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ABSTRACT 
Various kinds of software obfuscation methods have been 
proposed to protect security-sensitive information 
involved in software implementations. This paper 
proposes a cracker-centric approach to give a guideline 
for employing existing obfuscation methods to disrupt 
crackers’ actions. 
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1.  Introduction 
 
Software obfuscation has become an essential means to 
hide secrets involved in today’s software systems. 
Obfuscations transform a program so that it is more 
complex and difficult to understand, yet is functionally 
equivalent to the original program [8]. The secrets in a 
program may include subroutines, algorithms and 
constant values that are valuable and/or related to system 
security. For example, decryption algorithms and/or 
decryption keys involved in digital rights management 
(DRM) software need to be hided from a cracker, a 
software user who tries to analyze the software to extract 
its secret information [1][4]. 
There are various types of software obfuscation methods 
including control flow obfuscation [6][16][25], inter-
module call relation obfuscation [17], identifier 
obfuscation [24], self-modifying code [10], data 
obfuscation [7][20], etc. Unfortunately, it is unclear how 
effective these obfuscations are in protecting confidential 
information inside a program. It is because “complex” is 
not equal to “difficult to crack”. In addition, many of 
obfuscations do not assume a clear threat model, a model 
of cracker’s behavior to break the security. 
This paper seeks for a guideline for employing existing 
obfuscation methods to protect programs against a skilled 
cracker who tries to extract security-sensitive data. We 
focus on the crackers’ viewpoint including crackers’ 

knowledge, cracking tools and conjectures concerning a 
target program. We illustrate how to eliminate clues that 
the cracker may find using the cracking tools. This is a 
cracker-centric approach focusing on “disrupting” the 
cracker’s actions, while conventional obfuscation 
methods often fell into a protector-centric approach 
focusing on building a “complex” program. 
In this paper we set our target on a cipher program that 
involves a symmetric cipher algorithm and a 
cryptographic key in it. Such a program is commonly 
used in typical DRM software. We define a security goal 
and a threat model for the cipher program. Then, based on 
the model, we illustrate a guideline to employ existing 
obfuscation methods to protect secret keys included in the 
program. 
 
 
2.  Security Goal 
 
The security goal for a cipher program is to protect a 
cryptographic key K contained in a cipher program P 
without significant performance degradation. Although 
there exists a powerful protection method called white-
box cryptography [4][5] to hide the key K, its application 
area is quite limited since it requires a large memory 
space (several megabytes) and imposes a serious 
performance penalty. Thus, using the white-box 
cryptography is out of scope of this paper. 
The major application area, in which this security goal is 
required, is a development of multimedia player software, 
since most of player software employs a symmetric cipher 
scheme, such as DES, AES, C2, etc., to decode 
enciphered media contents with a cryptographic key (a 
certain integer value) embedded in the player itself. Such 
player software is being developed not only for high 
power PCs but also for low power consumer gadgets 
including PDAs, mobile phones and mobile game 
consoles. Therefore, we need to protect the key K by 
some “light weight” security techniques that do not cause 
serious performance degradation. 
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Figure 1 shows a simplified mechanism of typical 
multimedia player software. The player software P 
contains a key KM called a device key (or a master key), 
which is required to be completely hidden from software 
users (i.e. potential crackers), although KM is inherently 
contained in P. This key KM is used to decode an 
enciphered title key EM(KT), then the decoded title key KT 
is used to decode the enciphered media stream ET(d1,d2, 
…). Usually, the key KM is supplied to each software 
company (manufacturer) by some licensing entity with an 
agreement (permission) to build a player containing the 
key KM. However, once KM had revealed to a user, it 
becomes possible for the user to build a media ripping 
program that can produce a raw (non-enciphered) media 
stream file of an arbitrary (enciphered) media contents. 
Since such raw media files easily spread out all over the 
world via pear-to-pear software, there is a strong need to 
protect KM from being spied out from P. Indeed, the keys 
for the CSS encryption standard for DVD media content 
were revealed by a cracker in 1999 [20]. As a result, 
programs that overturn DVD copy protection are now 
widely distributed through the Internet. 
 
