Partial Evaluation:

Types, Binding Times and Optimal Specialisation

Lecture 3: The Types Involved in Partial evaluation

Neil D. Jones
DIKU, University of Copenhagen (prof. emeritus)
I: QUICK REVIEW OF 1. ORDER PARTIAL EVALUATION

Programs are data objects in a first order data domain D, for example

$$D = \text{Atom} \cup D \times D$$

A programming language L is a set L-programs together with a semantic function

$$\llbracket - \rrbracket^L : L\text{-programs} \rightarrow D \rightarrow D$$

Program meanings are partial functions:

$$\llbracket p \rrbracket^L : D \rightarrow D$$

(Omit L if clear from context.) Examples for $L =$ Lisp:

$$\llbracket (\text{quote } 37) \rrbracket^L = 37$$

$$\llbracket (\text{lambda} (x) (+ x x)) \rrbracket^L 3 = 6$$
An **interpreter** \(\text{int} \) (for \(S \) written in \(L \)) must satisfy:

\[
\llbracket \text{source} \rrbracket_S(d) \trianglerighteq \llbracket \text{int} \rrbracket(\text{source}.d)
\]

A **compiler** \(\text{comp} \) (from \(S \) to \(T \), written in \(L \))

\[
\llbracket \text{source} \rrbracket_S(d) \trianglerighteq \llbracket \llbracket \text{comp} \rrbracket(\text{source}) \rrbracket_T(d)
\]

A **partial evaluator** (for \(L \)) is a program \(\text{spec} \) satisfying, for any program \(p \) and data \(s, d \):

\[
\llbracket p \rrbracket(\text{s.d}) \trianglerighteq \llbracket \llbracket \text{spec} \rrbracket(p.s) \rrbracket(d)
\]
Applying base functions to known data

unfolding function calls

creating one or more specialised program points

Example. Ackermann’s function with known \(n = 2 \):

\[
a(m,n) = \begin{cases}
 n+1 & \text{if } m=0 \\
 a(m-1,1) & \text{if } n=0 \\
 a(m-1,a(m,n-1)) & \text{else}
\end{cases}
\]

Specialised program:

\[
a2(n) = \begin{cases}
 3 & \text{if } n=0 \\
 a1(a2(n-1)) & \text{else}
\end{cases}
\]

\[
a1(n) = \begin{cases}
 2 & \text{if } n=0 \\
 a1(n-1)+1 & \text{else}
\end{cases}
\]

Less than half as many arithmetic operations as the original: since all tests on and computations involving \(m \) have been removed.
1. A partial evaluator can compile:
 \[
 \text{target} \overset{def}{=} \text{[[spec]]}(\text{int}, \text{source})
 \]

2. A partial evaluator can generate a compiler:
 \[
 \text{comp} \overset{def}{=} \text{[[spec]]}(\text{spec}, \text{int})
 \]

3. A partial evaluator can generate a compiler generator:
 \[
 \text{cogen} \overset{def}{=} \text{[[spec]]}(\text{spec}, \text{spec})
 \]
CORRECTNESS OF THE FUTAMURA PROJECTIONS

Simple equational reasoning to verify:

1. \([\text{target}]_S(d) \equiv [\text{source}]_S(d)\)
2. \(\text{target} \equiv [\text{comp}](\text{source})\)
3. \(\text{comp} \equiv [\text{cogen}](\text{int})\)

(Surprise! It works well on the computer too...)

Practice: tricky it took a year to get right the first time, in 1984.)
Isn’t there a type error somewhere?

Tension: it seems that self-application \(f(f) \) requires \(f \)-type

\[
A = A \rightarrow A(??)
\]

Resolution: Work with symbolic operations. A symbolic version of an operation on values is a corresponding operation on program texts.

Symbolic composition of programs \(p, q \) yields a program \(r \).

Requirement: The meaning of \(r = \) the composition of the meanings of \(p \) and \(q \).

Partial evaluation = the symbolic specialisation of a function to a known first argument value.
A notation for the types of symbolic operations. The notation distinguishes

- the types of values from
- the types of program texts

Natural definitions of type correctness of a first-order interpreter, compiler or partial evaluator.

