

SOFTWARE OBFUSCATION FROM CRACKERS’ VIEWPOINT

Hiroki Yamauchi, Yuichiro Kanzaki, Akito Monden,
Masahide Nakamura, Ken-ichi Matsumoto

Graduate School of Information Science
Nara Institute of Science and Technology

8916-5 Takayama
Ikoma Nara 630-0192, Japan

{hiroki-y, yuichi-k, akito-m, masa-n, matumoto}@is.naist.jp

ABSTRACT
Various kinds of software obfuscation methods have been
proposed to protect security-sensitive information
involved in software implementations. This paper
proposes a cracker-centric approach to give a guideline
for employing existing obfuscation methods to disrupt
crackers’ actions.

KEY WORDS
Software Protection, Attacks, Tamper-resistance,
Symmetric-key Cryptography, Information Leakage

1. Introduction

Software obfuscation has become an essential means to
hide secrets involved in today’s software systems.
Obfuscations transform a program so that it is more
complex and difficult to understand, yet is functionally
equivalent to the original program [8]. The secrets in a
program may include subroutines, algorithms and
constant values that are valuable and/or related to system
security. For example, decryption algorithms and/or
decryption keys involved in digital rights management
(DRM) software need to be hided from a cracker, a
software user who tries to analyze the software to extract
its secret information [1][4].
There are various types of software obfuscation methods
including control flow obfuscation [6][16][25], inter-
module call relation obfuscation [17], identifier
obfuscation [24], self-modifying code [10], data
obfuscation [7][20], etc. Unfortunately, it is unclear how
effective these obfuscations are in protecting confidential
information inside a program. It is because “complex” is
not equal to “difficult to crack”. In addition, many of
obfuscations do not assume a clear threat model, a model
of cracker’s behavior to break the security.
This paper seeks for a guideline for employing existing
obfuscation methods to protect programs against a skilled
cracker who tries to extract security-sensitive data. We
focus on the crackers’ viewpoint including crackers’

knowledge, cracking tools and conjectures concerning a
target program. We illustrate how to eliminate clues that
the cracker may find using the cracking tools. This is a
cracker-centric approach focusing on “disrupting” the
cracker’s actions, while conventional obfuscation
methods often fell into a protector-centric approach
focusing on building a “complex” program.
In this paper we set our target on a cipher program that
involves a symmetric cipher algorithm and a
cryptographic key in it. Such a program is commonly
used in typical DRM software. We define a security goal
and a threat model for the cipher program. Then, based on
the model, we illustrate a guideline to employ existing
obfuscation methods to protect secret keys included in the
program.

2. Security Goal

The security goal for a cipher program is to protect a
cryptographic key K contained in a cipher program P
without significant performance degradation. Although
there exists a powerful protection method called white-
box cryptography [4][5] to hide the key K, its application
area is quite limited since it requires a large memory
space (several megabytes) and imposes a serious
performance penalty. Thus, using the white-box
cryptography is out of scope of this paper.
The major application area, in which this security goal is
required, is a development of multimedia player software,
since most of player software employs a symmetric cipher
scheme, such as DES, AES, C2, etc., to decode
enciphered media contents with a cryptographic key (a
certain integer value) embedded in the player itself. Such
player software is being developed not only for high
power PCs but also for low power consumer gadgets
including PDAs, mobile phones and mobile game
consoles. Therefore, we need to protect the key K by
some “light weight” security techniques that do not cause
serious performance degradation.

Proceedings of the IASTED International Conference
ADVANCES IN COMPUTER SCIENCE AND TECHNOLOGY
January 23-25, 2006, Puerto Vallarta, Mexico

Figure 1 shows a simplified mechanism of typical
multimedia player software. The player software P
contains a key KM called a device key (or a master key),
which is required to be completely hidden from software
users (i.e. potential crackers), although KM is inherently
contained in P. This key KM is used to decode an
enciphered title key EM(KT), then the decoded title key KT
is used to decode the enciphered media stream ET(d1,d2,
…). Usually, the key KM is supplied to each software
company (manufacturer) by some licensing entity with an
agreement (permission) to build a player containing the
key KM. However, once KM had revealed to a user, it
becomes possible for the user to build a media ripping
program that can produce a raw (non-enciphered) media
stream file of an arbitrary (enciphered) media contents.
Since such raw media files easily spread out all over the
world via pear-to-pear software, there is a strong need to
protect KM from being spied out from P. Indeed, the keys
for the CSS encryption standard for DVD media content
were revealed by a cracker in 1999 [20]. As a result,
programs that overturn DVD copy protection are now
widely distributed through the Internet.

