss tampering. In this case, the algorithm Harden should be modified
to insert checks only in U . Using some random walk lemmas (see for example
[9]) and techniques similar to those of the previous section, one can prove similar
lower bounds. We do not provide details in this article.

In a more realistic model, the attack game can be changed to allow A to
choose some steps in the walk, instead of just passively observing them. One
could for example let A choose every other step adversarially. If A’s strategy is
non-adaptive (i.e., each adversarial step depends only on the current node), then
the results of [8] can be used to analyze attack complexity, and derive bounds
similar to those of the previous section. We do not provide any details in this
article.

7 Conclusion and Future Work

This article presented a new graph-based framework for modeling and imple-
menting specific tamper-resistance algorithms. Our scheme may yield practical
program-transformation tools to harden software against malicious patching and
interference. A crucial improvement over today’s “ad hoc” protection methods
is an attack-resistance model, which can help estimate how long particular pro-
tected applications will remain unbroken in practice. This is important in various
business scenarios (e.g., DRM and software licensing), where measurable attack
resistance can prevent unexpected breaches and enforce a consistent revenue
stream.

Future work will involve making our models and assumptions more realis-
tic, as well as performing more implementation and experimental verification.
Upcoming efforts will study the exact theoretical resistance offered by our al-
gorithms, and also develop new algorithms along similar lines. We note that
theoretical impossibility results on obfuscation [3, 11] do not pose roadblocks
to development of such algorithms, because the attack resistance we require
need not be exponential or even superpolynomial. As long as our techniques



can predict such resistance (or lack thereof) accurately for typical programs, our
approach should be useful in practice.

A Graph Lemmas

Lemma 1. Consider a walk W which tampers t = n − n/2s distinct nodes.
Then:

1. Expected number of failed checks is cn/
√

e + ε(s) for some ε(s) ∈ o(s).
2. For 1− e−O(n) fraction of check assignments, the number of failed checks is

at least 0.5cn.

Proof. Let T ⊆ V be the set of tampered nodes. Denote µ = |T |/|V | = t/n. Let
p be the probability that a randomly chosen check C = (v1, . . . , vs) is contained
in T . For sufficiently large s, we have p = µs = (1− 1/2s)s ≈ 1/

√
e.

1. There are cn checks, so the expected number of checks contained in T is cnp
and this converges to cn/

√
e > 0.6cn as n→∞.

2. Applying a Chernoff bound, one gets that the number of failed checks is
exponentially unlikely to fall below 0.5cn.

Lemma 2. Consider a walk W which tampers at most t = n − 2n/s distinct
nodes. For 1− e−O(n) fraction of check assignments, the number of failed checks
is at most cn/4.

Proof. Let T , µ and p be as in the proof of Lemma 1. Then p = µs = (1−2/s)s =
((1−2/s)(s/2))2. For sufficiently large s we have p ≈ 1/e2. The expected number
of failed checks is thus cn/e2, and using a Chernoff bound one gets that at most
cn/4 checks fail, except with probability 1− e−O(n).

It is easy to do a “quantifier switch” to make the probabilities of Lemmas
1,2 over random walks, using the following simple lemma.

Lemma 3 (Pigeonhole principle variant). Let I(a, b) (a ∈ A, b ∈ B) be a
0-1 matrix. Let pb = Pra∈A[I(a, b) = 1] and let p = Pr(a,b)∈A×B [I(a, b) = 1]. If
p ≤ ε then

Prb∈B [pb ≥
√

ε] ≤
√

ε.

Using Lemma 3, Lemmas 1,2 and taking into account that U = V , it is easy
to show:

Theorem 1. For 1− e−O(n) fraction of check assignments the following hold:

1. 1− e−O(n) fraction of walks shorter than n− 2n/s do not crash.
2. for any constant d > 0, 1− e−O(n) fraction of walks longer than n1+d crash.

Proof. The first claim follows directly from Lemma 2. For the second claim,
note that a random walk of length n1+d covers G with probability 1 − e−O(n).
Therefore the subset U of nodes containing the critical code is covered. To avoid
crashing due to untampered execution of critical code, the attacker must tamper
with every node on the walk. So more than n − n/2s nodes are tampered, and
by Lemma 1 the walk with probability 1− e−O(n).
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