Modelling Metamorphism by Abstract Interpretation

Mila Dalla Preda, Roberto Giacobazgj Saumya Debray Kevin Coogan, and
Gregg Townserd

! Dipartimento di Informatica, Universita di Verona
{m | a. dal | apr eda, robert o. gi acobazzi }@uni vr.it
2 Department of Computer Science, University of Arizona
{debr ay, kpcoogan, gnt }@cs. ari zona. edu

Abstract. Metamorphic malware apply semantics-preserving transdtions to
their own code in order to foil detection systems based onasige matching.
In this paper we consider the problem of automatically ettnaetamorphic sig-
natures from these malware. We introduce a semantics fonsalifying code,
later calledphase semanticsnd prove its correctness by showing that it is an
abstract interpretation of the standard trace semanti@sdsemantics precisely
models the metamorphic code behavior by providing a seeks of programs
which correspond to the possible evolutions of the metahiommode during ex-
ecution. We show that metamorphic signatures can be autattaextracted by
abstract interpretation of the phase semantics, and thateremetamorphism can
be modelled as finite state automata abstraction of the seasantics.
Keywords:Abstract interpretation, malware detection, metamormioide, pro-
gram transformation, static analysis, security, semantic

1 Introduction

Challenges and insightPetecting and neutralizing computer malware, such as worms
viruses, trojans, and spyware is a major challenge in moztanputer security, involv-
ing both sophisticated intrusion detection strategies ahéainced code manipulation
tools and methods. Traditional misuse malware detectdss ¢mown assignature-
based detecto)sare typically syntactic in nature: they use pattern maghd compare
the byte sequence comprising the body of the malware agesitgtature databas?].
Malware writers have responded by using a variety of teagsdn order to avoid de-
tection: Encryption, oligomorphism with mutational degtgr patterns, and polymor-
phism with different encryption methods for generating adless sequence of decryp-
tion patterns are typical strategies for achieving malwiarersification. Metamorphism
emerged in the last decade as an effective alternativeegyrad foil detectors. Meta-
morphic malware apply semantics-preserving transfonatto modify its own code
so that one instance of the malware bears very little resmmeblto another instance,
in a kind of body-polymorphisni23], even though semantically, their functionality is
the same. Thus, a metamorphic malware is a malware equipjiledametamorphic
enginethat takes the malware, or parts of it, as input and morplsat syntactically
different but semantically equivalent variant in order woid detection. The quantity
of metamorphic variants possible for a particular piece afware makes it impractical

to maintain a signature set that is large enough to cover orosi of these variants,
making standard signature-based detection ineffectiveEjdsting malware detectors
therefore fall back on a variety of heuristic techniqueg,tbase may be prone to false
positives (where innocuous files are mistakenly identifiedralware) or false neg-
atives (where malware escape detection) at worst. The mefasahis vulnerability
to metamorphism lies upon the purely syntactic nature oftrerising and commer-
cial detectors. The key for identifying metamorphic malevées, instead, in a deeper
understanding of their semantics. Still a major drawbackx$ting semantics-based
methods (e.g., see [13,19]) relies uponahariori knowledge of the obfuscations used
to implement the metamorphic engine. Because of this, itways possible for any
expert malware writer to develop alternative metamorptrategies, even by simple
modification of existing ones, able to foil any given detectscheme.

Contributions. We proposes a different approach to metamorphic malwaletien
based on the idea thextracting metamorphic signatures is approximating maése-
mantics A metamorphic signaturs therefore any (possibly decidable) approximation
of the properties of code evolution. The semantics conderesthe way code changes,
i.e., the effect of instructions that modify other instioos. We face the problem of
determining how code mutates, yet catching propertiesisfrtiutation, without any
a priori knowledge about the way the metamorphic transftiona are implemented.
Traditional static analysis techniques are not adequatéhfe purpose, as they typ-
ically assume that programs do not change during execWiientherefore define a
more general semantics-based behavioral model, galfiade semanticshat can cope
with changes to the program code at run time. The idea is ti@tipareach possible ex-
ecution trace of a metamorphic program ipteaseseach collecting the computations
performed by a particular code variant. The sequence ofgsh@sce disassembled)
represents the sequence of possible code mutations, Wwhitetjuence of states within
a given phase represents the behavior of a particular cagamvaAbstract interpreta-
tion is then used to extract the invariant properties of peag/hich are properties of
the generated program variants. Abstract domains represesmproperties of the code
shape in phases. We use the domain of finite state automatg {6iSapproximating
phases and provide a static semantics of traces of FSA as putalfe abstraction of
the phase semantics. We introduce the notiomegfilar metamorphisnas a further
approximation obtained by abstracting sequences of FSAdrgingle FSA. This ab-
straction provides an upper regular language-based ajppaitinn ofany metamorphic
behavior of a program. This is particularly suitable to agtrmetamorphic signatures
for engines implemented themselves as FSA of basic codgftramations, which cor-
respond to the way most classical metamorphic genera®isyatemented [16, 20, 25].
Our approach is general and language independent, prowidsiystematic method for
extracting approximate metamorphic signatures from anmamerphic malware®, in
such a way that checking whether a program is a metamorphawaf P is decidable.

2 Background

Mathematical notation Given two setsS andT’, we denote withp(S) the powerset of
S, with S \ T the set-difference betweesiandT’, with S C T strict inclusion and

with S C T inclusion. LetS, be setS augmented with thendefined valuel, i.e.,
S1 = SU{Ll}. (P, <) denotes a pose? with ordering relation<, while a complete
lattice P, with ordering<, least upper bound (luby, greatest lower bound (glb),
greatest element (tof), and least element (bottom)is denoted by P, <, V, A, T, L).

C denotes pointwise ordering between functionsfIf S — T andg : T — @
theng o f : S — @ denotes the composition gfandg, i.e.,g o f = Az.g(f(x)).

f : P — Q on posets is (Scott)-continuous whé¢rmpreserves lub of countable chains
in P. f : C — D on complete lattices is additive (co-additive) when for anyC
C,f(veY) =Vpf(Y) (f(AcY) = Apf(Y)). Let A* be the set of finite sequences,
also called strings, of elements dfwith ¢ the empty string, and withw| the length
of stringw € A*. We denote the concatenationwfr € A* asw :: v. We say that a
string sp . . . s, is a subsequence of a strinyg. . . t,,, denotedsy ... s, = toty ... Ly, if

A el,n]:Viel0,h]: si=ti.