 
3. Threat Model for Cipher Program 
 
When we consider employing a security mechanism to 
achieve any security goal, we must have a realistic threat 
model, a model of what a cracker is able (and not able) to 
do in the real world. For example, a cracker may have an 
executable (binary) program and an algorithmic 
understanding of the principles of a cipher used in the 
program. Also, it will be reasonable to assume that the 
cracker has a static analyzer such as a disassembler and a 
decompiler, as well as a dynamic analyzer (debugger) 
with “breakpoint” functionality. 

In [15], Monden et al. characterized a cracker’s 
knowledge and resources along three dimensions, (1) 
understanding level of a protection mechanism being used, 
(2) skill level of system observation, and (3) skill level of 
system control. These dimensions seem useful for 
evaluating any software protection mechanism; however, 
in this paper, the dimension (1) is presently out of the 

scope since we do not assume any particular protection 
method yet. 

Besides the dimension (1), we need to characterize the 
cracker’s understanding level of a cipher algorithm being 
used because in modern DRM systems, such as 
CPPM/CPRM, cipher algorithms are open to public while 
cryptographic keys are kept secret [1]. 
There are several possible levels for each dimension, e.g. 
a cracker at low level is an end-user with very limited 
technical skill and ability, while a high level cracker has a 
debugger and good technical skills. In this paper, we 
assume of a top level hacker who has full knowledge of 
existing cracking tools, computer systems, and cipher 
algorithms. Below characterizes the supposed cracker 
along three dimensions (labelled A, B, C). 
(A) Algorithm Understanding 

The cracker has full knowledge of the principles of a 
cipher algorithm used in the cipher program P if the 
specifications of the algorithm were open to public. 
On the other hand, the cracker does not know the 
secret information (device keys, s-box, etc.) supplied 
to P’s manufacturer by a licensing entity. 

(B) System Observation 
The cracker owns a binary file, disassembled code 
and/or decompiled code of P, as well as a computer 
system M in which P is executed. The cracker has a 
debugger with breakpoint functionality that can 
observe internal states of M, e.g. memory snapshot of 
M, audio-visual outputs of M and the input and output 
value of P.  The cracker also observes the execution 
trace of P, i.e. a history of executed opcodes, operands 
and their values. 

(C) System Control 
The cracker operates the keyboard and mouse inputs 
of M, as it executes P with an arbitrary input. The 
cracker can change the instructions in P as well as the 
operand values and the memory image of M in any 
desired way, before and/or during running it on M. 

Under our definitions above, crackers have various 
avenues of attack. They might inspect disassembled code 
of P and find a portion of code that implements a 
particular part of a cipher algorithm. This may lead to 
narrow down the area in P where the secret key is 
manipulated. They also might observe a stack memory to 
find candidates of a secret key pushed onto the stack 
memory during execution [2]. Furthermore, they might 
collect multiple execution traces of different inputs, and 
compares them to find candidates of a fixed key appeared 
in operand values that are insensitive to the inputs [26]. 
Anyway, since the attack depends on the actual cipher 
algorithm used in P, we put our target on a C2 Java 
program and describe more specific and detailed threat 
model in the next Section. 
 
4. Threat Model for C2 Java Implementation 
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Fig. 1. A mechanism of a typical multimedia player 



The C2 (cryptomeria cipher) algorithm is used in CPPM 
(Content Protection for Prerecorded Media) / CPRM 
(Content Protection for Recordable Media), which was 
developed by 4C companies (Intel, IBM, Matsushita and 
Toshiba) [1] to provide protected exchange of audio-
visual content on removable storage media, e.g. DVD-
R/RW/RAM, SD Memory Card and Secure 
CompactFlash. Based on the experience of CSS 
encryption standard’s failure, security aspects of 
CPPM/CPRM has been enhanced (e.g. key revocation 
scheme). However, still, a device key must be embedded 
in content players and it must not be revealed to users. 
Hence, protecting C2 programs from crackers is still an 
overarching issue today. 
In this paper we focus on the Java implementation (Java 
class file) of a C2 program (ECB mode) since it is 
extremely vulnerable to attacks, as it is an intermediate 
language code, not far from source code representation. If 
we could defend attacks to the Java implementation, then 
it would be much easier to defend attacks to other 
language implementation (such as x86 binary code). 
 