3. Threat Model for Cipher Program

When we consider employing a security mechanism to
achieve any security goal, we must have a realistic threat
model, a model of what a cracker is able (and not able) to
do in the real world. For example, a cracker may have an
executable (binary) program and an algorithmic
understanding of the principles of a cipher used in the
program. Also, it will be reasonable to assume that the
cracker has a static analyzer such as a disassembler and a
decompiler, as well as a dynamic analyzer (debugger)
with “breakpoint” functionality.

In [15], Monden et al. characterized a cracker’s
knowledge and resources along three dimensions, (1)
understanding level of a protection mechanism being used,
(2) skill level of system observation, and (3) skill level of
system control. These dimensions seem useful for
evaluating any software protection mechanism; however,
in this paper, the dimension (1) is presently out of the

scope since we do not assume any particular protection
method yet.

Besides the dimension (1), we need to characterize the
cracker’s understanding level of a cipher algorithm being
used because in modern DRM systems, such as
CPPM/CPRM, cipher algorithms are open to public while
cryptographic keys are kept secret [1].
There are several possible levels for each dimension, e.g.
a cracker at low level is an end-user with very limited
technical skill and ability, while a high level cracker has a
debugger and good technical skills. In this paper, we
assume of a top level hacker who has full knowledge of
existing cracking tools, computer systems, and cipher
algorithms. Below characterizes the supposed cracker
along three dimensions (labelled A, B, C).
(A) Algorithm Understanding

The cracker has full knowledge of the principles of a
cipher algorithm used in the cipher program P if the
specifications of the algorithm were open to public.
On the other hand, the cracker does not know the
secret information (device keys, s-box, etc.) supplied
to P’s manufacturer by a licensing entity.

(B) System Observation
The cracker owns a binary file, disassembled code
and/or decompiled code of P, as well as a computer
system M in which P is executed. The cracker has a
debugger with breakpoint functionality that can
observe internal states of M, e.g. memory snapshot of
M, audio-visual outputs of M and the input and output
value of P. The cracker also observes the execution
trace of P, i.e. a history of executed opcodes, operands
and their values.

(C) System Control
The cracker operates the keyboard and mouse inputs
of M, as it executes P with an arbitrary input. The
cracker can change the instructions in P as well as the
operand values and the memory image of M in any
desired way, before and/or during running it on M.

Under our definitions above, crackers have various
avenues of attack. They might inspect disassembled code
of P and find a portion of code that implements a
particular part of a cipher algorithm. This may lead to
narrow down the area in P where the secret key is
manipulated. They also might observe a stack memory to
find candidates of a secret key pushed onto the stack
memory during execution [2]. Furthermore, they might
collect multiple execution traces of different inputs, and
compares them to find candidates of a fixed key appeared
in operand values that are insensitive to the inputs [26].
Anyway, since the attack depends on the actual cipher
algorithm used in P, we put our target on a C2 Java
program and describe more specific and detailed threat
model in the next Section.

4. Threat Model for C2 Java Implementation

Decode(KM, EM(KT))

Audio/Visual
Output

Multimedia Contents
Player Software P

Enciphered Media
Stream ET(d1,d2…)

Device Key
KM

Title Key
KT

Enciphered
Title Key EM(KT)

Media Stream
d1,d2…

Decode(KT, ET(d1,d2…))

Fig. 1. A mechanism of a typical multimedia player

The C2 (cryptomeria cipher) algorithm is used in CPPM
(Content Protection for Prerecorded Media) / CPRM
(Content Protection for Recordable Media), which was
developed by 4C companies (Intel, IBM, Matsushita and
Toshiba) [1] to provide protected exchange of audio-
visual content on removable storage media, e.g. DVD-
R/RW/RAM, SD Memory Card and Secure
CompactFlash. Based on the experience of CSS
encryption standard’s failure, security aspects of
CPPM/CPRM has been enhanced (e.g. key revocation
scheme). However, still, a device key must be embedded
in content players and it must not be revealed to users.
Hence, protecting C2 programs from crackers is still an
overarching issue today.
In this paper we focus on the Java implementation (Java
class file) of a C2 program (ECB mode) since it is
extremely vulnerable to attacks, as it is an intermediate
language code, not far from source code representation. If
we could defend attacks to the Java implementation, then
it would be much easier to defend attacks to other
language implementation (such as x86 binary code).