State the problem of optimal partial evaluation.

Show why it’s difficult for typed languages (even first-order).

Reference a solution by Henning Makholm.
t: type ::= firstorder | type × type | type → type

| type_X

Type `firstorder` describes values in D.

For each language X and type t, a type constructor

$$
\frac{t}{X}
$$

Meaning: the set of X-programs that denote values of type t.

Examples

- Atom `37` has type `firstorder`
- Lisp program `(quote 37)` has type `firstorder` Lisp
THE MEANING OF TYPE EXPRESSION T IS $[[T]]$

$[[\text{firstorder}]] = D$

$[[t_1 \rightarrow t_2]] = [[t_1]] \rightarrow [[t_2]]$

$[[t_1 \times t_2]] = \{(t_1, t_2) \mid t_1 \in [[t_1]], t_2 \in [[t_2]]\}$

$[[t^X]] = \{ p \in D \mid [[p]]^X \in [[t]] \}$

Some type inference rules:

\[
\begin{align*}
\text{exp}_1 : t_2 & \rightarrow t_1, \quad \text{exp}_2 : t_2 \\
\text{exp}_1 \text{exp}_2 : t_1 \\
\text{firstordervalue} : \text{firstorder}
\end{align*}
\]

\[
\begin{align*}
\text{exp} : t^X \\
[[\text{exp}]]^X : t \\
\text{exp} : t^X \\
\text{exp} : \text{firstorder}
\end{align*}
\]
\[(\alpha \rightarrow \beta) \times (\beta \rightarrow \gamma)\];

\[\text{[-]} \times \text{[-]}\];

\[(\alpha \rightarrow \beta) \times (\beta \rightarrow \gamma)\];

\[(\alpha \rightarrow \gamma)\];

\[(\alpha \rightarrow \beta) = \text{the set of all programs that compute a function from } \alpha \text{ to } \beta.\]
Point: no intermediate symbol b is ever produced.
Consider composition \(\text{oneto} ; \text{squares} ; \text{sum} \) where

\[
\begin{align*}
\text{oneto}(n) &= [n, n - 1, \ldots, 2, 1] \\
\text{squares}[a_1, a_2, \ldots a_n] &= [a_1^2, a_2^2, \ldots, a_n^2] \\
\text{sum}[a_1, a_2, \ldots a_n] &= a_1 + a_2 + \ldots + a_n.
\end{align*}
\]

Straightforward program:

\[
\begin{align*}
f(n) &= \text{sum}(\text{squares}(\text{oneto}(n))) \\
\text{squares}(l) &= \begin{cases} [] & \text{if } l = [] \text{ then } [] \text{ else} \\ & \text{cons(head(l)**2, } \text{squares}(\text{tail}(l))) \end{cases} \\
\text{sum}(l) &= \begin{cases} 0 & \text{if } l = [] \text{ then } 0 \text{ else} \\ & \text{head}(l) + \text{sum}(\text{tail}(l)) \end{cases} \\
\text{oneto}(n) &= \begin{cases} [] & \text{if } n = 0 \text{ then } [] \text{ else} \\ & \text{cons}(n, \text{oneto}(n-1)) \end{cases}
\end{align*}
\]

Result of “deforestation”:

\[
g(n) = \begin{cases} 0 & \text{if } n = 0 \text{ then } 0 \text{ else} \\ & n**2+g(n-1) \end{cases}
\]
$$\overline{(\alpha \times \beta \rightarrow \gamma) \times \alpha} \xrightarrow{[-]} ID \xrightarrow{[-]} \overline{(\beta \rightarrow \gamma)}$$
A BETTER DEFINITION OF PARTIAL EVALUATION

Type in the diagram:

$$\text{pgm-spec} : (\alpha \times \beta \rightarrow \gamma \times \alpha) \rightarrow (\beta \rightarrow \gamma)$$

First Curry the specialiser:

$$\alpha \rightarrow (\beta \rightarrow \gamma) \rightarrow \alpha \rightarrow \beta \rightarrow \gamma$$

Then generalize:

$$\text{spec} : \forall \alpha. \forall \tau. \alpha \rightarrow \tau \rightarrow \alpha \rightarrow \tau$$

Usually α must be first order.