4.1 Algorithm understanding 
 
The outline of the C2 algorithm is shown in Figure 2. C2 
is a Feistel network-based block symmetric cipher just 
like DES. The box “F” indicates the Feistel function. 
Figure 3 shows details of the Feistel function. The major 
distinction point is that, C2 uses arithmetic addition and 
subtraction while DES does not. 
Since the specification of C2 is open to public [1], the 
cracker should have the following knowledge. 

• Round keys ki are either supplied from a key schedule 
routine or directly written in P as constant values. In 
the former case, there exists a device key K in P, and 
K is supplied to the key schedule routine. In the latter 
case, both K and the key schedule routine may not 
exist in P. In this case, the cracker’s goal is to find all 
the round keys. 

• The number of rounds (iterations) is 10. So, there are 
10 round keys k1, ..., k10. 

• The length of each round key is 32-bit. 

• The input block size is 64-bit. A block is divided into 
L (32-bit) and R (32-bit). 

• There is a Feistel function F in P. Either L or R is 
given to F in each round. 

• There is a subtraction expression right after F. 

Similarly, as for the Feistel function F, the cracker should 
have the following knowledge. 

• Either L or R is added to a round key. This indicates 
that an add opcode that takes two 32-bit operands in 
P is a big clue to find round keys. 

• The result of addition X (32-bit) is divided into four 
8-bit blocks x1,…,x4. It can be guessed that this 

division is done by statements “x1=(X>>24) & 0xff, 
x2=(X>>16) & 0xff, x3=(X>>8) & 0xff, x4=X & 0xff.” 

• The lowest 8-bit block x4 is translated by a S-box 
table. Here, the S-box table is a set of 256 8-bit 
values. This indicates there is an array having 256 
elements in P. The translation can be done by a 
reference to the array, e.g. “S-box_array[x4]” Values 
of the S-box table are not open to public in 
CPPM/CPRM case (They are supposed to be 
concealed just as the device key and round keys). 

• Remaining 3 blocks x1, ..., x3 are XOR’ed with 0xc9, 
0x2b, and 0x65, respectively. This indicates there 
exist XOR expression and constant values 0xc9, 0x2b 
and 0x65 in P. Afterwards, these 3 blocks are rotated 
leftward 2-bit, 5-bit, and 1-bit, respectively. 

• Then, four blocks are concatenated back to 32-bit 
value. This value is then XOR’ed with 9-bit rotated 
value and 22-bit rotated value. This indicates there 
exist “shift” opcode and constant values 9 and 22 in 
P. It can be guessed that the concatenation was done 
by an expression “x1<<24|x2<<16|x3<<8|x4.” 
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Fig. 2. Feistel Network of C2 cipher 



4.2 Tools for system observation and control 
 
The cracker uses disassemblers and decompilers to 
statically analyze P. Sun Microsystems provide java 
disassembler (known as “javap –c” command). Also, Java 
disassembler D-Java, which produces jasmin format 
assembly code [12] is provided by Meyer [13]. 
Disassembled code can be re-assembled back to class files 
by jasmine assemblers [14][21]. Various java decompilers 
are also available although in most cases, they produce 
imperfect java source code [23]. 
The cracker also uses debuggers, such as jdb, provided by 
Sun Microsystems. Also, there is a powerful dynamic tool 
called AddTracer [22], which injects tracers (monitoring 
code) all over the Java class file. By executing a Java 
class file P in which tracers has been injected, whole 
execution trace of P can be obtained by simply executing 
it. Table 1 shows what the tracers output during execution. 
Figure 4 shows an example of an execution trace 
produced using AddTracer. Since references and 
assignments to variables are output with their value, 
secret keys are revealed if P is a naive implementation. 
 
 

5. Guideline for Applying Obfuscation 

 
In order to achieve the security goal, we need to hide the 
following information in P. 

• Round keys k1,…k10 (and a device key K, if it exists) 
• S-box table 
• Feistel function 
• Distinctive opcodes and operands 
• Obfuscation itself 

Below describes crackers’ actions to find above 
information, and as a guideline of obfuscation, we 
describe how we can disrupt the actions. 
 