4.1 Algorithm understanding

The outline of the C2 algorithm is shown in Figure 2. C2
is a Feistel network-based block symmetric cipher just
like DES. The box “F” indicates the Feistel function.
Figure 3 shows details of the Feistel function. The major
distinction point is that, C2 uses arithmetic addition and
subtraction while DES does not.
Since the specification of C2 is open to public [1], the
cracker should have the following knowledge.

• Round keys ki are either supplied from a key schedule
routine or directly written in P as constant values. In
the former case, there exists a device key K in P, and
K is supplied to the key schedule routine. In the latter
case, both K and the key schedule routine may not
exist in P. In this case, the cracker’s goal is to find all
the round keys.

• The number of rounds (iterations) is 10. So, there are
10 round keys k1, ..., k10.

• The length of each round key is 32-bit.

• The input block size is 64-bit. A block is divided into
L (32-bit) and R (32-bit).

• There is a Feistel function F in P. Either L or R is
given to F in each round.

• There is a subtraction expression right after F.

Similarly, as for the Feistel function F, the cracker should
have the following knowledge.

• Either L or R is added to a round key. This indicates
that an add opcode that takes two 32-bit operands in
P is a big clue to find round keys.

• The result of addition X (32-bit) is divided into four
8-bit blocks x1,…,x4. It can be guessed that this

division is done by statements “x1=(X>>24) & 0xff,
x2=(X>>16) & 0xff, x3=(X>>8) & 0xff, x4=X & 0xff.”

• The lowest 8-bit block x4 is translated by a S-box
table. Here, the S-box table is a set of 256 8-bit
values. This indicates there is an array having 256
elements in P. The translation can be done by a
reference to the array, e.g. “S-box_array[x4]” Values
of the S-box table are not open to public in
CPPM/CPRM case (They are supposed to be
concealed just as the device key and round keys).

• Remaining 3 blocks x1, ..., x3 are XOR’ed with 0xc9,
0x2b, and 0x65, respectively. This indicates there
exist XOR expression and constant values 0xc9, 0x2b
and 0x65 in P. Afterwards, these 3 blocks are rotated
leftward 2-bit, 5-bit, and 1-bit, respectively.

• Then, four blocks are concatenated back to 32-bit
value. This value is then XOR’ed with 9-bit rotated
value and 22-bit rotated value. This indicates there
exist “shift” opcode and constant values 9 and 22 in
P. It can be guessed that the concatenation was done
by an expression “x1<<24|x2<<16|x3<<8|x4.”

S-box

L or R Round key ki

0x
65

0x
2b

0x
c9

lro
t1

lro
t5

lro
t2

lrot9 lrot22

+ addition

XOR

+

lrot x… rotation

Fig. 3. Feistel Function of C2

F

Key Schedule

L R

Round key ki

Device key K

10
 ro

un
ds

 (i
te

ra
tio

ns
)

-
- subtraction

Fig. 2. Feistel Network of C2 cipher

4.2 Tools for system observation and control

The cracker uses disassemblers and decompilers to
statically analyze P. Sun Microsystems provide java
disassembler (known as “javap –c” command). Also, Java
disassembler D-Java, which produces jasmin format
assembly code [12] is provided by Meyer [13].
Disassembled code can be re-assembled back to class files
by jasmine assemblers [14][21]. Various java decompilers
are also available although in most cases, they produce
imperfect java source code [23].
The cracker also uses debuggers, such as jdb, provided by
Sun Microsystems. Also, there is a powerful dynamic tool
called AddTracer [22], which injects tracers (monitoring
code) all over the Java class file. By executing a Java
class file P in which tracers has been injected, whole
execution trace of P can be obtained by simply executing
it. Table 1 shows what the tracers output during execution.
Figure 4 shows an example of an execution trace
produced using AddTracer. Since references and
assignments to variables are output with their value,
secret keys are revealed if P is a naive implementation.