Finite State Automata (FSA)An FSA M is a tuple(Q, ¢, S, F, A), where(Q is the set
of statesy : Q x A — p(Q) is the transition relation§ C @ is the set of initial states,
F C Q is the set of final states andl is the finite alphabet of symbols. Lete A*,
functiond* : Q x A* — p(Q) denotes the extension 6fto strings:0*(q,€) = {q}
andd* (q,ws) = Uy es+(4,0) 0(¢', 8)- Astringw € A* is accepted by if there exists
qo € S: 6*(qo,w) N F # (. The language? (M) accepted by an FSA{ is the set of
all strings accepted hy/. Given an FSAV/ and a partitionr over its states, thguotient
automatonM /m = (Q’,0',5’, F’, A) is defined as followsQ’ = {[¢] | ¢ € @},

"1 Q' x A — p(Q) is the functiond’([g]x, s) = U,eq. ld]x [¢ € d(p,s)},
S"={[qlx | ¢ € S}, andF’ = {[¢]x | ¢ € F}. An FSAM = (Q,0,S,F, A) can
be equivalently specified as a graph = (Q, E, S, F) with a nodeg € @ for each
automata state and a labeled edges, ¢') € E ifand only if¢’ € d(q, s).

Abstract Interpretation.Abstract interpretation is based on the idea that the behavi
of a program at different levels of abstraction is an appration of its (concrete) se-
mantics [8, 9]. The concrete program semantics is computetth® concrete domain
(C, <¢), while approximation is encoded by an abstract donfain< 4). In abstract
interpretation abstraction is specified as a Galois coim®e¢GC) (C, a, v, 4) , i.e.,

an adjunction [8, 9], namely as an abstraction mapC — A and a concretization
mapy : A — C such thatVa € A,c € C : alc) <4 a & ¢ <¢ v(a). Let 4,
and A, be abstract domains of the concrete dom@inA; is more precise thanl,
when~s(A43) C v1(A;). Givena GC(C, a, v, A) and a concrete predicate transformer
(semanticsy : C — O, we say thatF'* : A — A is asoundapproximation ofF" in
Aif Ve € C, a(F(c)) <a F¥(a(c)). Whena o F' = F* o , the abstract functiod™

is acompleteabstraction off’ in A. While any abstract domain induces the canonical
best correct approximationr o F' o vy of ' : C' — C'in A, not all abstract domains
induce a complete abstraction [17]. The least fixpoint {fpan operato’ on a poset
(P, <), when it exists, is denoted bifp=F, or by Ifp ' when < is clear. Any con-
tinuous operatoF C — C on a complete lattic€ = (C,<¢,Ve, Ao, To, Lo)
admits a Ifp:lfp= cF V,en F'(Le), where for anyi € N andz € C: FO(z) = x;
Fitl(z) = F(Fi(x)). If FE A — Ais a correct approximation af : ¢ — C on

Expressions:

Syntactic categories:
na€N (naturals) e:=n | MEMe| | MEMe1] op MEMez2] |
K MEMe1] op n
eckE (expressions) L
) . Instructions:
Iel (instructions)

I:=call e|ret |pop e|push e|nop]
MEMe1] := ez | i nput = MEMe] |
if eigoto ex|goto e|halt

me M :N— N (memory map)
Pe MxN=P (programs)

Fig. 1. Syntax of an abstract assembly language

(A, <4), thena(lfp=CF) <4 Ifp=* F*. Convergence can be ensured througtien-
ing iterations along increasing chains [8]. A widening operato: P x P — P ap-
proximates the lub, i.e¥X,Y € P : X <p (XVY)andY <p (XVY), anditis
such that the increasing chaifi’, whereW? = | and Wt = WivF(W?*) is not
strictly increasing for<p. The limit of the sequenc® provides an upper fixpoint
approximation ofF on P, i.e.,lfp="F <p lim;_.c W".

3 Modelling metamorphism

Abstract assembly languagéxecutable programs make no fundamental distinction
between code and data. This makes it possible to modify ag@nmoby operating on a
memory location as though it contains data, e.g., by addirsgibtracting some value
from it, and then interpreting the result as code and exegtiti To model this aspect,
we define a program to be a pdt = (ma), wherem specifies the contents of a
memory(both code and data) amddenotes thentry pointof P, namely the address of
the firstinstruction of?. Since a memory location contains a natural number thatean b
interpreted either as data or as instructia® use an injective functioencode : I —
N that, given an instructiofi € I, returns its binargencode(I) € N, and a function
decode : N — I, that given a natural number returns’ if encode(I) = n
otherwisel . Fig. 1 shows the syntax of our abstract assembly langudges@mantics
of expressions is specified by a functén E x M — N:

En]m=n

E[VEMe]Im= m(E[e]m)

E[VEMe1] op MEMeo]Im= E[VEMes]]m op E£[VEMeo]Im

E[MEMey] op n]jm= E[MEMe;]Jm op n
and the semantics of instructions by a functionll x X' — X:

ZIcall e]{a,m0,73) = (E[elmm (a+1) :: 6,7)

Ifret]{a,mn :: 60,3) = (n,ma,7)

Z[MEMeq] == e2](a,m0,3) = (a + 1, m{E[er]Jm«— E[e2]m, 0,7)

Z[i nput = MEMe€]|{a,mO,n :: J) = (a + 1, n{E]e]m— n],0,T)

% For simplicity, we assume that each instruction occupigsgieslocation in memory, because
the issues raised by variable-length instructions areogrhal to the topic of this paper, and
do not affect any of our results.

(Ele2]lmm 0. 3) if E[ea]m#0
(a+1,m0,7) otherwise
pop el{a,mn :: 0,3) = (a+ 1, mME[e]m «— n],0,7)

]
I[
Z[goto e](a,m0,3) = (E[eJmm¥,7T)
I[
|

if e goto eg]]<a,m9,3>={

=

push e]{(a,m6,7) = (a+1,mE[e}m :: 0,7)
hal t J{(a,m6,7) = (L,m#,7)
Z[nop]{a,m0,3) = (a+1,m¥0,7)

A programstateis a tuple{a, m 6, 3) wheremis the memory map is the address of the
next instruction to be executelc N* is the stack and € N* is the input string. Let
Y =N, x M x N* x N* be the set of possible program states @ndp(X) — p(X)
be thetransition relationbetween states, which is given by the point-wise extension
of 7({a,m0,7)) = Z[decode(ma))](a,m0,T). As usual [11], thenaximal finite
trace semantic8[P] € p(X*) of a programP = (ma) is given by the least fixpoint
of Fr[P] : p(X*) — p(X*) whereInit[P] = {(a,me,J) | Jis an input strearh
andFr[P](X) = Init[P] U{ooi0; | 0; € T(0;),00; € X}.