5.1 Obfuscation of round keys 
 
As shown in Figure 5, candidates of round keys can be 
easily found in disassembled code since the keys are large 
integers of 32-bit length. Thus, we need to divide the keys 
into smaller length values. For example, in case a naive 
implementation of a round key is as follows. 

rkey[0] = 0x789ac6ee; 

Then, one way to hide the key is to divide them into four 
8-bit integers (sub keys) as follows. 

 

Table 1. Output Specifications of tracers injected by AddTracer 
Execution Output 

Reference to a local variable Variable ID or name, its value, line number, 
Assignment to a local variable Variable ID or name, assigned value, line number 
Reference to a field Class name, variable name, its value, line number 
Assignment to a field Class name, variable name, assigned value, line number 
In case the variable is an array Index of an accessed array element 
Operation Opcode, operand type, result of operation, line number 
Method invocation Class name, method name, line number 
Return from a method Class name, method name, line number 

public static byte lrot8(int x, int n) { 
 return (byte)( (x << n) | ( x >>> (8-n) ) ); 
} 

Java source code for a rotation of 8-bit value 
 

... 
x 0x47 assignment // line 7 
n 0x1 assignment // line 7 
x 0x47 reference // line 7 
n 0x1 reference // line 7 
<< 0x8e{int} operation // line 7 
x 0x47 reference // line 7 
- 0x8{byte} constant // line 7 
n 0x1 reference // line 7 
- 0x7{int} operation // line 7 
>>> 0x0{int} operation // line 7 
| 0x8e{int} operation // line 7 
... 

Execution trace of lrot8 
 

Fig. 4. Example of Execution Trace produced 
using AddTracer 

17: iconst_0
18: ldc #6; //int 2023409390
21: lastore
22: aload 8
24: iconst_1
25: ldc #7; //int 2042377112
28: lastore
29: aload 8
31: iconst_2

….

rkey[0] = 0x789ac6ee;
rkey[1] = 0x79bc3398;
rkey[2] = 0x48d15d62;
….
Source code for defining round keys

Disassembled code (by javap –c)  
 

Fig. 5. Disassembled code for round keys 



b_rkey[0] = 0x78; 
b_rkey[1] = 0x9a; 
b_rkey[2] = 0xc6; 
b_rkey[3] = 0xee; 

In case we need to compute with the key, e.g. 
“rkey[0]^= n”, we could compute with the sub keys as 
follows. 

b_rkey[0] ^= n1; 
b_rkey[1] ^= n2; 
b_rkey[2] ^= n3; 
b_rkey[3] ^= n4; 

Where n = n1 << 24 | n2 << 16 | n3 << 8 | n4 

In case we need to compute with the original keys, e.g. “t 
= rkey[n] + data”, we could compute with the new keys 
e.g. by “t’ = new_rkey[n] + data * 4”. The original value t 
can be computed by “t = (t’ – 3) / 4” when it is needed. 
Instead of using linear encoding, we could also consider 
using residue encoding, bit exploded encoding [7], secret 
sharing homomorphism [3][19], variable merging [9] and 
the use of error collecting code [11]. 
Note that an array itself is a big clue to the cracker. Since 
there are 10 round keys, the cracker might expect that 
there is an array of 10 elements which hold round keys. 
We will discuss this issue in the next subsection. 
 

5.2 Obfuscation of S-box 
 
Different from DES and AES, C2 cipher’s the S-box table 
is not open to public in CPPM/CPRM standards. Thus, a 
manufacturer must conceal it just as round keys. 
Since the S-box table of C2 cipher is a set of 256 8-bit 
values, a naive S-box implementation would be an array 
having 256 elements (Figure 6). In such an 
implementation, S-box can be easily found in the 
disassembled code. 

Therefore, we need to use more complex data structure to 
implement the S-box. One of the simplest ways is to split, 
fold and/or interleave arrays [9]. Also, a data structure 
suitable for hiding secret data was recently proposed [18]. 
 