5. Guideline for Applying Obfuscation

In order to achieve the security goal, we need to hide the
following information in P.

• Round keys k1,…k10 (and a device key K, if it exists)
• S-box table
• Feistel function
• Distinctive opcodes and operands
• Obfuscation itself

Below describes crackers’ actions to find above
information, and as a guideline of obfuscation, we
describe how we can disrupt the actions.

5.1 Obfuscation of round keys

As shown in Figure 5, candidates of round keys can be
easily found in disassembled code since the keys are large
integers of 32-bit length. Thus, we need to divide the keys
into smaller length values. For example, in case a naive
implementation of a round key is as follows.

rkey[0] = 0x789ac6ee;

Then, one way to hide the key is to divide them into four
8-bit integers (sub keys) as follows.

Table 1. Output Specifications of tracers injected by AddTracer
Execution Output

Reference to a local variable Variable ID or name, its value, line number,
Assignment to a local variable Variable ID or name, assigned value, line number
Reference to a field Class name, variable name, its value, line number
Assignment to a field Class name, variable name, assigned value, line number
In case the variable is an array Index of an accessed array element
Operation Opcode, operand type, result of operation, line number
Method invocation Class name, method name, line number
Return from a method Class name, method name, line number

public static byte lrot8(int x, int n) {
 return (byte)((x << n) | (x >>> (8-n)));
}

Java source code for a rotation of 8-bit value

...
x 0x47 assignment // line 7
n 0x1 assignment // line 7
x 0x47 reference // line 7
n 0x1 reference // line 7
<< 0x8e{int} operation // line 7
x 0x47 reference // line 7
- 0x8{byte} constant // line 7
n 0x1 reference // line 7
- 0x7{int} operation // line 7
>>> 0x0{int} operation // line 7
| 0x8e{int} operation // line 7
...

Execution trace of lrot8

Fig. 4. Example of Execution Trace produced
using AddTracer

17: iconst_0
18: ldc #6; //int 2023409390
21: lastore
22: aload 8
24: iconst_1
25: ldc #7; //int 2042377112
28: lastore
29: aload 8
31: iconst_2

….

rkey[0] = 0x789ac6ee;
rkey[1] = 0x79bc3398;
rkey[2] = 0x48d15d62;
….
Source code for defining round keys

Disassembled code (by javap –c)

Fig. 5. Disassembled code for round keys

b_rkey[0] = 0x78;
b_rkey[1] = 0x9a;
b_rkey[2] = 0xc6;
b_rkey[3] = 0xee;

In case we need to compute with the key, e.g.
“rkey[0]^= n”, we could compute with the sub keys as
follows.

b_rkey[0] ^= n1;
b_rkey[1] ^= n2;
b_rkey[2] ^= n3;
b_rkey[3] ^= n4;

Where n = n1 << 24 | n2 << 16 | n3 << 8 | n4

In case we need to compute with the original keys, e.g. “t
= rkey[n] + data”, we could compute with the new keys
e.g. by “t’ = new_rkey[n] + data * 4”. The original value t
can be computed by “t = (t’ – 3) / 4” when it is needed.
Instead of using linear encoding, we could also consider
using residue encoding, bit exploded encoding [7], secret
sharing homomorphism [3][19], variable merging [9] and
the use of error collecting code [11].
Note that an array itself is a big clue to the cracker. Since
there are 10 round keys, the cracker might expect that
there is an array of 10 elements which hold round keys.
We will discuss this issue in the next subsection.

5.2 Obfuscation of S-box

Different from DES and AES, C2 cipher’s the S-box table
is not open to public in CPPM/CPRM standards. Thus, a
manufacturer must conceal it just as round keys.
Since the S-box table of C2 cipher is a set of 256 8-bit
values, a naive S-box implementation would be an array
having 256 elements (Figure 6). In such an
implementation, S-box can be easily found in the
disassembled code.

Therefore, we need to use more complex data structure to
implement the S-box. One of the simplest ways is to split,
fold and/or interleave arrays [9]. Also, a data structure
suitable for hiding secret data was recently proposed [18].