Phase Semanticdntuitively, a phaseis a maximal sequence of states in an execution
trace that does not overwrite any memory location storingnatruction that is going

to be executed later in the same trace. Given an executioa éra= o ...o0,, We

can identifyphase boundarieby considering the sets of memory locations modified
by each stater; = (a;,m,0;,7;) with ¢ € [0, n]: every time that a location,, with

1 < j < n, of a future instruction is modified by the execution of statethen the
successive state;,; is a phase boundary, since it stores a modified version of the
code We consider the setod(o;) C N of memory locations that are modified by the
instruction executed in state:

{E]e1]m} if decode(m(a;)) = MEMey] := eq

mod(o;) = ¢ {E]e]m if decode(m(a;)) € {i nput = MEMe],pop e}
0 otherwise

This allows us to formally define the phase boundaries angltases of a trace.

Definition 1 The set of phase boundariesof= oy ...0,, € X*, whereVi € [0,n] :
oi = (a;,m, 0;,3;),is: bound(c) = {oo}U{o; | mod(c;—1)N{a; |i < j <n}#0}.
The set of phases of a traeec Y* is:

phases (o) = { Oi...0j

0=00...0;...050541...0n,
0i,0j+1 € bound(o),Vl € [i + 1,7] : oy & bound(o)

Observe that, by definition, the memory map of the first sthee ghase always spec-
ifies the code snapshot that is executed in the same phasee Hka sequence of the
initial states of the phases of a trace highlights the déffiécode snapshots encountered
during code execution. In general, different executiona pfogram give rise to dif-
ferent sequences of code snapshots. A complete charatieninf all code snapshots
of a self-modifying program can be obtained by organizingggs in gorogram evo-
lution graph Here, each vertex is a code snapsRotorresponding to a phase, and an
edgeP; — P; indicates that in some execution trace of the program, agplvik code
snapshof’; can be followed by a phase with code snapghot

Definition 2 The program evolution graph of a prograRy is G[o] = (V, E):

V={P,=(m,q) | o =09.0;.0n € S[P] : 0; = {a;,m,0;,T;) € bound(c)}

E= { (Pi, Pj)

P, =(m,a;),P; = (M, a;),0 = 0¢..04..0j_10;..0n € S[F] :
g; = <ai,m,9i,ji>,0’j = (aj,r’r}-,Hj,Jj>,ai s 051 S phases(a)

A path inG[P,] is therefore a sequence of prografs . . P, such that for every €
[0,n] we have thatP;, P,.1) € E. Given a progranP, the set of all possible (finite)
paths of the program evolution grah[F] is the phase semanticsf P, denoted
SPh[[PQ]]: SPh[[P()]] = {P() ...P, | Py...P, isa path ||"G|IPO]]}

P, 1. MEMf] := 100 8: MEMMEMf]] := MEM4]
2: i nput = MEMa| 9: MEMMEMf] + 1] := MEM5]
3:if (MEMga]nod2)goto 7 10: MEMMEMf] + 2] := encode(got 0 6)
4: MEMb] := MEMd] 11: MEM4] := encode(nop)
5: MEMa] := MEMa]/2 12: MEM5] := encode(got o MEM])
6: goto 8 13: MEMf] := MEM[] + 3
7: MEMa] := (MEMa] + 1)/2 14: goto 2
Py = (‘arh‘?‘;l'().);']’s = (llsl,'ms)apﬁ = (;1!}:7716)4'P7 :‘b(aw 7717)4'1—)8 = (as. mx);ﬁy = (llf;; mg)

Fig. 2. A metamorphic progran®, and the phases of one of its traces.

Consider for instance the metamorphic progrgnof Fig. 2. The metamorphic engine
of Py, which is stored at memory locations fra#rto 13, writes anop at memory lo-
cation 4 and copies the original content of this locationh® free location identified
by MEM f]; then it adds somgot o instructions to preserve the original semantics. We
consider the execution traee= oy . .. 017 Of programpP, corresponding to the input
sequencd = 7 :: 6, in particularo = (1,my,€,7 :: 6)(2,m = my[f < 100],¢,7 ::
6)(3,m = Mmla — 7],6,6){(7,m = m,e6)(8,m = ma «— 4],66)(9,m =
m[100 «+ encode(MEMY] := MEMa))], €, 6) ... {17, m7 = mgla — 3], ¢,€). Fig. 2
shows the considered execution tracavhere: the bold arrows denote the modifi-
cations of instructions that will be later executed, for rexde the bold arrow from
o4 = {ag, My, 04,74) t0 015 = (a15, M5, 615, J15) Means that locatioa, 5 is overwrit-
ten by the execution of instructiatecode (my(a4)) at statesy, i.e.,a15 € mod(oy);
and the black dots identify the states that are phase boiesdar

Fixpoint phase semanticd/Ve introduce the notion ahutating transitioni.e., a tran-
sition between two states that leads to a state which is eegimsdary. We say that a
pair of stategc;, 0;) is a mutating transition afy, denotedo;, ;) € MI (1), if there
exists a trac& = oy...0,0;...0, € S[Fy] such thatz; € bound(c). This allows

us to define the code transform®&f™” : o(P) — (PP) that associates with each set
of programs the set of their possible metamorphic variaitss 7 % (P;) means that
during execution prograrf; can be transformed into prograf).

Definition 3 77" : o(P) — o(P) is given by the point-wise extension of:

TPh(PO) _ { Pl Pl = (ml,al>,0' =00...01-10] € S[[P()]],O’l = <al;m79l,jl>, }

(0'171,0'1> € Mr(P()>,VZ € [O,Z — 1[(O’i,O'iJrl) Q Mr(P())

T can be extended to trac&yr [P] : p(P*) — o(P*) as:Frm[Po](Z) = Py U
{ZPlP] | Pj S TPh(Pi),ZPi S Z}

Theorem 1 IfpS Frm[Py] = STM[Py].

A program(@ is a metamorphic variant of a prografy, denoted?, ~ p;, @, if Q is an
element of at least one sequenc&iff[FP].

Correctness and completeness of phase semanffesprove the correctness of phase
semantics by showing that it is a sound approximation oftisEmantics, namely by
providing a pair of adjoint mapspy, : p(X*) — p(P*) andvypy, : (P*) — p(2*),
for which the fixpoint computation of -#: [Py approximates the fixpoint computation
of Fr[Py]. Giveno = (ag, my,00,To) ...0i-10; . ..o, We definexp, as:

app(o) = (My, a0)apy (o ...0) St.o; € bound(o),V1 € [0,i — 1] : o7 & bound(o)

Abstractionap, observes only the states of a trace that are phase boundades
can be lifted point-wise te(X*) giving rise to the GQp(X*), apn, vrh, p(P*)). The
following result shows the correctness of the phase sensnti

Theorem 2 VX € p(X*) : app(XUFT[Po](X)) C apn(X)UFren[Po](apn(X)).