Definition. Program $\text{spec} \in D$ is a partial evaluator if for all $p, s \in D$,

$$[[p]] s \overset{*}{=} [[[[\text{spec}] p s]]]$$
An interpreter \(\text{int} \) (for \(S \) written in \(L \)) must satisfy:

\[
[[\text{source}]]_S \overset{*}{=} [[\text{int}]]_{\text{source}}
\]

A compiler \(\text{comp} \) (from \(S \) to \(T \), written in \(L \))

\[
[[\text{source}]]_S \overset{*}{=} [[[\text{comp}]]_{\text{source}}]_T
\]

A partial evaluator (for \(L \)) is a program \(\text{spec} \) satisfying, for any program \(p \) and data \(s \):

\[
[[p]]_s \overset{*}{=} [[[\text{spec}]]_p s]
\]
The Futamura projections:

\[
[\text{spec}] \text{int } \text{source} \quad \text{def} \quad \text{target} \\
[\text{spec}] \text{spec } \text{int} \quad \text{def} \quad \text{compiler} \\
[\text{spec}] \text{spec } \text{spec} \quad \text{def} \quad \text{cogen}
\]

Do these type-check?

Recall our type inference rules:

\[
\frac{\exp_1 : t_2 \to t_1, \exp_2 : t_2}{\exp_1 \exp_2 : t_1}
\]

\[
\frac{\exp : t \quad \text{firstordervalue} : \text{firstorder}}{\text{firstordervalue} : \text{firstorder}}
\]

\[
\frac{\exp : t \quad \text{firstorder}}{\exp : \text{firstorder}}
\]
1. Type of source: \(\tau S \)

2. Type of \([\text{int}]\): \(\forall \tau . \tau S \rightarrow \tau \)

3. Type of \([\text{compiler}]\): \(\forall \tau . \tau S \rightarrow \tau T \)

4. Type of \([\text{spec}]\): \(\forall \alpha . \forall \beta . \alpha \rightarrow \beta \rightarrow \alpha \rightarrow \beta \)

where \(\alpha \) is first order

Remark: Line 3 gives

▸ the type of the compiling function.

▸ The type of the compiler text is:

\[
\text{compiler} : \forall \tau . \tau S \rightarrow \tau T
\]
We wish to find the type of

$$\text{target} \overset{def}{=} [\text{spec}] \text{int source}$$

Assume program \text{source} has type τ_S. A deduction:

\[
\begin{align*}
[\text{spec}] : & \rho \rightarrow \sigma \rightarrow \rho \rightarrow \sigma \\
\text{int} : & \tau_S \rightarrow \tau \\
\text{source} : & \tau_S \\
\hline
[\text{spec}] \text{int source} : & ?
\end{align*}
\]
We wish to find the type of

\[
\text{target} \overset{\text{def}}{=} \text{[spec]} \text{ int source}
\]

Assume program \text{source} has type \(\tau_S\). A deduction:

\[
\begin{align*}
\text{[spec]} : & \quad \rho \rightarrow \sigma \rightarrow \rho \rightarrow \sigma \\
\text{[spec]} : & \quad \tau_S \rightarrow \tau \rightarrow \tau_S \rightarrow \tau \\
\text{int} : & \quad \tau_S \rightarrow \tau \\
\text{source} : & \quad \tau_S
\end{align*}
\]
We wish to find the type of

\[
\text{target} \overset{\text{def}}{=} [\text{spec}] \text{ int source}
\]

Assume program source has type \(\tau_S \). A deduction:

\[
\begin{align*}
[\text{spec}] : & \quad \tau_S \rightarrow \tau \\
& \quad \tau_S \rightarrow \tau \\
\end{align*}
\]

\[
\begin{align*}
\text{int} : & \quad \tau_S \rightarrow \tau \\
\text{source} : & \quad \tau_S
\end{align*}
\]

\[
[\text{spec}] \text{ int source} : ?
\]
We wish to find the type of

\[\text{target} \overset{\text{def}}{=} \text{[spec] int source} \]

