
Obfuscate Arrays by Homomorphic Functions
William Zhu, Student Member, IEEE, Clark Thomborson, Senior Member, IEEE,

and Fei-Yue Wang, Fellow, IEEE

Abstract— As various computers are connected into a world
wide network, software protections becomes a more and more im-
portant issue for software users and developers. There are some
technical measures for software protections, such as hardware-
based protections and software-based techniques, etc. Software
obfuscation is one of these measures. It protects software from
unauthorized modification by making software more obscure
so that it is hard for the potential attacker to understand the
obfuscated software. Chow et al. use residue number technique
to software obfuscation by encoding variables in the original
program to hide the true meaning of these variables [1]. There is
some discussion about the division of residue numbers in [1], but,
in order to lay a sound ground for this technique, we proposed
homomorphic functions in [2] to deal with division by several
constants in residue numbers.

Data structures are important components of programme and
they are key clues for people to understand codes. Obfuscating
data structures of programme will make it very hard for an
enemy to attack them. In this paper, we apply homomorphic
functions to obfuscating the data structures of software.

Index Terms— software obfuscation, residue number coding,
homomorphic obfuscation.

I. INTRODUCTION

AS the Internet develops rapidly and becomes popular,
software security appears a vital issue for computer

industry and even for our society. The demand for software
protections is stronger and stronger. To achieve this goal,
researchers has proposed various techniques, such as don-
gle, a hardware-based method, and software watermarking, a
software-based approach.

Software obfuscation [3], [4], [5] is a measure for software
security. It transforms a program into a new one that is harder
to understand than the original one. In software obfuscation,
variable transformation is a major method to transform soft-
ware into a new one that is hard for attackers to understand.

Chow el at. applied the residue number coding [6], an
approach used in hardware design, high precision integer arith-
metic, and cryptography, to software obfuscation [1], [7]. In a
previous paper [2], we proposed the concepts of homomorphic

William Zhu is with the Department of Computer Sciences, The University
of Auckland, Auckland, New Zealand and the Institute of Automation, The
Chinese Academy of Sciences, Beijing 100080, China. (corresponding author
to provide phone: +64-9-3737-599ext.82289; fax: +64-9-3737-453; e-mail:
fzhu009@ec.auckland.ac.nz)

Clark Thomborson is with the Department of Computer
Sciences, The University of Auckland, Auckland, New Zealand. e-
mail:cthombor@cs.auckland.ac.nz

Fei-Yue Wang is with the Institute of Automation, The Chinese Academy of
Sciences, Beijing 100080, China and the Systems and Industrial Engineering
Department, The University of Arizona, Tucson, AZ 85721, USA. e-mail:
feiyue@sie.arizona.edu

The first two authors are in part supported by the New Economy Research
Fund of New Zealand and the first and the third author is in part supported
by the National Outstanding Youth Research Programme of China

functions, a potential area for further exploration. Based on
these concepts, we established a sound ground for residue
number coding for software obfuscation. Especially, we used
this to develop an algorithm for division by several constants
in order to strengthen some points in an earlier publication [1].
In this paper, we describe further applications of homomorphic
functions to software obfuscation.

The remainder of this paper is structured as follows. Sec-
tion II describes the backgrounds and techniques of software
obfuscation. Section III is the focus of this paper. It applies
homomorphic functions to array transformations. This paper
concludes in section IV.

II. BACKGROUNDS

A. Software protection

AS the Internet evolves rapidly, software piracy is rampant
in the world, as a result, software protection becomes a

vital issue in current computer industry and a hot research
topic [1], [3], [4], [5], [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16], [17].