The converse may not hold:p, (X UF7 [P (X)) C apn(X)UFre[Po](apn(X)).
In fact, givenX € p(X*), the concrete functiotFr[Fy] makes only one transition
in 7 and this may not be a mutating transition, while the absfauttion 7 [Pp]
jumpsdirectly to the next mutating transition. Even if the fixpoaf Fr.[Py] is not
step-wise complete, it is complete at the fixpoint, as showihé following theorem.

Theorem 3 apy, (IfpS Fr[Po]) = lfpS Fren[Po].

4 Abstracting metamorphism

Our model of metamorphic code behaviour is based on a veryldeel representa-
tion of programs as memory maps that simply give the contefntsemory locations
together with the address of the instruction to be executet! MVhile such a represen-
tation is necessary to precisely capture the effects of setfenodification, it is not a
convenient representation if we want to statically analyeedifferent code snapshots
encountered during a program’s execution. Our idea is t@gdem abstract interpre-
tation of phase semantics, namely to approximate the catipotof phase semantics

on an abstract domain that captures properties of the évolaf the code, rather than
of the evolution of program states, as usual in abstractpre¢ation. We have to: (1)
Define an abstract domaif, C 4) of code propertiesuch that(p(P*), aa,va, A);
(2) Define the abstract transitiofi* : p(A) — p(A) and Fra[P] : A — A
such thatlfp=4 Fra[Py] = SA[P]; (3) Prove thaS4[P,] is a correct approxima-
tion of phase semantic®”"[P], i.e., as(ifpS Fren[Po]) Ea SA[Po]. This proves
that SA[P,] is such thata program(is a metamorphic variant of prograrf, with
respect to4, denotedP’ ~ 4 Q, if SA[Py] approximates) in the abstract domain:
Py~4Q & aa(Q) Ca SAR]. In this senseS4[P] is anabstract metamor-
phic signaturdor Py. Abstract domains for code properties need to approximaie-p
erties of sequences of instructions. This can be achievedlally by grammar-based,
constraint-based and finite state automata abstractioniselfollowing we propose to
abstract programs by a FSA describing the sequence of fpsdistract) instructions
that may be disassembled from the given memory.

Phases as FSAThe most commonly used program representation istimrol flow
graph In this representation, the vertices contain the insimastto be executed, and
the edges represent possible control flow. For our purp@segonvenient to consider
a dual representation where vertices correspond to prolgreations and abstract in-
structions label edges. Lét/» denote the FSA-representation of a given progfam
and let.Z(Mp) be the language it recognizes. The idea is that for each seque
Z(Mp) the order of the instructions in the sequence correspontigtexecution or-
der of the corresponding concrete instructions in at leastroin of the control flow
graph of P. Instructions are abstracted in order to provide a simpliiphabet. In
the rest of the paper, for the sake of simplicity, we consfdection. : I — T de-
fined in Fig. 3. Letp : I x N — p(N) denote any sound control flow analysis that

&(Po) MEM(b]:= MEM(a]:=

MEM MEM(a)/2,
@ (DM (D ot
MEM[f):= input => MEMMEM[f]]:=
@ 100 @ MEM(a] MEMI[a] mod 2 MEM[4]

MEM[MEM[f]+1]:=
MEM[MEM([f]+2]:= MEM[5]

encode(goto 6)

/
goto
\ MEMI= @

MEM[5]:= MEM[4]:=

MEMIf + 3 encode(goto MiEMJf])® < _encode(nop)

R e (OB

Edges(P = (ma),Qr,)

Ep=10
call ifI=call e while Qp # 0
(=i~ e1 if I=if e goto e selecth € Qp andQp = Qp . {b}
(N =1I= goto ifI=goto e I =decode(m(b))
I otherwise foreachc € p(I,b) N Qp
Ep=FEpU {(b,L(I),C)}
returnEp

Fig. 3. FSA &(Fy) corresponding to prograrf, of Fig. 2, instruction abstraction: I — I and
the algorithm that computeSp

determines the possible successors of a given instructiang&ven location, namely
p(1,b) associates with instructiohstored at memory locatiolthe set of locations of
its possible successors. Lghe the set of FSA over the aIphalﬁelf abstract instruc-
tions where every state is considered to be final. Each FSAisrspecified as a graph
M = (Q,E,S). We define functiony : P — § that associates with each program
P = (ma) its corresponding FSA-representation as follow&P) = (Qp, Ep,{a})
where@Qp = {b | decode(md)) € I} is the set of locations that store an instruction
of P, and the set of edgdsp C Qp x I x Q@ p is computed by the algorithiedgesin
Fig. 3. This algorithm, give® = (m, a), starts by initializingEl» to the empty set and
then for every memory locatidrthat stores an instructiahit adds an edge labeled with
(I), whose source is the locatidrand whose destinations are the locationg(if, b).

As an example, at the top of Fig. 3 we show the autométdty) corresponding to pro-
gramP, of Fig. 2. We say that = ao[fo] e [fn,l]an [Ion]anﬂ is apathof automaton
M = (Q,E,S), denotedr € II(M), if ag € S andVi € [0,n[: (a;,1;,a;41) € E.
Observe that even if the alphatie's unbounded (due to the unlimited number of pos-
sible expressions), the FSA-representation of every pragrses only a finite subset of
alphabet. By point-wise extension of functiafa we obtain the GQp(P), &, ¥, p(F)).
Note that abstractiondefined above makes the FSA-representation of programs inde
pendent (up to renaming) from program position.

Theorem 4 If P, and P, differ only in their memory position thef(P;) and &(P»)
are equivalent up to address renaming.

Abstract phase semantics as traces of F3&t az : P* — §* be the extension of
& : P — Ftosequencesiz(e) = e andagz(Po Py ... Py) = a(Py)ag(Py ... Py). ag
can be lifted point-wise t@(P*) and it gives rise to the GCp(P*), oz, vz, ©(F*))-
In order to compute a correct approximation of the phase sgasaon (p(F*), C),
we need to define an abstract transition relatioh : () — p(§) on FSA that
correctly approximateg " : o(P) — o(P). One possibility is to defind S as the
best correct approximation @ on p(g), namelyZs = & o 7" o 4, and function
Frs[Po] : () — o(F) as follows: Frs [Po](K) = &(Po) U {kM;M; | kM, €
K,M; € TS(M;)}. FromTS correctness we ha® [Py] = IfpFrs [Po] correctness.