5.3 Obfuscation of Feistel function 
 
By using a dynamic analysis tool such as a profiler or 
AddTracer, the cracker can easily find the Feistel function 
since it is one of the most frequently executed place in P. 
If the cracker could locate the place of the Feistel function, 
it would be quite easy for the cracker to find round keys 
because they are the inputs of the Feistel function (Figure 
3). 
One way to reduce the execution frequency of the Feistel 
function is to prepare a number of different 
implementations of the Feistel function, and randomly 
call one of them when needed. 
We also recommend not writing the Feistel function as a 
“method” or a “function.” Also, we should not write a 
loop that calls the Feistel function 10 times, which 
indicates 10 rounds of a Feistel network. Employing both 
local- and external-control flow obfuscations [16][25] 
with adding some randomness to disrupt dynamic analysis 
would be useful to hide the Feistel network structure. 
 
5.4 Obfuscation of distinctive opcodes and operands 
 
There are several distinctive (conspicuous) opcodes and 
operands in a naive C2 implementation. For example, 
XOR opcode, add and sub opcode, bit shift opcode, 
numerical operands 0xc9, 0x2b, 0x65, 9, 22, 0xff, etc. All 
these opcodes and operands should be replaced with 
combination of other opcodes and operands. For example, 
XOR can be implemented with AND, OR and NOT. Note 
that hiding conspicuous numerical operands (such as 
0xc9) not to appear in P is insufficient. We need to hide 
them not to appear in an execution trace (e.g. Figure 4) as 
well. 
 

5.5 Hiding obfuscation 
 
Since obfuscation methods themselves have distinctive 
features, we need to hide them so that the cracker can not 
recognize which obfuscation method is being used. For 
example, if we employ residue encoding [7] to hide round 
keys, a lot of modulo opcodes will be introduced in P. In 
this case, we need to write our own (obfuscated) modulo 
routines instead of simply using module opcodes. 
 
 

6. Conclusion 
 
In this paper we defined a generic goal and a generic 
threat model for cipher programs containing secret 
information. Then, as a case study, we described more 
specific threat model for C2 cipher programs. Based on 

static {};
Code:
0: sipush 256
3: newarray byte
5: dup
6: iconst_0
7: bipush -74
9: bastore
10: dup
11: iconst_1
12: bipush -86
14: bastore

…

Declaration of an array
(length=256  type=byte)

1st element

2nd element

static byte SecretConstant[] = { (byte)0xB6, (byte)0xAA, ….
Source code for defining S-box

Disassembled code (by javap –c)  
Fig. 6. Disassembled code for S-box 



the model, a guideline for applying obfuscation methods 
was shown. 
Although we listed typical avenues of attack and defences 
in this paper, there is no assurance that we could list all 
the attacks exhaustively since the crackers might conduct 
unthinkable avenues of attack. We need to keep on 
updating the guideline to improve resilience to the attacks. 
In the future, we also need to implement a cipher program 
based on the proposed guideline, and conduct an 
experimental evaluation using expert hackers to evaluate 
the resilience against attacks. 
 
 
Acknowledgements 
 
This research was partially supported by the Ministry of 
Education, Culture, Sports, Science and Technology 
(MEXT), Grant-in-Aid for Young Scientists (B), 
16700033, and Grant-in-Aid for 21st century COE 
Research (NAIST-IS --- Ubiquitous Networked Media 
Computing). 
 
 

References 
[1] 4C Entity, Content protection for recordable media 

specification – Introduction and common cryptographic 
elements, rev. 1.0, 31 pp., Jan. 2003. 

[2] K. Akai, M. Misawa, and T. Matsumoto, Evaluating 
tamper resistance by searching runtime data, IPSJ 
Journal, Vol.43, No.8, pp.2447-2457, Aug. 2002. (in 
Japanese). 

[3] J. C. Benaloh, Secret sharing homomorphisms: keeping 
shares of a secret, Proc. Advanced in Cryptology, 
pp.251-260, 1986. 

[4] S. Chow, P. Eisen, H. Johnson, P. van Oorschot, A 
white-box DES implementation for DRM applications, 
Proc. 2nd ACM Workshop on Digital Rights 
Management (DRM2002), Lecture Notes in Computer 
Science, Vol. 2696, pp. 1-15, 2003. 

[5] S. Chow, P. Eisen, H. Johnson and P.C. van Oorschot, 
White-box cryptography and an AES implementation, 
Proc. 9th International Workshop on Selected Areas in 
Cryptography (SAC2002), Lecture Notes in Computer 
Science, Vol. 2595, pp. 250-270, 2003. 