There are legal measures and technical approaches for
software protection. Legal protection has become increas-
ingly important since more software is distributed without
a signed license agreement. Legal measures are copyright,
patent, registration and license. Software copyright protects
the exclusive rights of a software developer to reproduce
or copy, adapt, distribute and publicly perform the work.
Generally, copyright laws protect the form of expression of
an idea, but not the idea itself. With respect to software, this
typically means that it protects a computer program but not the
methods and algorithms within the program. Thus, source code
and object code are protected against literal copying. While
software copyright protects only the expression of an idea
in software, software patent protects the underlying idea and
features of software. Even independent reinvention of the same
technique by others does not give them the right to use it. The
protection of software by registration has long been accepted
internationally. In most countries, rights are initially secured
by registration and maintained by later use in the country.
A software license is a contract between a producer and a
user of computer software. It gives the user the privilege to
use software in accordance with the conditions of the license.
That privilege may be revoked by the producer at any time,
with or without cause.

While legal protection in a country generally can not be
extended to other nations and obtaining patent protection
for software is relatively expensive, software vendors still
seek technical measures to protect their software. Technical
approaches can be classified as hardware-based methods and
software-based methods.

1-4244-0133-X/06/$20.00 © 2006 IEEE 7701-4244-0134-8/06/$20.00 © 2006 IEEE

A dongle is a typical hardware-based method. It is a small
hardware device that plugs into the serial or USB port of a
computer to ensure that only authorized users can use certain
software applications. They are only used with expensive,
high-end software programs. When a program that comes with
a dongle runs, it checks the dongle for verification as it is
loading. If it does not find the dongle, the computer quits.

Currently, this is the most reliable method of protecting soft-
ware and is also a convenient approach of prevent commercial
software of high price, such as accounting and inventory man-
agement applications, legal and corporate systems, building
construction estimates, CAD systems, etc. from piracy. But, a
dongle is a physical device, thus it is not convenient for small
software and for online distribution.

The current software-based methods are code authentica-
tion, server side execution, code encoding, software water-
marking, software obfuscation, and etc. Code authentication
is most efficient when authentication data are sent through
network, but user has complete code, which in theory can
be mangled, authentication procedures can be removed. For
server side execution, software developer does not send final
code to users, but provide users the service of the software
through executing whole or part of the software on a remote
server. It can be used only in presence of high availability
of broadband networks. Code encoding protects against tam-
pering of program; in present programs used very often; main
drawback is that decoder can be written and used as a universal
tool. Software watermarking tries to insert a secret message,
called a software watermark, into software as the evidence of
ownership of it [18]. Software obfuscation translates software
into a semantically-equivalent one that is hard for attacker to
analyze. This paper will focus on software obfuscation.

B. Software obfuscation

Since Sun Microsystems designed Java, a programming lan-
guage, in the mid-1990s, it is widely used to deliver interactive
web content in the Internet, such as video displays, animations,
and interactive games. As the Internet is connected with
various heterogeneous hardware with different architectures,
Java is intended to be architecture-independent.

Traditionally, to develop software, we first write source code
for the software in some high level programming language,
then compile the source code to get a program, called native
code, that will execute only on a specific type of CPU with a
specific operating system.

As for Java, the finished product of software, bytecode,
is actually not the code in the architecture-specific machine
language which can be understood by any computers, but
something that can be run on a ”Java virtual machine” (JVM),
a platform between the high-level language and the real
computer. It is the JVM that makes the distributed executables
of Java programs portable, not architecture-dependent.

As we know, Java bytecode is architecture-independent,
thus it contains a lot of information of the source codes
and that make it easy to decompile the source codes and
extract important algorithms from them. The feature of Java
bytecode helps to reverse-engineer a Java executable and

results in the software piracy, unauthorized penetration and
system modification.

After mobile code becomes popular at the Internet age,
another type of software piracy occurs. As we know, mobile
code migrates across a network from a remote source to a
local system and is then run on that local system, which is a
personal computer, or a mobile phone, or Internet appliance,
so the software developers and owners may encounter piracy
from malicious hosts.

In order to protect software, especially that in forms such
as Java bytecode and mobile code, several measures has been
proposed, among them software obfuscation seems a last
approach. It transforms a program into another semantically
equivalent one that is more hard to understand and reverse
engineer. Paper [3], [4], [5], [10] had a detailed description of
software obfuscation.

C. Array transformations

There are several algorithms of software obfuscation such
as layout transformation, computation transformation, ordering
transformation, data transformation [3]. Array index change,
array folding, and array flattening are some of data transfor-
mations. As said in [3], by adding the data complexity in the
program, array index change, array folding and flattening can
make a program much more difficult to understand and reverse
engineer.