Theorem 5 Ozg(lfp]:TPh [[Po]]) ClfpFrs [[Po]] = SS[[P()]]

SS[P,] approximates phase semantics by abstracting programsFBiéh while the
transitions, i.e., the effect of the metamorphic enginkgfodirectly from7 " and are
not approximated. For this reas8r [P] is not computable in general. In the follow-
ing we introduce a static computable approximation of thegition relation on FSA
that allows us to obtain a static approximati{P,] of the phase semantics &% on
(p(T*), C). S*[P,] may play the role of abstract metamorphic signatur&pfTo this
end, we introduce the notion 6imits of a path that approximates the notion of bounds
of a trace, and the notion ¢fansition edgehat approximates the notion of mutating
transition. Moreover, we assume to have access to the fiolipsound program analy-
ses forPy:

— a stack analysiStackVal : N — p(N) that approximates the set of possible values
on the top of the stack when control reaches a given locaéian [1, 2]);

—a memory analysidocVal : N x N — o(N) that approximates the set of possible
values that can be stored in a memory location when the daetohes a given loca-
tion (e.g. [1,2]).

These analyses allow us to defii#al : N x E — p(N), that approximates the evalu-
ation of an expression in a given point:

EVal(b,n) = {n}

EVal(b,MEMe]) = {LocVal(b,1) |l € EVal(b,e)}

EVal(b,MEMe1] op MEMeg]) = {n1 op no|i € {1,2}:n; € EVal(b, MEMe;])}
EVal(MEMe] op n)={n1 op n|ny € EVal(b,MEMe])}

and a sound control flow analysis T x N — o(N):

p(cal | e,b) =p(goto e)= EVal(b,e)

p(ret b) = StackVal(b)

p(if ey goto ez, b) ={b+1} U EVal(b,es)

pthal t b)) =10

p(I,b) = {b+ 1} in all other cases

Moreover, we definerite : [x N — p(N) approximating the set of locations that may
be modified by the execution of an abstract instruction méadrat a given location:

] EVal(b,e1) if I = NEMey] := o
write(1,b) = ¢ EVal(b,e) if I € {i nput = MEMe],pop e}
0 otherwise

We define thdimits of a pathr as the nodes that are reached by an edge labeled by an
abstract instruction that may modify the label of a futurgexth =, namely an abstract
instruction that occurs later in the same path. Given a pathag[lo] . . . [1,,—1]a, we

o

have:limit(r) = {ao} U {a; | write(l;—1,a;—1) N{a; | i <j <n} #0}.

Definition 4 A pair of program locationgb, c) is a transition edge oM = (Q, £, 5),
denotedb, c) € TE(M), if there exists1 € S: 7 = a[l,] ... [Iy—1]|b[Iy]c € II(M) and
¢ € limit(m).

In the FSA of Fig. 3 the transition edges are the dashed oneg $he instructions
labeling these edges overwrite a location that is reachalilee future. Observe that
also the instructions labeling the edges fi®to 9, from9 to 10, and from10 to 11 write
instructions in memory, but the locations that store thasgtictions are not reachable
when considering the control flow &f,.

In order to statically compute the set of possible FSA evoiubf a given automaton
M = (Q, E, S) we need to statically execute the abstract instructiortstiag modify
an FSA. AlgorithmEXE(M, I, b) in Fig. 4 returns the seffze of all possible FSA that
can be obtained by executing instructibrstored at locatior of automaton)/. The
algorithm starts by initializingZze to the FSAM' that has the same states and edges
of M and whose possible initial staté$ are the nodes reachable through instruction
stored ab in M. This ensures correctness when the execution of instructimes not
correspond to a real code mutation. The ifrrites in memory we consider the st
of locations that it can modify and the sgtof possible instructions that it can write,
and we add tdvze the set of all possible automata that can be obtained byngrén
instruction ofY” in a memory location inX, i.e., NEXT (X, Y, M, b).

10

EXE(M,I,b) Il M = (Q,E,S) isaFSA
Ere = {M' = (Q,E,S')| S ={d|(b,1,d) € E}}

if I = MEMe1] := ea NEXT(X,Y, M,b)
thenX = write(1,b) Nezt =)
Y = {n|n € EVal(b,ez),decode(n) € I} while X # 0
Eze = Eze UNEXT(X,Y, M, b) selecta; from X andX' = X ~ {a;}

if / =input = MEM¢] E=E~A{(aj,1j,0) | (aj,1;,¢) € E}
thenX = write(I,b) Next = Next U Uney{ M = (Q, E,5) |
Y = {n|nisaninput decode(n) € I} Q = QU {a;} Up(decode(n), a;)
Eze = Eze UNEXT(X,Y, M, b) E = EU{(a;,.(decode(n)),d) |

if [=pop e) d € p(decode(n), a;)}
thenX = write(i,b) S={d]|(,1,d)e E}}
Y = {n|n € StackVal(b),decode(n) € I} return Next
Eze = Fze UNEXT(X,Y, M, b)

return Eze

Fig. 4. Algorithm for statically executing instructiof

Let Suce(M) denote the possible evolutions of automatdnnamely the automata
that can be obtained by the execution of the abstract ingiruabeling the first transi-
tion edge of a path of/:

aolly) .. [l 1] Blaiys € (M), (@, ar41) € TE(M), }

M)=1< M
Suce(M) { Vi € [0,1[: (ai,air1) € TE(M), M’ € EXE(M, I}, a;)

We can now define the static transitii : p(F) — (). The idea is that the possible
static successors of an automafnare all the automata ifiucc(M) together with all
the automata/’ that are different from\/ and that can be reached frohd through
a sequence of successive automata that differ fidnonly in the entry point. This
ensures the correctness®f, i.e., M; € TS(My) = M,; € T#(M,), even if between
My and M, there are transition edges that do not correspond to anytimgyiteansition.

Definition 5 LetM = (Q, E,S). T* : p(F) — o(F) is given by the point-wise exten-
sion of:

MM ... MM’ : My € Suce(M),Vi € [1,k[:
THM) = Succ(M)U{ M'| Mgy € Suce(M;),M' = (Q', E', S") € Succ(My),
(E#E'VQ#Q)Vje[Lk: M= (Q,E,S;)
This allows us to define functioftr:[Fo] : p(§*) — p(F*) that statically approxi-
mates the iterative computation of phase semantics on steaabdomain(p(g*), C)
as follows: Fr4 [P (K) = &(Py) U {kM;M; | (M;, M;) € T*,kM,; € K}. The
following result shows the correctnessSH] Py] = Ifp Fr: [Po]-

Theorem 6 oz (ifpFre[Po]) C lfpFr:[Fo].