Assume program source has type \(\tau_S \). A deduction:

\[
\frac{[\text{spec}] : \rho \rightarrow \sigma \rightarrow \rho \rightarrow \sigma}{[\text{spec}] : \tau_S \rightarrow \tau \rightarrow \tau_S \rightarrow \tau} \quad \frac{\text{int} : \tau_S \rightarrow \tau}{\text{source} : \tau_S}
\]

\[
[\text{spec}] \text{ int source} : \tau
\]
Thus target has type

$$\tau = \tau_L$$

(as expected).

The deduction uses only the type inference rules and generalization of polymorphic variables.
Recall that: $\text{compiler} \overset{\text{def}}{=} [\text{spec}] \text{spec int} \text{ where }$

$\text{interpreter int has type } \forall \tau . \tau S \rightarrow \tau.$

We show: If p has type $\alpha \rightarrow \beta$

then $[\text{spec}] \text{spec p}$ has type $\alpha \rightarrow \beta$

Deduction:

\[
[\text{spec}] : \rho \rightarrow \sigma \rightarrow \rho \rightarrow \sigma
\]

\[
[\text{spec}] : \alpha \rightarrow \beta \rightarrow \alpha \rightarrow \beta \rightarrow \alpha \rightarrow \beta \quad \text{spec} : \alpha \rightarrow \beta \rightarrow \alpha \rightarrow \beta
\]

\[
\therefore [\text{spec}] \text{spec} : \alpha \rightarrow \beta \rightarrow \alpha \rightarrow \beta
\]

\[
p : \alpha \rightarrow \beta
\]

\[
[\text{spec}] \text{spec p} : \alpha \rightarrow \beta
\]
Recall that:

\(\text{compiler} \stackrel{\text{def}}{=} [[\text{spec}]] \text{spec int} \)

where interpreter \(\text{int} \) has type \(\forall \tau . \tau \overset{S}{\to} \tau \).

We just showed: If \(\text{p} \) has type \(\alpha \to \beta \)

then \([[\text{spec}]] \text{spec p} \) has type \(\alpha \to \beta \)

Substituting \(\alpha = \tau \overset{S}{\to} \tau \), \(\beta = \tau \), we get

\[
\text{compiler} = [[\text{spec}]] \text{spec int} : \tau \overset{S}{\to} \tau
\]

and so (as desired)

\([[\text{compiler}]] : \tau \overset{S}{\to} \tau \)
We just showed that:

$$[[\text{compiler}]] : \tau S \rightarrow \tau$$

Furthermore τ was arbitrary, so

$$[[\text{compiler}]] : \forall \tau . \tau S \rightarrow \tau$$

By similar reasoning (too big a tree to show!):

$$[[\text{cogen}]] : \forall \alpha \forall \beta . \alpha \rightarrow \beta \rightarrow \alpha \rightarrow \beta$$
Suppose sint is a self-interpreter and p, p' are programs such that

$$p' = [[\text{spec}]]\text{sint }p$$

Correctness of spec implies

$$[[p']] = [[p]]$$

but p, p' need not be the same programs.
Definition **Partial evaluator** spec is optimal if it removes all interpretational overhead:

For a natural self-interpreter sint and for any program p and input d, we have:

$$\text{time}_{p'}(d) \leq \text{time}_p(d)$$

Intuitively: spec has removed an entire layer of interpretation.
Example. Ackermann’s function with known $n = 2$:

$$a(m,n) = \begin{cases} n+1 & \text{if } m=0 \\ a(m-1,1) & \text{if } n=0 \\ a(m-1,a(m,n-1)) & \text{else} \end{cases}$$

Specialised program:

$$a2(n) = \begin{cases} 3 & \text{if } n=0 \\ a1(a2(n-1)) & \text{else} \end{cases}$$
$$a1(n) = \begin{cases} 2 & \text{if } n=0 \\ a1(n-1)+1 & \text{else} \end{cases}$$

where $a1(n) = a(1,n)$ and $a2(n) = a(2,n)$ are specialised versions of function a.
TECHNIQUES FOR PARTIAL EVALUATION