1) Array index change: The following Fig. 1 is a simple
example of array index change method [3].

int A[9]; int A1[5], A2[4];
A[i] = ... if((i%2 == 0))

⇒ A1[i/2] =...
else

A2[i/2] = ...

Fig. 1. An example of array index change

2) Array folding and flattening: While array folding in-
creases the dimension of an array in the code, such as
transforming a 2-dimensional array to a 1-dimensional array,
array flattening decreases the dimension of an array in the
code, such as transforming a 2-dimensional array to a 4-
dimensional array.

D. Homomorphic function

In one of our previous papers [2], we proposed the concept
of homomorphic obfuscations, and developed an algorithm for
division by several constants. We describe some basic concepts
about residue number coding as follows. Details of them can
be found in [2].

Let Z be the set of all integers, n a given positive integer.
For any x ∈ Z, denote [x]n = {y ∈ Z | y − x is divisible
by n} and we call [x]n the residue class of x modulo n. We
omit the subscript when there is no confusion. Let Z/nZ be
the set of all these residue classes with respect to modulo n,
where Z/nZ = {[0], [1], . . . , [n − 1]}.

1-4244-0133-X/06/$20.00 © 2006 IEEE 771

Z/nZ has three operations +, -, × defined as follows: for
any two [x], [y] ∈ Z/nZ, [x] + [y] = [x + y], [x] − [y] =
[x − y], [x] × [y] = [x × y].

The product Z/m1Z × Z/m2Z × . . . × Z/mkZ also has
three operations +, −, × defined as follows: for any two
([x1]m1 , . . . , [xk]mk

), ([y1]m1 , . . . , [yk]mk
) ∈ Z/m1Z × . . .×

Z/mkZ,

([x1]m1 , . . . , [xk]mk
) + ([y1]m1 , . . . , [yk]mk

)
= ([x1 + y1]m1 , . . . , [xk + yk]mk

)

([x1]m1 , . . . , [xk]mk
) − ([y1]m1 , . . . , [yk]mk

)
= ([x1 − y1]m1 , . . . , [xk − yk]mk

)

([x1]m1 , . . . , [xk]mk
) × ([y1]m1 , . . . , [yk]mk

)
= ([x1 × y1]m1 , . . . , [xk × yk]mk

)

III. APPLICATION OF HOMOMORPHIC FUNCTION TO

ARRAY’S DIMENSION CHANGE

HOMOMORPHIC functions can be used to obfuscate
programs through changing the index or the dimension

of an array in the programs to obfuscate them. In the following,
we describe in details four methods, which we reported in [19],
to apply homomorphic functions to software obfuscation.

A. Index change

Homomorphic functions can be used to change the index
of an array in software to obfuscate it. For an array A[n], the
technique is as follows.

• Find an m such that m > n, and n and m are relatively
prime.

• Change the array into another array B[n] and the element
A[i] is turned into b[i*m mod n].

The homomorphic function f : Z/nZ → Z/nZ defined
by f([i]n) = [i ∗ m]n is an isomorphism, thus the above
replacement guarantees the semantics of the original program.

Example 1 (Index change): For the program in Fig. 2, we
choose m = 3. The obfuscated program is in Fig. 3.

...
real A[100];
...;
S = 0;
for(i = 0; i < 100; i++)
S = S + A[i];

...

Fig. 2. An unobfuscated program

...
real B[100];
...
S = 0;
for(i = 0; i < 100; i++)

S = S + B[i*3 mod 100];
...

Fig. 3. An obfuscated version of the program in Fig. 2

B. Index and dimension change

Homomorphic functions can be used to change the index
and the length of dimension of an array in programs to
obfuscate them. For an array A[n], the following procedure
can achieve this goal.

• Find an m such that m > n, and n and m are relatively
prime.

• Change the array into another array B[m] and the element
A[i] is turned into b[i*n mod m].