In Fig. 5 we report a possible sequence of FSA that can be geukduring the execu-
tion of programP, of Fig. 2. In this case, thanks to the simplicity of the exaejlis
possible to use the transition relation over FSA defined By

11

® ® ® ® ®

=100 MEM[] = 100 MEM[] = 100 MEM[] = 100 MEM[] = 100

fnput => MEM[a) fnpyt = a) input 5 MEM[a] ot 4 MMl
v

@50

MEMa] mod 2

~
¥

-
oto v \ v v v
\ PO © EMlal S(MEMal 12
golo golo
» ' MEM(b] := MEM(a] nop
e] Ml ~VEMab 12
MEMIa] = MEMIa)2 golo
Mo M1 2
golo MEM[o] : = MEMa]
.
goto golo
» MEMa] :stma]rz
Cwe]
M2 M3 gv;o
©
Mo M1 M2 M3 M4 goo
entry-point=1 entry-point=12 entry-point=13 entry-point=12
TE: (11,12) TE: (12,13) TE: (11,12) TE: (12,13)

Fig. 5. Some metamorphic variants of prografy of Fig. 2, where the metamorphic engine,
namely the instructions stored at locations frano 14, is briefly represented by the box marked
ME. In the graphic representation of automata we omit to sti@wnodes that are not reachable.

5 Widening phases for regular metamorphism

Regular metamorphisimodels the metamorphic behaviour as a regular language of
abstract instructions. This can be achieved by approximgatequences of FSA into a
single FSA, denoteW [P,]. W[P,] represents all possible (regular) program evolu-
tions of P, i.e., it recognizes all the sequences of instructionsdbatspond to a run

of at least one metamorphic variantif. This abstraction of course is able to precisely
model metamorphic engines implemented as FSA of basic egdagement as well as

it may provide a regular language-based approximationtigrraetamorphic engine,

by extracting theegular invariant of their behaviour.

It is known that FSA can be ordered according to the languhgg tecognize:
My Cg My if £(Mq) C £(Ms). Observe thal i is reflexive and transitive but not
antisymmetric and it is therefore a pre-order. Moreovecpating to this ordering, an
unique least upper bound of two automadta and M, does not always exist, since
there is an infinite number of automata that recognize thgdage (M,) U £ (Ms).
Given two automatd/; = (Q1,d1, 51, F1, A1) and My = (Qz, 2, Sa, Fa, As), we
approximate their least upper bound as follows:

MU My = (Q1UQ2,3,51USy, Fy U Fy, A; U Ay)

12

whered : (Q1 U Q2) x (A1 U Ay) — o(Q1 U Q») is defined as(q, s) = d1(q, s) U
d2(q, s). FSA areu-closed for finite sets, and the following result shows thapprox-
imates any upper bound with respect to the ordefigg

Lemma 1 Given two FSAV/; and M, we have Z (M;) U £ (M) C £ (M; U My).

We can now define?2, [F] : § — § as follows: F2, [Po] (M) = &(Py) U M U
(W{M' | M’ € T*(M)}). Observe that the set of possible successors of a given au-
tomaton)/, i.e., 7¥(M), is finite since we have a (finite family of) successor for gver
transition edge of\/ and M has a finite set of edges. Since FSA @relosed for fi-

nite sets, ther, [] is well defined. Letor(F*) denote the domain of finite sets

of strings of FSA and let us define functiony : pr(§*) — §F asas(My... M) =
LUJ{Mi | 0<: < k} andaS(K) = LUJ{Oés(Mo...Mk) | My ... M € K}, with K €
pr(*). Functionag is additive and it defines a GG r(F*), as,vs,). The fol-
lowing result shows that, when considering finite sets otiseges of FSAFZ, [Fo]
correctly approximate$. [P] on3g.

Theorem 7 Forany K € pr(§*) we havevs(Fr:[Po](K)) C FL: [Pol(as(K)).

The domain(F, Cz) has infinite ascending chains, which means that, in genrthel,
fixpoint computation ofF2, [Fy] on § may not converge. A typical solution for this
situation is the use of a widening operator which forces eogence towards an upper
approximation of all intermediate computations along thedint iteration, i.e., an ele-
ment inF which upper approximates the iterates/f, [Py] . We refer to the widening
operation over FSA described by D’Silva [14]. Here the widgroperator between two
FSAM; = (Q1, E1, S1) andM; = (Q2, E», S2) over afinite alphabet is formalized

in terms of an equivalence relatidh C Q) x Q- between statesz, also calledviden-
ing seedis used to define another equivalence relatigi- Q> x Q5 over the states of
M, such that=r= R o R~!. The widening between/; andM- is then given by the
quotient of M, with respect to the partition induced by: M1V Ms = My/ =g . By
changing the widening seed we obtain different wideningaipes. It has been proved
that convergence is guaranteed when the widening seediisl&i®nR,, C Q1 X Q2
such that(q1, ¢2) € R, if ¢1 andg, recognize the same language of strings of length
at mostn [14]. When considering the widening se&¢g we have that two statesand

q' of M, are=pg, -equivalent if they recognize the same language of lengthcsttn
that is recognized by a stateof My, i.e.,ifIr € Q1 : (r,q) € R, and(r,¢') € R,.

v, denotes the widening operator that uggsas widening seedv,, is well defined if

I is finite. This can be achieved by considering expressionsrass and by applying
some of the standard methods for approximating them. Thé stragghtforward one is
the depthk string abstraction [24], while more refined expressionraletibns can be
designed by considering graph-based or grammar-basedatestractions [3, 15]. For
simplicity we consider here the depkhterm abstraction where expressions are repre-
sented as trees with leafs that are natural numbers dergithney a memory location
or a constant, and internal nodes are the operators cotistyexpressions, namely the
unary operatoMEMor the binary operatorsp. We annotate each node with its depth,
namely with the length of the path from the root to the nodee @apthk abstraction,
given a tree representation of an expression, consideystomhodes with depth less or