5.3 Obfuscation of Feistel function

By using a dynamic analysis tool such as a profiler or
AddTracer, the cracker can easily find the Feistel function
since it is one of the most frequently executed place in P.
If the cracker could locate the place of the Feistel function,
it would be quite easy for the cracker to find round keys
because they are the inputs of the Feistel function (Figure
3).
One way to reduce the execution frequency of the Feistel
function is to prepare a number of different
implementations of the Feistel function, and randomly
call one of them when needed.
We also recommend not writing the Feistel function as a
“method” or a “function.” Also, we should not write a
loop that calls the Feistel function 10 times, which
indicates 10 rounds of a Feistel network. Employing both
local- and external-control flow obfuscations [16][25]
with adding some randomness to disrupt dynamic analysis
would be useful to hide the Feistel network structure.

5.4 Obfuscation of distinctive opcodes and operands

There are several distinctive (conspicuous) opcodes and
operands in a naive C2 implementation. For example,
XOR opcode, add and sub opcode, bit shift opcode,
numerical operands 0xc9, 0x2b, 0x65, 9, 22, 0xff, etc. All
these opcodes and operands should be replaced with
combination of other opcodes and operands. For example,
XOR can be implemented with AND, OR and NOT. Note
that hiding conspicuous numerical operands (such as
0xc9) not to appear in P is insufficient. We need to hide
them not to appear in an execution trace (e.g. Figure 4) as
well.

5.5 Hiding obfuscation

Since obfuscation methods themselves have distinctive
features, we need to hide them so that the cracker can not
recognize which obfuscation method is being used. For
example, if we employ residue encoding [7] to hide round
keys, a lot of modulo opcodes will be introduced in P. In
this case, we need to write our own (obfuscated) modulo
routines instead of simply using module opcodes.

6. Conclusion

In this paper we defined a generic goal and a generic
threat model for cipher programs containing secret
information. Then, as a case study, we described more
specific threat model for C2 cipher programs. Based on

static {};
Code:
0: sipush 256
3: newarray byte
5: dup
6: iconst_0
7: bipush -74
9: bastore
10: dup
11: iconst_1
12: bipush -86
14: bastore

…

Declaration of an array
(length=256 type=byte)

1st element

2nd element

static byte SecretConstant[] = { (byte)0xB6, (byte)0xAA, ….
Source code for defining S-box

Disassembled code (by javap –c)
Fig. 6. Disassembled code for S-box

the model, a guideline for applying obfuscation methods
was shown.
Although we listed typical avenues of attack and defences
in this paper, there is no assurance that we could list all
the attacks exhaustively since the crackers might conduct
unthinkable avenues of attack. We need to keep on
updating the guideline to improve resilience to the attacks.
In the future, we also need to implement a cipher program
based on the proposed guideline, and conduct an
experimental evaluation using expert hackers to evaluate
the resilience against attacks.

Acknowledgements

This research was partially supported by the Ministry of
Education, Culture, Sports, Science and Technology
(MEXT), Grant-in-Aid for Young Scientists (B),
16700033, and Grant-in-Aid for 21st century COE
Research (NAIST-IS --- Ubiquitous Networked Media
Computing).

References
[1] 4C Entity, Content protection for recordable media

specification – Introduction and common cryptographic
elements, rev. 1.0, 31 pp., Jan. 2003.

[2] K. Akai, M. Misawa, and T. Matsumoto, Evaluating
tamper resistance by searching runtime data, IPSJ
Journal, Vol.43, No.8, pp.2447-2457, Aug. 2002. (in
Japanese).

[3] J. C. Benaloh, Secret sharing homomorphisms: keeping
shares of a secret, Proc. Advanced in Cryptology,
pp.251-260, 1986.

[4] S. Chow, P. Eisen, H. Johnson, P. van Oorschot, A
white-box DES implementation for DRM applications,
Proc. 2nd ACM Workshop on Digital Rights
Management (DRM2002), Lecture Notes in Computer
Science, Vol. 2696, pp. 1-15, 2003.