The above method can be regarded as two steps. Firstly, extend
array A[n] to C[m] with C[i] = A[i] for 0 ≤ i < n and C[i]
undefined for n ≤ i < m]. Then, change the array C[m] into
b[m] by replacing C[i] with B[i*n mod m] as in the index
change method.

Example 2 (Index and dimension change): For the
program in Fig. 4, we choose m = 101. The obfuscated
program is in Fig. 5.

...
real A[100];
...;
S = 0;
for(i = 0; i < 100; i++)
S = S + A[i];

...

Fig. 4. An unobfuscated program

C. Array folding

Homomorphic functions can be used to increase the number
of dimension of an array in software to obfuscate it. The
technique is referred as to array folding. For an array A[n],
we assume n > 2. The array folding procedure is as follows.

• If n is a prime, let m = n + 1; otherwise m = n.
• Extend A[n] into C[m] by C[i] = A[i] for 0 ≤ i < n and

C[i] undefined for n ≤ i < m.
• Factor m into m1 and m2. Replace C[m] with B[m1,m2]

through B[i mod m1, i mod m2] = C[i] for 0 ≤ i < m.
• Replace any A[i] with B[i mod m1, i mod m2] in the

unobfuscated program.

Example 3 (Array folding): For the program in Fig. 6, we
choose m = 3.

• Factor 100 into 4 × 25, two relatively prime integers.
• Turn the 1-dimension array A[100] into a 2-dimension

array B[4, 25] and let B[i mod 4, i mod 25] = A[i] for
0 ≤ i < 100.

...
real B[101];
...
S = 0;
for(i = 0; i < 100; i++)

S = S + B[i*100 mod 101];
...

Fig. 5. An obfuscated version of the program in Fig. 4

1-4244-0133-X/06/$20.00 © 2006 IEEE 772

• Replace any A[i] with B[i mod 4, i mod 25] in the
unobfuscated program.

The obfuscated program is in Fig. 7.

...
S = 0;
for(i = 0; i < 100; i++)
S = S + A[i];

...

Fig. 6. An unobfuscated program

...
S = 0;
for(i = 0; i < 4; i++)
for(j = 0; i < 25; j++)
S = S + B[i, j];

...

Fig. 7. An obfuscated version of the program in Fig. 6

D. Array flattening

Homomorphic functions can be used to decrease the number
of dimension of an array in software to obfuscate it. The
technique is referred as to array flattening. For a two dimension
array A[n1, n2], the array flattening procedure is as follows.

• Find two relatively prime integers m1 and m2 such that
n1 ≤ m1 and n2 ≤ m2. Let m = m1 ∗ m2.

• Turn the 2-dimension array A[n1, n2] into another 2-
dimension array C[m1,m2] by C[i, j] = A[i, j] for
0 ≤ i < m1 and 0 ≤ j < m2, and C[i, j] undefined
otherwise. Replace all A[i, j] with C[i, j].

• Find two relatively integers k1 and k2 such that k1∗m1+
k2 ∗ m2 = 1.

• Turn the 2-dimension array C[n1, n2] into a 1-dimension
array B[m] and let B[i] = C[i mod m1, i mod m2] for
0 ≤ i < m.

• Replace any A[i, j] with B[(i ∗ k1 + j ∗ k2) mod m] for
0 ≤ i < n1 and 0 ≤ j < n2 in the unobfuscated program.

Example 4 (Array flattening): For the program in Fig. 8,

...
S = 0;
for(i = 0; i < 4; i++)
for(j = 0; i < 26; j++)
S = S + B[i, j];

...

Fig. 8. An unobfuscated program

• We choose 4 and 27.
• Time 4 and 27 into 108
• Turn the 2-dimension array B[4, 25] into a 1-dimension

array A[108] and let
– A[i] = B[i mod 4, i mod 27] for 0 ≤ i < 104.
– A[i] = any value for 104 ≤ i < 108.

• Replace any B[i mod 4, i mod 27] with A[i] for 0 ≤ i <
104 in the unobfuscated program.

The new obfuscated program is as in Fig. 9.

...
S = 0;
for(i = 0; i < 104; i++)
S = S + A[i];

...