13

equal tok and “cuts” the remaining nodes by approximating them witt-or example,
the depth-3 abstraction of expressiBM(MEMa] op MEMb op MEMc]]) op d]

is VEM(MEMT] op MEMT]) op d]. Givenk € N, lety;, : I — I, be the instruc-
tion abstraction that applies the depittabstraction to the expressions occurring in an
abstract instruction, and let, : § — 3§ be the function that abstracts the edge la-
bels of a FSA in§ according tay. It is possible to show thdf, a, vk, §x) is a GC,
wherey, (M*) = W{M' | ax(M') Cz M*}. This allows us to approximate the least
fixpoint of 7, [Po] on (§x, E) with the limit W[FP] of the following widening se-
quencelWy = ay(a(Pp)) andWipy = Wi V,, ap(FL [Po] (v (W3))). Let us refer
to W[P,] as thewidened fixpoinof 72, [P] and toW, W1, ... as thewidening se-
quenceof 72, [P,]. From the correctness of,, and by Theorem 7, it follows that the
widening sequencl/, W, ... converges to an upper-approximation of the least fixpoint
of Fr:[Fo], namely any automata modelling a possible static variai,aé approx-
imated byW[Pp] i.e.,... M;... € IfpSFr[P] = M; Cy W[FR)]. Therefore
Z(W[Py]) contains all the possible sequences of abstract instnsctimt can be exe-
cuted by a metamorphic variant 6f. As a consequence, a progréhis a regular (ab-
stract) metamorphic variant & if W[] recognizes all the sequences of abstract in-
structions that correspond to the rungpéip to address renamingfy ~z, Q iff there
exists an address renamitiguch that}(.Z (ax (&(Q)))) € Z(W][F]). The language
Z(W[Py]) represents the regular metamorphic signaturépfind the automaton
W[P,] represents the mechanism of generation of the metamorahants and there-
fore it provides a model of the metamorphic engindpfFig. 6 (a) shows the widened
fixpoint W[P,] of programP; in Fig. 2, where the widening seedis andk > 3, This
automaton recognizes any possible program that can benebtduring the execution of
Py. Note that, we may have false positives, as for example tipeesees of instructions
along the bold patiVEM f] := 100;i nput = MEMa]; MEMa] mod2 = 0; MEMD] :=
MEMa]; got o; MEMb] := MEMal; got o; ... which is not a run of any of the variants
of Py. Regular metamorphism can easily cope with metamorphistoamations com-
monly used by malware (e.g/¥ n95/ Regswap, W n32/ Ghost , W n95/ Zper m

W n95/ Znor ph, W n32/ Evol) such asregister swapthat changes the registers
used by the prograntode permutatiorthat changes the order in which instructions
appear in memory while preserving their execution orderuigh the insertion of direct
jumps;junk/nop insertiorthat inserts junk instructions and semantic-nops, nanmely i
structions that are not executed or that do not alter produaictionality. Observe that
all these transformations can be seen as special caseslefsubstitutionLet P, be

a metamorphic malware: whenever a sequenaa instructions is substituted with an
equivalent ones,, we have that during the widened fixpoint computation a neth pa
containing sequence is added to the widened fixpoiW []. Therefore, by correct-
ness,W|[P,] recognizes all the possible metamorphic variant®pbbtained through
code substitution. Of course it is possible to further &ws® [P,] in order to address
semantic-nop/junk insertion, permutation and registesipsim a more efficient way,
namely in such a way that the resulting widened fixpoint is @omaton of a reduced
size. In semantic-nop insertion, the more precise is thesiaalysis used for identi-
fying (sequences of) instructions that are equivalemtdp, the smaller is the widened
fixpoint W[F,] that we obtain. In code permutation, a smaller FSA can berodddy

14

performinggot o-reduction, i.e., by folding nodes reachabledmnt o-instructions. In
register swapping it is sufficient to replace registers rafine., memory locations) with
uninterpreted symbols and then use unification to bind theggerpreted symbols to
the actual register names (i.e., memory locations) as doffg.iLet us consider pro-
gram P, obtained by enriching the metamorphic engine of progfanof Fig. 2 with

a code permutation and a transformation that substitutgsuctionVEMe;] = e
with the equivalent sequenpeish e;, pop es. A possible evolution is shown below,
where ME denotes the metamorphic engine.

Fig. 6 (b) shows the FSA that represents an approximation of
all the possible evolutions of prograRj™ whenk > 3. This

P FSA is obtained through widening with widening segdl

i % ema mos2) goto 11 | and by applying theot o-reduction to handle permutation.

; Z&pg 100 We can observe that every time that in the automaton in Fig. 6

S hopa s (b) we have an edge labeled WiVEMe,] := e, between

7 :goto 12 .

s M) = 100 two statesg and p, then we also have a path labeled with
105 goto 3 push es,pop e; that connectg andp, and this precisely

11 : MMa] := (MEMa] + 1)/2 . . .

12 : ME captures the fact that the metamorphic engine implements
100 | push M) this substitution. Theot o-reduction allows here to have a
103 : goro s reduced FSA, and the self-loop labeled withp makes clear

that the metamorphism could insert an unbounded number of
nop instructions.

MEM[f] := 100

P
input => MEM(a]
v

MEM[a] mod 2

F MEMal:=MEM([b]

op _pu hMEM[l

nop
nop

{X MEM(b]:= MEM[al got0 a MEMI-—MEN1+3 MEM[b]:=MEM(a]
push MEM[1|
MEM[b]: MEMI 1 pu hMEM[a]
MEM[a] :=(MEM[a]+1)/2 goto MEMal:= MEM(a)/2
\b MEMial:=(MEM(al+1)2 / /
MEM[b] —MENGa

MEM[al:= MEM[a)2 MEM[b] : = MEM(a] j

b pop b

A \\

push (MEMa]+1)/2

\ push MEM[a)/2

MEM[a]:=MEM[a}/2

MEM[a] : = MEM[a}/2
v

P

goto

i,

5

@ Fig 6. Widened phase semantics ()

6 Related Works and Discussion

In [13] the authors use trace semantics to characterizeghaviours of both the mal-
ware and the potentially infected program, and use absir@epretation to “hide” their
irrelevant behaviours. A program is infected by a malwatkeir behaviours are indis-
tinguishable up to a certain abstraction, which correspdndsome obfuscations. A
significant limitation of this work is that the knowledge bietobfuscation is essential
in order to derive abstractions. In [19] the authors modelrttalware)M as a formula
in the new logic CTPL, which is an extension of CTL able to Handgister renaming.
A programP is infected byM, if P satisfies the CTPL formula that modélg. By