[5] S. Chow, P. Eisen, H. Johnson and P.C. van Oorschot,
White-box cryptography and an AES implementation,
Proc. 9th International Workshop on Selected Areas in
Cryptography (SAC2002), Lecture Notes in Computer
Science, Vol. 2595, pp. 250-270, 2003.

[6] S. Chow, H. Johnson, and Y. Gu, Tamper resistant
control-flow encoding, United States Patent 6,779,114,
Filed 19 Aug. 1999, Issued 17 Aug. 2004.

[7] S. Chow, H. Johnson, and Y. Gu, Tamper resistant
software encoding, United States Patent 6,594,761,
Filed 9 June 1999, Issued 15 July 2003.

[8] C. Collberg, C. Thomborson, Watermarking, tamper-
proofing, and obfuscation – Tools for software
protection, IEEE Trans. on Software Engineering, Vol.
28, No. 8, pp. 735-746, 2002.

[9] C. Collberg, C. Thomborson, and D. Low, Obfuscation
techniques for enhancing software security, United Sates
Patent 6,668,325, Assignee: InterTrust Inc., Filed 9 June
1998, Issued 23 Dec. 2003.

[10] Y. Kanzaki, A. Monden, M. Nakamura, and K.
Matsumoto, Exploiting self-modification mechanism for
program protection, Proc. 27th IEEE Computer

Software and Applications Conference, pp. 170–179,
Nov. 2003.

[11] S. Loureiro and R. Molva, Function hiding based on
error correcting codes, Proc. International Workshop on
Cryptographic Techniques and Electronic Commerce
(CRYPTEC99), pp. 92-98, July 1999.

[12] J. Meyer and T. Downing, Java Virtual Machine,
(O’Reilly & Associates, Inc., 1997).

[13] J. Meyer, “D-Java,”
http://mrl.nyu.edu/~meyer/jvm/djava/

[14] J. Meyer, “Jasmin Home Page,”
http://jasmin.sourceforge.net/

[15] A. Monden, A. Monsifrot, and C. Thomborson, Tamper-
resistant software system based on a finite state machine,
IEICE Trans. on Fundamentals, Vol.E88-A, No.1,
pp.112-122, Jan. 2005.

[16] A. Monden, Y. Takada, and K. Torii, Methods for
scrambling programs containing loops, Trans. of IEICE,
Vol.J80-D-I, No.7, pp.644-652, July 1997. (in Japanese).

[17] T. Ogiso, Y. Sakabe, M. Soshi, and A. Miyaji, Software
obfuscation on a theoretical basis and its implementation,
IEICE Trans. Fundamentals, Vol.E86-A, No.1, pp.176-
186, 2003.

[18] H.Oguro, T.Iino, Y.Hirai, S.Hakomori, Implementation
of multiple precision arithmetic improving resistance
against white-box attacks, The 2005 Symposium on
Cryptography and Information Security (SCIS2005), Jan.
2005 (in Japanese).

[19] J. Patarin and L. Goubin, Secret key cryptographic
process for protecting a computer system against attacks
by physical analysis, United States Patent 6,658,569,
Filed 17 June 1999, Issued 2 Dec. 2003.

[20] A. Patrizio, Why the DVD hack was a cinch, Wired
News, Nov. 1999,
http://www.wired.com/news/technology/0,1282,32263,0
0.html

[21] Soot: A Java optimization framework,
http://www.sable.mcgill.ca/soot/

[22] H. Tamada, AddTracer, Injecting tracers into Java class
files for dynamic analysis, http://se.aist-
nara.ac.jp/addtracer/

[23] The decompilation Wiki of Program-
Transformation.Org, http://www.program-
transformation.org/Transform/DeCompilation

[24] P. M. Tyma, Method for renaming identifiers of a
computer program, United States Patent 6,102,966,
Assignee: PreEmptive Solutions, Inc., Aug. 2000.

[25] C. Wang, J. Hill, J. Knight, and J. Davidson, Protection
of software-based survivability mechanisms, Proc.
International Conference of Dependable Systems and
Networks, pp. 193-202, July 2001.

[26] H. Yamauchi, The evaluation for tamper-resistance of
programs based on the instruction sequence differential
attack, Master’s Thesis, Graduate School of Information
Science, Nara Institute of Science and Technology,
NAIST-IS-MT0351135, Feb. 2005 (in Japanese).