[6] S. Chow, H. Johnson, and Y. Gu, Tamper resistant 
control-flow encoding, United States Patent 6,779,114, 
Filed 19 Aug. 1999, Issued 17 Aug. 2004. 

[7] S. Chow, H. Johnson, and Y. Gu, Tamper resistant 
software encoding, United States Patent 6,594,761, 
Filed 9 June 1999, Issued 15 July 2003. 

[8] C. Collberg, C. Thomborson, Watermarking, tamper-
proofing, and obfuscation – Tools for software 
protection, IEEE Trans. on Software Engineering, Vol. 
28, No. 8, pp. 735-746, 2002. 

[9] C. Collberg, C. Thomborson, and D. Low, Obfuscation 
techniques for enhancing software security, United Sates 
Patent 6,668,325, Assignee: InterTrust Inc., Filed 9 June 
1998, Issued 23 Dec. 2003. 

[10] Y. Kanzaki, A. Monden, M. Nakamura, and K. 
Matsumoto, Exploiting self-modification mechanism for 
program protection, Proc. 27th IEEE Computer 

Software and Applications Conference, pp. 170–179, 
Nov. 2003. 

[11] S. Loureiro and R. Molva, Function hiding based on 
error correcting codes, Proc. International Workshop on 
Cryptographic Techniques and Electronic Commerce 
(CRYPTEC99), pp. 92-98, July 1999. 

[12] J. Meyer and T. Downing, Java Virtual Machine, 
(O’Reilly & Associates, Inc., 1997). 

[13] J. Meyer, “D-Java,” 
http://mrl.nyu.edu/~meyer/jvm/djava/ 

[14] J. Meyer, “Jasmin Home Page,” 
http://jasmin.sourceforge.net/ 

[15] A. Monden, A. Monsifrot, and C. Thomborson, Tamper-
resistant software system based on a finite state machine, 
IEICE Trans. on Fundamentals, Vol.E88-A, No.1, 
pp.112-122, Jan. 2005. 

[16]  A. Monden, Y. Takada, and K. Torii, Methods for 
scrambling programs containing loops, Trans. of IEICE, 
Vol.J80-D-I, No.7, pp.644-652, July 1997. (in Japanese). 

[17] T. Ogiso, Y. Sakabe, M. Soshi, and A. Miyaji, Software 
obfuscation on a theoretical basis and its implementation, 
IEICE Trans. Fundamentals, Vol.E86-A, No.1, pp.176-
186, 2003. 

[18] H.Oguro, T.Iino, Y.Hirai, S.Hakomori, Implementation 
of multiple precision arithmetic improving resistance 
against white-box attacks, The 2005 Symposium on 
Cryptography and Information Security (SCIS2005), Jan. 
2005 (in Japanese). 

[19] J. Patarin and L. Goubin, Secret key cryptographic 
process for protecting a computer system against attacks 
by physical analysis, United States Patent 6,658,569, 
Filed 17 June 1999, Issued 2 Dec. 2003. 

[20] A. Patrizio, Why the DVD hack was a cinch, Wired 
News, Nov. 1999, 
http://www.wired.com/news/technology/0,1282,32263,0
0.html 

[21] Soot: A Java optimization framework, 
http://www.sable.mcgill.ca/soot/ 

[22] H. Tamada, AddTracer, Injecting tracers into Java class 
files for dynamic analysis, http://se.aist-
nara.ac.jp/addtracer/ 

[23] The decompilation Wiki of Program-
Transformation.Org, http://www.program-
transformation.org/Transform/DeCompilation 

[24] P. M. Tyma, Method for renaming identifiers of a 
computer program, United States Patent 6,102,966, 
Assignee: PreEmptive Solutions, Inc., Aug. 2000. 

[25] C. Wang, J. Hill, J. Knight, and J. Davidson, Protection 
of software-based survivability mechanisms, Proc. 
International Conference of Dependable Systems and 
Networks, pp. 193-202, July 2001. 

[26] H. Yamauchi, The evaluation for tamper-resistance of 
programs based on the instruction sequence differential 
attack, Master’s Thesis, Graduate School of Information 
Science, Nara Institute of Science and Technology, 
NAIST-IS-MT0351135, Feb. 2005 (in Japanese). 