15

knowing the obfuscations used by malwakrkit is possible to design CTPL specifica-
tions that recognise several metamorphic variants/oin [7] the idea is to model the
malware as a template that expresses the malicious intést.ik this case the defini-
tion of the template is driven by the knowledge of the obftisces commonly used by
malware. Some researchers have tried to detect metamanghi@re by modelling the
metamorphic engine as formal grammars and automata [1B520These works are
promising, but the design of the grammar and automata isdbas¢he knowledge of
the metamorphic transformations used, and none of thenmdeswa methodology for
extracting a grammar or an automata from a given metamomalware. To the best
of our knowledge, we are not aware of any work modelling metgohism without any
a priori knowledge of the transformations used by the metairio engine. The only
other work we are aware of that formally addresses the aisalyself-modifying code
is the one of Cai et al. [4]. However, their goals and resukisvary different from ours:
Cai et al. propose a general framework based on Hoare logiertty self-modifying
code, while we use program semantics and abstract intatjgneto extract metamor-
phic signature from malicious self-modifying code. In teense, our key contribution
relies upon the idea that abstract interpretation of phas®atics may provide useful
information about the way code changes, i.e., about themwazhic engine itself. In-
terestingly, the language recognizedWy[P] provides an upper-approximation of the
possible metamorphic variants of the original malware Jehie automaton itself mod-
els the mechanism of generation of such variants, i.e., te@mmorphic engine. With
our approach it is therefore possible to extract propedighe implementation of the
metamorphic engine by abstract interpretation of the psas®ntics. Itis clear that the
depth# abstraction considered here for approximating the langwégnstructions to-
wards a finite alphabet for widening traces of FSA is for sdi&rplicity. In general,
widening phases for taming the sequence of modified prog(&®4) generated by
metamorphism into a single FSA modeling regular metamamimay require a notion
of higher-order wideningn FSA, acting both at the level of the graph-structure of the
FSA, for approximating the language of instructions, anithatevel of the instruction
set, for approximating the way a single instruction may b@jgosed. The abstraction
of code layout may induce the abstraction of instructiortsctvitself can be solved by
means of FSA. This opens an interesting new field that maysepit a future challenge
for abstract interpretatiotthe abstraction of code layouwhere the code is the object of
abstraction and the way it is generated is the object of attstiterpretation. Of course
FSA provide just regular language-based abstractionseahtstamorphic engine. More
sophisticated approximations, using for instaada Cousos context free grammars
and set-constraint-based abstractions of sequencesasf/limstructions [10], may pro-
vide alternative and effective solutions for non-regul@tamorphism.

References

1. G. Balakrishnan, R. Gruian, T. W. Reps, and T. Teitelba@odesurfer/x86-a platform for
analyzing x86 executables. Proc. Internat. Conf. on Compiler Construction (CC'0%Pp.
250-254, 2005.

2. G. Balakrishnan and T. W. Reps. Analyzing memory accdsse®6 executables. IRroc.
Internat. Conf. on Compiler Construction (CC'Q4p. 5-23, 2004.

16

3. M. Bruynooghe, G. Janssens, A. Callebaut, and B. Demobstréct Interpretation: Towards
the Global Optimization of Prolog Programs. Pnoc. Symposium on Logic Programmjmp.
192-204, 1987.

4. H. Cai, Z. Shao, and A. Vaynberg. Certified self-modifycwe. InProc. ACM conf. on
Programming Language Design and Implementation (PLDI'@p) 66—77, 2007.

5. M. Christodorescu and S. Jha. Static analysis of exelastab detect malicious patterns. In
Proc. USENIX Security Symppp. 169-186, 2003.

6. M. Christodorescu and S. Jha. Testing malware detedioidtoc. ACM SIGSOFT Internat.
Symp. on Software Testing and Analy{($&STA '04, pp. 3444, 2004.

7. M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and Ry@anB Semantics-aware malware
detection. InProc. IEEE Security and Privacyp. 32—46, 2005.

8. P. Cousot and R. Cousot. Abstract interpretation: A uhititice model for static analysis of
programs by construction or approximation of fixpoints Phoc. ACM Symp. on Principles of
Programming Language@®OPL '77), pp. 238-252, 1977.

9. P. Cousot and R. Cousot. Systematic design of programgsasd@tameworks. IProc. ACM
Symp. on Principles of Programming Language®PL '79), pp. 269-282, 1979.

10. P. Cousot and R. Cousot. Formal language, grammar aicds&traint-based program anal-
ysis by abstract interpretation. FProc. ACM Conf. on Functional Programming Languages
and Computer Architecturgp. 170-181, 1995.

11. P. Cousot. Constructive design of a hierarchy of semsofia transition system by abstract
interpretation.Theor. Comput. ScR77(1-2): 47-103, 2002.

12. P. Cousot and N. Halbwachs. Automatic discovery of limestraints among variables of a
program. InProc. ACM Symp. on Principles of Programming Langua@@®3PL '78), 1978.

13. M. Dalla Preda, M. Christodorescu, S. Jha, and S. Delfaemantics-based approach to
malware detectionACM Trans. Program. Lang. Sys80(5):1-54, 2008.

14. V. D’'Silva. Widening for automata. Diploma Thesis, ihgtFur Informatick, Universitat
Zurich, 2006.

15. M. Emami, R. Ghiya, and L.J. Hendren. Context-sensititerprocedural points-to analysis
in the presence of function pointers. Pmoc. ACM Conf. Programming language design and
implementationpp. 242—-256, 1994.

16. E. Filiol. Metamorphism, formal grammars and undedigl@bde mutation. I#roc. World
Academy of Science, Engineering and Technology (PWAS&T20, 2007.

17. R. Giacobazzi, F. Ranzato, and F. Scozzari. Making attstterpretations completd. of
the ACM, 47(2):361-416, 2000.

18. A. Holzer, J. Kinder, and H. Veith. Using verification h@ology to specify and detect
malware. InProc. Internat. Conf. on Computer Aided System Theaol 4739 ofLNCS pp.
497-504, 2007.

19. J. Kinder, S. Katzenbeisser, C. Schallhart, and H. V@&#tecting malicious code by model
checking. InProc. Internat. Conf. on Intrusion and Malware Detectiordaviilnerability As-
sessment (DIMVA'05)0l. 3548 ofLNCS pp. 174-187, 2005.

20. Qozah. Polymorphism and gramma29A E-zing 2009.

21. P.Singh and A. Lakhotia. Static verification of worm aimds behaviour in binary executa-
bles using model checking. Proc. IEEE Information Assurance Worksh@®03.

22. P. Szor.The Art of Computer Virus Research and Defen&ddison-Wesley Professional,
2005.

23. P. Szor and P. Ferrie. Hunting for metamorphic.Ptoc. Virus Bulleting Conferencep.
123-144. Virus Bulletin Ltd, 2001.

24. H.Tamaki and T. Sato. Program Transformation Througtahghifting. New Generation
Computing 1(1):93-98, 1983.

25. P. Zbhitskiy. Code mutation techniques by means of fogreinmars and automaton¥our-
nal in Computer Virology2009.

17