- Applying base functions to known data
- Unfolding function calls
- Creating one or more specialised functions

Specialised Ackermann’s function performs less than half as many arithmetic operations as the original:

All computations involving m have been removed.
A well-known trick: split the environment into two parallel lists:

\[ns = (n_1, \ldots, n_k) \]
\[vs = (v_1, \ldots, v_k) \]

Part of the interpreter text:

\[
\text{eval(exp,ns,vs,pgm) =}
\]
\[
\begin{array}{cccc}
S & S & D & S
\end{array}
\quad \text{-- binding times --}
\]

\[
\text{case exp of}
\]
\[
\text{"X" : lookup X ns vs}
\]
\[
\text{"e1+e2" : eval(e1,ns,vs,pgm) + eval(e2,ns,vs,pgm)}
\]
\[
\ldots
\]
Binding times: exp, ns, pgm are static, while vs is dynamic.

Consequence: all functions in \(p' = [[\text{spec}]] \text{sint} \ p \) have form:

\[
\text{eval}_{\text{exp,ns,pgm}}(vs) = \ldots
\]

An annoying problem: there is only only one argument in each \(p' \) function (!)

This cannot be optimal, i.e., as fast as \(p \)!
INHERITED LIMITS DURING SPECIALISATION

This problem: specialised program \(p' = [[\text{spec}]] \text{sint} p \) inherits a limit from \(\text{sint} \): a specialised function

\[
f_{a,b}(x, y) = \ldots
\]

has \(k' \leq k \) arguments, if \(\text{sint} \) function \(f \) has \(k \) arguments.

Thus no function in \(p' \) has more than \(k \) arguments(!)

For interpreter function eval, this problem can be solved by variable splitting, also called arity raising.

Observation: for a fixed \(p \), the interpreter’s variable \(\text{vs} \) always has a constant length \(k \).
Split $\text{eval}_{\text{exp,ns,pgm}}(\text{vs}) = \ldots$ into

$\text{eval}_{\text{exp,ns,pgm}}(v_1, \ldots, v_k) = \ldots$

By this and similar tricks, a first-order “optimal” spec can be built.

For the “optimal” spec, if $p' = [\text{spec}] \ \text{sint p}$ then p' is identical to p, up to the naming of variables (and thereby just as fast).
OPTIMALITY IS HARDER FOR TYPED LANGUAGES!

Interpreter example with types (first-order):

\[
eval : \text{Exp} \rightarrow \text{Names} \rightarrow \text{Values} \rightarrow \text{Univ}
\]

\[
\text{Univ} = \text{Int} \ | \ \text{Pair Univ} * \text{Univ} \ | \ ...
\]

\[
eval \ exp \ ns \ vs = \text{case} \ exp \ \text{of}
\]

"X" : \(\text{env} \ X\)

"e1:e2" : \(\text{Pair} \ (\text{eval} \ e1 \ ns \ vs) \ (\text{eval} \ e2 \ ns \ vs)\)

...

Suppose *source program* has type

\[[p] : \mathcal{N} \rightarrow \mathcal{N}\]

Then *specialised program* has a different type:

\[[p'] : \text{Univ} \rightarrow \text{Univ}\]

Significantly less efficient. With higher-order types: even worse!
A CHALLENGING PROBLEM

To achieve optimal specialisation for a typed programming language.

► Stated in 1987

► Unsuccessfully attempted for a number of years

► Solved by Henning Makholm in 1999. Reported in SAIG 2000 (ICFP workshop at Montreal)
Type of a specialiser:

\[[\text{spec}] : Pgm \rightarrow Data \rightarrow Pgm\]

This “doesn’t tell the whole story”. A problem is that different programs may require/use different data formats for input/output. A more refined notation:

1. Use almost the same underbar notation \(\alpha \rightarrow \beta\) for program meanings:

 All \(L\)-programs \(p\) such that \(\langle p \rangle \in [\alpha \rightarrow \beta]\):

 \[
 \frac{\alpha \rightarrow \beta}{Pgm}
 \]

2. For values of \(\alpha\) type encoded in another data type:

 \[
 \frac{\alpha}{Data}
 \]

\(Data\) is the set of encodings of all values of type \(\alpha\).