Fig. 9. An obfuscated version of the program in Fig. 8

IV. CONCLUSIONS

WHILE the residue number coding can be used in
RSA cryptography, it also has applications to software

obfuscation to encode variables to hide the real meaning of
these variables [1]. This paper proposes applications of it to
obfuscating data structures in software. We will investigate
more applications of homomorphic functions to software ob-
fuscation in our future research.

REFERENCES

[1] Chow and et al, “Tamper resistant software encoding,” US patent, vol.
6594761, pp. 1–32, Oct. 2003.

[2] W. Zhu and C. Thomborson, “A provable scheme for homomorphic
obfuscationin in software security,” in The IASTED International Con-
ference on Communication, Network and Information Security, CNIS’05,
Phoenix, USA, Nov 2005, pp. 208–212.

[3] C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfuscating
transformations,” in Tech. Report, No.148, Dept. of Computer Sciences,
Univ. of Auckland, 1997.

[4] C. Collberg and C. Thomborson, “Watermarking, tamper-proofing, and
obfuscation - tools for software protection,” in IEEE Transactions on
Software Engineering, vol. 28, Aug. 2002, pp. 735–746.

[5] S. Drape, “Obfuscation of abstract data-types,” Ph.D. dissertation, The
Universite of Oxford, 2004.

[6] D. Knuth, The art of computer programming, Vol. 2, Seminumerical
algorithms, 3rd ed. Addison-Wesley, 1997.

[7] J. Nicherson, S. Chow, and H. Johnson, “Tamper resistant software:
extending trust into a hostile environment,” in Proceedings of ACM
Multimedia ’01. ACM Press, 2001.

[8] A. Majumdar and C. Thomborson, “On the use of opaque predicates in
mobile agent code obfuscation,” in LNCS 3495, May 2005, pp. 648–649.

[9] L. Ertaul and S. Venkatesh, “Novel obfuscation algorithms for software
security,” in 2005 International Conference on Software Engineering
Research and Practice, SERP’05, june 2005, pp. 209–215.

[10] G. Wroblewski, “A general method of program code obfuscation,” Ph.D.
dissertation, Wroclaw University, 2002.

[11] J. Ge and S. C. A. Tyagi, “Control flow based obfuscation,” in DRM’05.
ACM, Nov. 2005, pp. 83–92.

[12] M. D. Preda and R. Giacobazzi, “Semantic-based code obfuscation
by abstract interpretation,” in Proceedings of the 32th Internarional
Colloquium on Automata, Language and Programming, vol. 3580.
Springer Verlag, 2005, pp. 1325–1336.

[13] Y. Sakabe, M. Soshi, and A. Miyaji, “Java obfuscation approaches
to construct tamper-resistant object-oriented programs,” IPSJ Digital
Courier, vol. 1, pp. 349–361, 2005.

[14] T. Toyofuku, T. Tabata, and K. Sakurai, “Program obfuscation scheme
using random number to complicate control flow,” in EUC Workshops
2005, ser. LNCS, vol. 2823, 2005, pp. 916–925.

[15] A. Monden, A. Monsifrot, and C. Thomborson, “A framework for
obfuscated interpretation,” in Australia Information Security Workshop
2004, 2004, pp. 7–16.

[16] M. Sosonkin, G. Naumovich, and N. Memon, “Obfuscation of design
intent in object-oriented applications,” in DRM ’03. ACM, Oct. 2003,
pp. 142–153.

[17] A. Lakhotia, E. U. Kumar, and M. Venable, “A method for detecting
obfuscated calls in malicious binaries,” IEEE Transactions on Software
Engineering, vol. 13, no. 11, pp. 955–968, 2005.

[18] W. Zhu, C. Thomborson, and F.-Y. Wang, “A survey of software
watermarking,” in ISI 2005, ser. LNCS, vol. 3495, May 2005, pp. 454–
458.

[19] ——, “Application of homomorphic function to software obfuscation,”
in WISI 2006, ser. LNCS, April 2006.

1-4244-0133-X/06/$20.00 © 2006 IEEE 773