Encoding is conceptually trivial, but computing \([__]\) is not.
The type of a specialiser’s meaning, redone:

\[
[[\text{spec}]] : \frac{\alpha \rightarrow \beta \rightarrow \gamma}{Pgm} \rightarrow \frac{\alpha}{Data} \rightarrow \frac{\beta \rightarrow \gamma}{Pgm}
\]

Type of a self-interpreter’s meaning:

\[
\forall \alpha, \beta. [[\text{sint}]] : \frac{\alpha \rightarrow \beta}{Pgm} \rightarrow \frac{\alpha}{Univ} \rightarrow \frac{\beta}{Univ}
\]

and thus

\[
\forall \alpha, \beta. \text{sint} : \frac{\alpha \rightarrow \beta}{Pgm} \rightarrow \frac{\alpha}{Univ} \rightarrow \frac{\beta}{Univ}
\]

Here \textit{Univ} is a universal data type.
Point:
Any (here: first-order) value can be represented as a $Univ$-value
- without loss of information.
- there exist computable encoding and decoding algorithms.

For example:

```haskell
type Univ = UNIT
  | Integer Int
  | Sum (Univ Univ)
  | Prod (Univ Univ)
```
The optimality criterion: \(p' = [[\text{spec}] \ \text{sint} \ p] \) should be as good as \(p \).

Alas this is impossible since:

\[
[p]: \alpha \to \beta
\]

but

\[
[p'] = [[[\text{spec}] \ \text{sint} \ p]]: \frac{\alpha}{\text{Univ}} \to \frac{\beta}{\text{Univ}}
\]
A way out: use a type-specific self-interpreter with type

$$[[\text{sint}_{\alpha \rightarrow \beta}]] : \frac{\alpha \rightarrow \beta}{Pgm} \rightarrow \alpha \rightarrow \beta$$

This can be mechanically obtained from

$$\forall \alpha, \beta . [[\text{sint}]] : \frac{\alpha \rightarrow \beta}{Pgm} \rightarrow \frac{\alpha}{Univ} \rightarrow \frac{\beta}{Univ}$$

by

$$[[\text{sint}_{\alpha \rightarrow \beta}]] p a = \text{decode}_\beta([[\text{sint}]] p \ \text{encode}_\alpha(a))$$

Optimality reformulated: for any $$[[p]] : \alpha \rightarrow \beta$$ the program

$$p' = [[\text{spec}]] \ \text{sint}_{\alpha \rightarrow \beta} p$$

is at least as fast as $$p$$.
OPTIMALITY ACHIEVED

1. \(L \) = a first-order call-by-value language with

2. types \texttt{unit}, \texttt{integer} and \texttt{sum} and \texttt{product} types.

3. The self-interpreter uses a universal type \texttt{Univ}.

4. The self-interpreter has been proven correct (Morten Welinder’s phd thesis).
Phase 1: specialise using unsophisticated techniques. The output program uses a universal type U_{niv}.

Phase 2: Retype output program, using

- Type erasure analysis that uses
- non-standard type inference for
- types that are infinite regular trees.

Phase 3: an Identity elimination phase, e.g., η-reductions for product and sum types.

Punch line: It works, and even achieves:

$$[[\text{spec}]] \text{sint sint} =_{\alpha} \text{sint}$$
CONCLUSIONS

Contributions:

▶ A notation for the types of symbolic operations. It distinguishes types of values from types of program texts.

▶ Natural definitions of type correctness of an interpreter or compiler.

▶ Makholm: succeeded in solving a long-standing open problem using the underbar type notation (after some refinement)

More to do:

▶ Better mathematical understanding of the underbar types.

▶ How to prove that an interpreter or compiler has the desired type?